Skip to main content

Genetic Engineering and Tissue Culture of Roses

  • Chapter
Genetics and Genomics of Rosaceae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 6))

The recent advances in rose genetics and in functional genetics described in the previous two chapters have improved our knowledge about interesting characteristics of the rose. Gene transfer technologies may facilitate the introgression of homologous or heterologous genes to improve major ornamental traits as e.g., scent, plant architecture and colour as well as biotic and abiotic stress responses and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arene, L., Pellegrino, C., and Gudin, S. (1993). A comparison of the somaclonal variation level of Rosa hybrida L. cv. Meirutral plants regenerated from callus or direct induction from different vegetative and embryonic tissues. Euphytica 71, 83–90.

    Article  Google Scholar 

  • Borissova, A., Tsolova, V., Angeliev, C., and Atanassov, A. (2000). Somatic embryogenesis of Rosa hybrida L. Biotechnology & Biotechnological Equipment 14, 44–51.

    CAS  Google Scholar 

  • Burrell, A.M., Lineberger, R.D., Rathore, K.S., and Byrne, D.H. (2006). Genetic variation in somatic embryogenesis of rose. HortScience 41, 1165–1168.

    Google Scholar 

  • Castillon, J., and Kamo, K.K. (2002). Maturation and conversion of somatic embryos of three genetically diverse rose cultivars. HortScience 37, 973–977.

    Google Scholar 

  • Chevreau, E., Skirvin, R.M., Abu-Qaoud, H.A., Korban, S.S., and Sullivan, J.G. (1989). Adventitious shoot regeneration from leaf tissue of three pear (Pyrus sp.) cultivars in vitro. Plant Cell Reports 7, 688–691.

    CAS  Google Scholar 

  • Condliffe, P.C., Davey, M.R., Power, J.B., Koehorst-van Putten, H., and Visser, P.B. (2003). An optimised protocol for rose transformation applicable to different cultivars. Acta Horticulturae 612, 115–120.

    CAS  Google Scholar 

  • Dafny-Yelin, M., Guterman, I., Menda, N., Ovadis, M., Shalit, M., Pichersky, E., Zamir, D., Lewinsohn, E., Adam, Z., Weiss, D., and Vainstein, A. (2005). Flower proteome: changes in protein spectrum during the advanced stages of rose petal development. Planta 222, 37–46.

    Article  CAS  PubMed  Google Scholar 

  • de Wit, J.C., Esendam, H.F., Honkanen, J.J., and Tuominen, U. (1990). Somatic embryogenesis and regeneration of flowering plants in rose. Plant Cell Reports 9, 456–458.

    Article  Google Scholar 

  • Derks, F.H.M., Dijk, A.J.v., Hanisch ten Cate, C.H., Florack, D.E.A.,and (1995). Prolongation of vase life of cut roses via introduction of genes coding for antibacterial activity. Somatic embryogenesis and Agrobacterium-mediated transformation. Acta Horticulturae 405, 205–209.

    Google Scholar 

  • Dohm, A., Ludwig, C., Schilling, D., and Debener, T. (2001). Transformation of roses with genes for antifungal proteins. Acta Horticulturae 547, 27–33.

    CAS  Google Scholar 

  • Dohm, A., Ludwig, C., Schilling, D., and Debener, T. (2002). Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. Acta Horticulturae 572, 105–111.

    CAS  Google Scholar 

  • Dubois, L.A.M., and Vries, D.P.d. (1995). Preliminary report on the direct regeneration of adventitious buds on leaf explants of in vivo grown glasshouse rose cultivars. Gartenbauwissenschaft 60, 249–253.

    CAS  Google Scholar 

  • Dubois, L.A.M., Vries, D.P.d., and Koot, A. (2000). Direct shoot regeneration in the rose: genetic variation of cultivars. Gartenbauwissenschaft 65, 45-–49.

    Google Scholar 

  • Elliot, R.F. (1970). Axenic culture of meristem tips of Rosa multiflora. Planta 95, 183–186.

    Article  Google Scholar 

  • Escalettes, V., and Dosba, F. (1993). In vitro adventitious shoot regeneration from leaves of Prunus spp. Plant Science (Limerick) 90, 201–209.

    Article  Google Scholar 

  • Estabrooks, T., Browne, R., and Zhongmin, D. (2007). 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar ‘Livin’ Easy’ (Rosa sp.). Plant Cell Reports 26, 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Fiola, J.A., Hassan, M.A., Swartz, H.J., Bors, R.H., and McNicols, R. (1990). Effect of thidiazuron, light fluence rates and kanamycin on in vitro shoot organogenesis from excised Rubus cotyledons and leaves. Plant Cell, Tissue and Organ Culture 20, 223–228.

    CAS  Google Scholar 

  • Firoozabady, E., and Moy, Y. (2004). Regeneration of pineapple plants via somatic embryogenesis and organogenesis. In Vitro Cellular & Developmental Biology – Plant 40, 67–74.

    Article  Google Scholar 

  • Firoozabady, E., Moy, Y., Courtney-Gutterson, N., and Robinson, K. (1994). Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Bio/Technology 12, 609–613.

    Article  CAS  Google Scholar 

  • Fukuchi-Mizutani, M., Ishiguro, K., Nakayama, T., Utsunomiya, Y., Tanaka, Y., Kusumi, T., and Ueda, T. (2000). Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Science 160, 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Guterman, I., Masci, T., Chen, X.L., Negre, F., Pichersky, E., Dudareva, N., Weiss, D., and Vainstein, A. (2006). Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Molecular Biology 60, 555–563.

    Article  CAS  PubMed  Google Scholar 

  • Guterman, I., Shalit, M., Menda, N., Piestun, D., Dafny-Yelin, M., Shalev, G., Bar, E., Davydov, O., Ovadis, M., Emanuel, M., Wang, J.H., Adam, Z., Pichersky, E., Lewinsohn, E., Zamir, D., Vainstein, A., and Weiss, D. (2002). Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14, 2325–2338.

    Article  CAS  PubMed  Google Scholar 

  • Hibino, Y., Kitahara, K., Hirai, S., and Matsumoto, S. (2006). Structural and functional analysis of rose class B MADS-box genes MASAKO BP, euB3 and B3: paleo-type AP3 homologue MASAKO B3 association with petal development. Plant Science 170, 778–785.

    Article  CAS  Google Scholar 

  • Hill, G.P. (1967). Morphogenesis of shoot primordia in cultured stem tissue of a garden rose. Nature 216, 596–597.

    Article  Google Scholar 

  • Hsia, C., and Korban, S.S. (1996). Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell, Tissue and Organ Culture 44, 1–6.

    Article  CAS  Google Scholar 

  • Huetteman, C.A., and Preece, J.E. (1993). Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell, Tissue and Organ Culture 33, 105–119.

    Article  CAS  Google Scholar 

  • Ibrahim, R., and Debergh, P.C. (2000). Improvement of adventitious bud formation and plantlet regeneration from in vitro leaflet explants of roses (Rosa hybrida L.). Acta Horticulturae 520, 271–279.

    CAS  Google Scholar 

  • Ibrahim, R., and Debergh, P.C. (2001). Factors controlling high efficiency adventitious bud formation and plant regeneration from in vitro leaf explants of roses (Rosa hybrida L.). Scientia Horticulturae 88, 41–57.

    Article  Google Scholar 

  • Jabbarzadeh, Z., and Khosh-Khui, M. (2005). Factors affecting tissue culture of Damask rose (Rosa damascena Mill.). Scientia Horticulturae 105, 475–482.

    Article  CAS  Google Scholar 

  • Kagami, T., and Suzuki, M. (2005). Molecular and functional analysis of a vacuolar Na+/H+ antiporter gene of Rosa hybrida. Genes and Genetic Systems 80, 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Kim, C.K., Oh, J.Y., Chung, J.D., Burrell, A.M., and Byrne, D.H. (2004a). Somatic embryogenesis and plant regeneration from in-vitro-grown leaf explants of rose. HortScience 39, 1378–1380.

    Google Scholar 

  • Kim, C.K., Chung, J.D., Park, S.H., Burrell, A.M., Kamo, K.K., and Byrne, D.H. (2004b). Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell, Tissue and Organ Culture 78, 107–111.

    Google Scholar 

  • Kintzios, S., Drossopoulos, J.B., and Lymperopoulos, C. (2000). Effect of vitamins and inorganic micronutrients on callus growth and somatic embryogenesis from young mature leaves of rose. Journal of Plant Nutrition 23, 1407–1420.

    Article  CAS  Google Scholar 

  • Kitahara, K., and Matsumoto, S. (2000). Rose MADS-box genes ‘MASAKO C1 and D1’ homologous to class C floral identity genes. Plant Science (Limerick) 151, 121–134.

    Article  CAS  Google Scholar 

  • Kitahara, K., Hirai, S., Fukui, H., and Matsumoto, S. (2001). Rose MADS-box genes ‘MASAKO BP and B3’ homologous to class B floral identity genes. Plant Science 161, 549–557.

    Article  CAS  Google Scholar 

  • Kitahara, K., Hibino, Y., Aida, R., and Matsumoto, S. (2004). Ectopic expression of the rose AGAMOUS-like MADS-box genes ‘MASAKO C1 and D1’ causes similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia. Plant Science 166, 1245–1252.

