Skip to main content

Physical Mapping in the Triticeae

  • Chapter
  • First Online:
Genetics and Genomics of the Triticeae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 7))

Abstract

In contrast to small genome model species where whole genome “shotgun sequencing” is sufficient, physical maps are mandatory for the development of whole genome reference sequences of large and complex genomes, such as those of the Triticeae crop species wheat, barley, and rye. Access to a whole genome physical map allows efficient and nearly unlimited isolation of genes that underpin biological mechanisms and agronomical traits. The basic methodologies (fingerprinting, assembly) for constructing such maps were established years ago and are applicable generally to any kind of genome. However, the size and features of the wheat and barley genomes require specific considerations when developing the most cost efficient strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashida T, Nasuda S, Sato K, et al. (2007) Dissection of barley chromosome 5 H in common wheat. Genes Genet Syst 82: 123–133

    Article  PubMed  CAS  Google Scholar 

  • Aston C, Mishra B, Schwartz D C (1999) Optical mapping and its potential for large-scale sequencing projects. Trends Biotechnol 17: 297–302

    Article  PubMed  CAS  Google Scholar 

  • Bennett M D, Smith J B (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274: 227–274

    Article  PubMed  CAS  Google Scholar 

  • Bilgic H, Cho S, Garvin D F et al. (2007) Mapping barley genes to chromosome arms by transcript profiling of wheat–barley ditelosomic chromosome addition lines. Genome 50: 898–906

    Article  PubMed  CAS  Google Scholar 

  • Burke D T, Carle G F, Olson M V (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236: 806–812

    Article  PubMed  CAS  Google Scholar 

  • Cheng C H, Chung M C, Liu S M, et al. (2005) A fine physical map of the rice chromosome 5. Mol Genet Genom 274: 337–345

    Article  CAS  Google Scholar 

  • Cheng Z, Buell C, Wing R, et al. (2002) Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res 10: 379–387

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Garvin D F, Muehlbauer G J (2006) Transcriptome analysis and physical mapping of barley genes in wheat-barley chromosome addition lines. Genetics 172: 1277–1285

    Article  PubMed  Google Scholar 

  • Coulson A, Sulston J, Brenner S, et al. (1986) Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 83: 7821–7825

    Article  PubMed  CAS  Google Scholar 

  • Cox D R (1992) Radiation hybrid mapping. Cytogenet Cell Genet 59: 80–81

    Article  PubMed  CAS  Google Scholar 

  • Dean F B, Hosono S, Fang L, et al. (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci 99: 5261–5266

    Article  PubMed  CAS  Google Scholar 

  • Dear P H, Cook P R (1989) HAPPY mapping: A proposal for linkage mapping the human genome. Nucleic Acids Res 17: 6795–6807

    Article  PubMed  CAS  Google Scholar 

  • Dimalanta E T, Lim A, Runnheim R, et al. (2004) A microfluidic system for large DNA molecule arrays. Anal Chem 76: 5293–5301

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Johnson M D, Chen W Q et al. (2001) Five-color-based high-information-content fingerprinting of bacterial artificial chromosome clones using type IIS restriction endonucleases. Genomics 74: 142–154

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Johnson M D, Colayco R, et al. (1999) Contig assembly of bacterial artificial chromosome clones through multiplexed fluorescence-labeled fingerprinting. Genomics 56: 237–246

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Kubaláková M, Bartoš J, et al. (2005) Chromosome flow sorting and physical mapping. In: Meksem K, Kahl G (eds.), The handbook of plant genome mapping. Genetic and physical mapping. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 151–171

    Chapter  Google Scholar 

  • Doležel J, Kubaláková M, Paux E, et al. (2007) Chromosome-based genomics in the cereals. Chromosome Res 15: 51–66

    Article  PubMed  Google Scholar 

  • Endo T (2007) The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res 15: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Endo T R (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. In common wheat. J Hered 79: 366–370

    Google Scholar 

  • Endo T R, Gill B S (1996) The deletion stocks of common wheat. J Hered 87: 295–307

    CAS  Google Scholar 

  • Feuillet C, Eversole K (2008) Physical mapping of the wheat genome: A coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Isr J Plant Sci 55: 307–313

    Google Scholar 

  • Flavell R B, Bennett M D, Smith J B, et al. (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12: 257–269

    Article  PubMed  CAS  Google Scholar 

  • Gill K S (2004) Gene distribution in cereal genomes. In: Gupta PK, Varshney RK (eds.), Cereal genomics. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 361–384

    Google Scholar 

  • Goss S J, Harris H (1975) New method for mapping genes in human chromosomes. Nature 255: 680–684

    Article  PubMed  CAS  Google Scholar 

  • Hitte C, Madeoy J, Kirkness E F, et al. (2005) Facilitating genome navigation: Survey sequencing and dense radiation-hybrid gene mapping. Nat Rev Genet 6: 643–648

    Article  PubMed  CAS  Google Scholar 

  • Jander G, Norris S R, Rounsley S D, et al. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129: 440–450

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Gill B S (1994) Nonisotopic in situ hybridization and plant genome mapping: The first 10 years. Genome 37: 717–725

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Gill B S (2006) Current status and the future of fluorescence in situ hybridization (fish) in plant genome research. Genome 49: 1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Jing J, Reed J, Huang J, et al. (1998) Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. Proc Natl Acad Sci USA 95: 8046–8051

    Article  PubMed  CAS  Google Scholar 

  • Joppa L (1993) Chromosome engineering in tetraploid wheat. Crop Sci 33: 908–913

    Article  Google Scholar 

  • Joppa L, Williams N (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30: 222–228

    Article  Google Scholar 

  • Kalavacharla V, Hossain K, Gu Y, et al. (2006) High-resolution radiation hybrid map of wheat chromosome 1D. Genetics 173: 1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Kuenzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154: 397–412

    Google Scholar 

  • Kynast R G, Okagaki R J, Galatowitsch M W, et al. (2004) Dissecting the maize genome by using chromosome addition and radiation hybrid lines. Proc Natl Acad Sci USA 101: 9921–9926

    Article  PubMed  CAS  Google Scholar 

  • Lage J M, Leamon J H, Pejovic T, et al. (2003) Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-cgh. Genome Res. 13: 294–307

    Article  PubMed  CAS  Google Scholar 

  • Lander E S, Waterman M S (1988) Genomic mapping by fingerprinting random clones: A mathematical analysis. Genomics 2: 231–239

    Article  PubMed  CAS  Google Scholar 

  • Lapitan N L V, Brown S E, Kennard W, et al. (1997) Fish physical mapping with barley BAC clones. Plant J 11: 149–156

    Article  CAS  Google Scholar 

  • Leyser O, Chang C (1996) Chromosome walking. In: Foster GD, Twell D (eds.), Plant gene isolation. John Wiley and Sons, Ltd, Chichester, pp 248–271

    Google Scholar 

  • Luo M-C, Thomas C, You F M, et al. (2003a) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82: 378–389

    Google Scholar 

  • Luo M C, Thomas C S, Deal K R, et al. (2003b) Construction of contigs of Aegilops tauschii genomic DNA fragments cloned in BAC and BIBAC vectors. In: 10th International Wheat genetics Symposium, September 1–6, 2003, Paestum, Italy, pp 293–296

    Google Scholar 

  • Madishetty K, Condamine P, Svensson J T, et al. (2007) An improved method to identify bac clones using pooled overgos. Nucleic Acids Res 35: e5

    Article  PubMed  Google Scholar 

  • Marra M A, Kucaba T A, Dietrich N L, et al. (1997) High throughput fingerprint analysis of large-insert clones. Genome Res 7: 1072–1084

    PubMed  CAS  Google Scholar 

  • Masoudi-Nejad A, Nasuda S, Bihoreau M-T, et al. (2005) An alternative to radiation hybrid mapping for large-scale genome analysis in barley. Mol Genet Genom 274: 589–594

    Article  CAS  Google Scholar 

  • Meksem K, Ishihara H, Jesse T (2005) Integration of physical and genetic maps. In: Meksem K, Kahl G (eds.), The handbook of plant genome mapping. Genetic and physical mapping. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 215–232

    Chapter  Google Scholar 

  • Meyers B C, Scalabrin S, Morgante M (2004) Mapping and sequencing complex genomes: Let’s get physical! Nat Rev Genet 5: 578–588

    Article  PubMed  CAS  Google Scholar 

  • Nasuda S, Kikkawa Y, Ashida T, et al. (2005) Chromosomal assignment and deletion mapping of barley est markers. Genes Genet Syst 80: 357–366

    Article  PubMed  CAS  Google Scholar 

  • Olson M V, Dutchik J E, Graham M Y et al. (1986) Random-clone strategy for genomic restriction mapping in yeast. Proc Natl Acad Sci USA 83: 7826–7830

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Roger D, Badaeva E, et al. (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through bac-end sequencing on chromosome 3b. Plant J 48: 463–474

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W et al. (2008) A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B. Science 322: 101–104

    Google Scholar 

  • