Skip to main content

Non-carbon Nanotubes: Hydrogen Sensors Based on TiO2

  • Chapter
Sensors Based on Nanostructured Materials

Abstract

Sensors for the detection of gases such as oxygen, water vapor, and hydrogen are becoming increasingly important for a number of areas such as manufacturing, environmental monitoring, medicine, and defense/security [19]. Hydrogen sensing in particular is needed for industrial process control, combustion control, and in medical applications where the presence of hydrogen is indicative of certain types of health conditions [18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capovilla J, VanCouwenberghe C, Miller WA (2000) Noninvasive blood gas monitoring. Crit Care Nurs Q 23:79–86

    CAS  Google Scholar 

  2. Carter BG, Wiwczaruk D, Hochmann M, Osborne A, Henning R (2001) Performance of transcutaneous PCO2 and pulse oximetry monitors in newborns and infants after cardiac surgery. Anaesth Intens Care 29:260–265

    CAS  Google Scholar 

  3. Chong SKF, Ramadan AB, Livesey E, Wood G (2002) The use of a portable breath hydrogen analyser in screening for lactose intolerance in paediatric patients with chronic abdominal pain or chronic diarrhoea. Gastroenterology 122:M1827 Suppl. 1821 APR

    Google Scholar 

  4. Engel RR, Virnig NL (1973) Origin of mural gas in necrotizing enterocolitis. Pediatric Res 7:292A

    Google Scholar 

  5. Garstin WIH, Boston VE (1987) Sequential assay of expired breath hydrogen as a means of predicting necrotizing enterocolitis in susceptible infants. J Pediatr Surg 22:208

    Article  CAS  Google Scholar 

  6. Godoy G, Truss C, Philips J (1986) Breath hydrogen excretion in infants with necrotizing enterocolitis. J Pediatr Res 20:348A

    Google Scholar 

  7. Grimes CA, Ong KG, Varghese OK, Yang X, Mor G, Paulose M, Dickey EC, Ruan C, Pishko MV, Kendig JW, Mason AJ (2003) A Sentinel sensor network for hydrogen sensing. Sensors 3:69–82

    Article  CAS  Google Scholar 

  8. McIntosh N, Becher JC, Cunningham S, Stenson B, Laing IA, Lyon AJ, Badger P (2000) Clinical diagnosis of pneumothorax is late: use of trend data and decision support might allow preclinical detection. Pediatr Res 48:408–415

    Article  CAS  Google Scholar 

  9. Mor GK, Carvalho MA, Varghese OK, Pishko MC, Grimes CA (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634

    Article  CAS  Google Scholar 

  10. Mor GK, Varghese OK, Paulose M, Grimes CA (2003) A self-cleaning, room-temperature titania-nanotube hydrogen gas sensor. Sens Lett 1:42–46

    Article  CAS  Google Scholar 

  11. Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 18:2588

    Article  CAS  Google Scholar 

  12. Moukarzel AA, Lesicka H, Ament ME (2002) Irritable bowel syndrome and nonspecific diarrhea in infancy and childhood relationship with juice carbohydrate malabsorption. Clin Pediatr (Phila) 41:145–150

    Article  Google Scholar 

  13. Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17:398–402

    Article  CAS  Google Scholar 

  14. Pimentel M, Chow EJ, Lin HC (2000) Comparison of peak breath hydrogen production in patients with irritable bowel syndrome, chronic fatigue syndrome and fibromyalgia. Gastroenterology 118:2141 Part 2141 Suppl 2142

    Google Scholar 

  15. Riordan SM, McIver CJ, Duncombe VM, Thomas MC, Bolin TD (2000) Evaluation of the rice breath hydrogen test for small intestinal bacterial overgrowth. Am J Gastroenterol 95:2858–2864

    Article  CAS  Google Scholar 

  16. Tobias JD, Wilson WR, Jr, Meyer DJ (1999) Transcutaneous monitoring of carbon dioxide tension after cardiothoracic surgery in infants and children. Anesth Analg 88:531–534

    CAS  Google Scholar 

  17. Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–627

    Article  CAS  Google Scholar 

  18. Varghese OK, Gong D, Paulouse M, Ong KG, Grimes CA (2003) Hydrogen sensing using titania nanotubes. Sens Actuat B 93:338–344

    Article  CAS  Google Scholar 

  19. Varghese OK, Grimes CA (2003) Metal oxide nanoarchitectures for environmental sensing. J Nanosci Nanotechnol 3:277–293

    Article  CAS  Google Scholar 

  20. Varghese OK, Mor GK, Grimes CA, Paulose M, Mukherjee N (2004) A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J Nanosci Nanotechnol 4:733–737

    Article  CAS  Google Scholar 

  21. Varghese OK, Yang X, Kendig J, Paulose M, Zeng K, Palmer C, Ong KG, Grimes CA (2006) A transcutaneous hydrogen sensor: From design to application. Sens Lett 4:120–128

    Article  CAS  Google Scholar 

  22. Yoriya S, Prakasam HE, Varghese OK, Shankar K, Paulose M, Mor GK, Latempa TA, Grimes CA (2006) Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 mm to 222 mm in length. Sens Lett 4:334–339

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

LaFlamme, K.E., Grimes, C.A. (2009). Non-carbon Nanotubes: Hydrogen Sensors Based on TiO2 . In: Arregui, F. (eds) Sensors Based on Nanostructured Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77753-5_3

Download citation

Publish with us

Policies and ethics