    Article  CAS  Google Scholar 

  • Korban, S.S., O’Connor, P.A., and Elobeidy, A. (1992). Effects of thidiazuron, naphthaleneacetic acid, dark incubation and genotype on shoot organogenesis from Malus leaves. Journal of Horticultural Science 67, 341–349.

    CAS  Google Scholar 

  • Kunitake, H., Imamizo, H., and Mii, M. (1993). Somatic embryogenesis and plant regeneration from immature seed-derived calli of rugosa rose (Rosa rugosa Thunb.). Plant Science (Limerick) 90, 187–194.

    Article  CAS  Google Scholar 

  • Lavid, N., Wang, J.H., Shalit, M., Guterman, I., Bar, E., Beuerle, T., Menda, N., Shafir, S., Zamir, D., Adam, Z., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E. (2002). O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiology 129, 1899–1907.

    Article  CAS  PubMed  Google Scholar 

  • Ledbetter, D.I., and Preece, J.E. (2004). Thidiazuron stimulates adventitious shoot production from Hydrangea quercifolia Bartr. leaf explants. Scientia Horticulturae 101, 121–126.

    Article  CAS  Google Scholar 

  • Li, X.Q., Krasnyanski, S.F., and Korban, S.S. (2002a). Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. Journal of Plant Physiology 159, 313–319.

    Google Scholar 

  • Li, X.Q., Krasnyanski, S.F., and Korban, S.S. (2002b). Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiology and Biochemistry 40, 453–459.

    Google Scholar 

  • Li, X.Q., Gasic, K., Cammue, B., Broekaert, W., and Korban, S.S. (2003). Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218, 226–232.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, D., Roberts, A.V., and Short, K.C. (1988). The induction in vitro of adventitious shoots in Rosa. Euphytica 37, 31–36.

    Article  Google Scholar 

  • Marchant, R., Davey, M.R., Lucas, J.A., and Power, J.B. (1996). Somatic embryogenesis and plant regeneration in Floribunda rose (Rosa hybrida L.) cvs. Trumpeter and Glad Tidings. Plant Science (Limerick) 120, 95–105.

    Article  Google Scholar 

  • Marchant, R., Power, J.B., Lucas, J.A., and Davey, M.R. (1998a). Biolistic transformation of rose (Rosa hybrida L.). Annals of Botany 81, 109–114.

    Google Scholar 

  • Marchant, R., Davey, M.R., Lucas, J.A., Lamb, C.J., Dixon, R.A., and Power, J.B. (1998b). Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosae Wolf). Molecular Breeding 4, 187–194.

    Google Scholar 

  • Matthews, D., Mottley, J., Horan, I., and Roberts, A.V. (1991). A protoplast to plant system in roses. Plant Cell, Tissue and Organ Culture 24, 173–180.

    Article  Google Scholar 

  • Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473–479.

    Article  CAS  Google Scholar 

  • Noriega, C., and Sondahl, M.R. (1991). Somatic embryogenesis in hybrid tea roses. Biotechnology 9, 991–993.

    Article  Google Scholar 

  • Pati, P.K., Madhu, S., Anil, S., and Ahuja, P.S. (2004). Direct shoot regeneration from leaf explants of Rosa damascena Mill. In Vitro Cellular & Developmental Biology – Plant 40, 192–195.

    Article  Google Scholar 

  • Pati, P.K., Rath, S.P., Madhu, S., Anil, S., and Ahuja, P.S. (2006). In vitro propagation of rose – a review. Biotechnology Advances 24, 94–114.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, A.V., Horan, I., Matthews, D., and Mottley, J. (1990). Protoplast technology and somatic embryogenesis in Rosa. In Integration of in vitro techniques in ornamental plant breeding. Proceedings, Symposium, 10–14 November 1990., pp. 110–115.

    Google Scholar 

  • Roberts, A.V., Yokoya, K., Walker, S., and Mottley, J. (1995). Somatic embryogenesis in Rosa ssp. In Somatic embryogenesis in woody plants, S.M. Jain, P. Gupta, and R. Newton, eds (Amsterdam: Kluwer Academic Publishers).

    Google Scholar 

  • Rouet-Mayer, M.A., Bureau, J.M., and Lauriere, C. (1992). Identification and characterization of lipoxygenase isoforms in senescing carnation petals. Plant Physiology 98, 971–978.

    Article  CAS  PubMed  Google Scholar 

  • Rout, G.R., Debata, B.K., and Das, P. (1991). Somatic embryogenesis in callus cultures of Rosa hybrida L. cv. Landora. Plant Cell, Tissue and Organ Culture 27, 65–69.

    Article  CAS  Google Scholar 

  • Rout, G.R., Samantaray, S., Mottley, J., and Das, P. (1999). Biotechnology of the rose: a review of recent progress. Scientia Horticulturae 81, 201–228.

    Article  CAS  Google Scholar 

  • Sarasan, V., Roberts, A.V., and Rout, G.R. (2001). Methyl laurate and 6-benzyladenine promote the germination of somatic embryos of a hybrid rose. Plant Cell Reports 20, 183–186.

    Article  CAS  Google Scholar 

  • Scalliet, G., Journot, N., Jullien, F., Baudino, S., Magnard, J.L., Channeliere, S., Vergne, P., Dumas, C., Bendahmane, M., Cock, J.M., and Hugueney, P. (2002). Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases. FEBS Letters 523, 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Schenk, R.U., and Hildebrandt, A.C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany 50, 199–204.

    Article  CAS  Google Scholar 

  • Shalit, M., Guterman, I., Volpin, H., Bar, E., Tamari, T., Menda, N., Adam, Z., Zamir, D., Vainstein, A., Weiss, D., Pichersky, E., and Lewinsohn, E. (2003). Volatile ester formation in roses. Identification of an acetyl-coenzyme A. Geraniol/Citronellol acetyltransferase in developing rose petals. Plant Physiology 131, 1868–1876.

    Article  CAS  PubMed  Google Scholar 

  • Skirvin, R.M., Chu, M.C., and Walker, J.C. (1984). Tissue culture of the rose. American Rose Annual 69, 91–97.

    Google Scholar 

  • Song, G.Q., and Sink, K.C. (2005). Optimizing shoot regeneration and transient expression factors for Agrobacterium tumefaciens transformation of sour cherry (Prunus cerasus L.) cultivar Montmorency. Scientia Horticulturae 106, 60–69.

    Article  CAS  Google Scholar 

  • Souq, F., Coutos-Thevenot, P., Yean, H., Delbard, G., Maziere, Y., Barbe, J.P., and Boulay, M. (1996). Genetic transformation of roses, 2 examples: one on morphogenesis, the other on anthocyanin biosynthetic pathway. Acta Horticulturae 424, 381–388.

    Google Scholar 

  • Suo, Y., and Leung, D.W.M. (2002). BTH-induced accumulation of extracellular proteins and blackspot disease in rose. Biologia Plantarum 45, 273–279.

    Article  CAS  Google Scholar 

  • Tanaka, Y., Fukui, Y., Fukuchi-Mizutani, M., Holton, T.A., Higgins, E., and Kusumi, T. (1995). Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene. Plant and Cell Physiology 36, 1023–1031.

    CAS  PubMed  Google Scholar 

  • van der Salm, T.P.M., van der Toorn, C.J.G., Hanisch ten Cate, C.H., and Dons, H.J.M. (1996a). Somatic embryogenesis and shoot regeneration from excised adventitious roots of the rootstock Rosa hybrida L. ‘Moneyway’. Plant Cell Reports 15, 522–526.

    Google Scholar 

  • van der Salm, T.P.M., van der Toorn, C.J.G., Hanish ten Cate, C.H., van der Krieken, W.M., and Dons, H.J.M. (1996b). The effects of exogenous auxin and rol genes on root formation in Rosa hybrida L. ‘Moneyway’. Plant Growth Regulation 19, 123–131.

    Google Scholar 

  • van der Salm, T.P.M., van der Toorn, C.J.G., Bouwer, R., Hanisch ten Cate, C.H., and Dons, H.J.M. (1997). Production of ROL gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Molecular Breeding 3, 39–47.

    Article  Google Scholar 

  • van der Salm, T.P.M., Bouwer, R., Dijk, A.J.v., Keizer, L.C.P., Cate, C.H.H.t., van der Plas, L.H.W., and Dons, J.J.M. (1998). Stimulation of scion bud release by rol gene transformed rootstocks of Rosa hybrida L. Journal of Experimental Botany 49, 847–852.

    Article  Google Scholar 

  • Wu, S., Watanabe, N., Mita, S., Ueda, Y., Shibuya, M., and Ebizuka, Y. (2003). Two O-methyltransferases isolated from flower petals of Rosa chinensis var. spontanea involved in scent biosynthesis. Journal of Bioscience and Bioengineering 96, 119–128.

    CAS  PubMed  Google Scholar 

  • Wu, S., Watanabe, N., Mita, S., Dohra, H., Ueda, Y., Shibuya, M., and Ebizuka, Y. (2004). The key role of phloroglucinol O-methyltransferase in the biosynthesis of Rosa chinensis volatile 1,3,5-trimethoxybenzene. Plant Physiology 135, 95–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Debener, T., Oyant, L.HS. (2009). Genetic Engineering and Tissue Culture of Roses. In: Folta, K.M., Gardiner, S.E. (eds) Genetics and Genomics of Rosaceae. Plant Genetics and Genomics: Crops and Models, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77491-6_19

Download citation

Publish with us

Policies and ethics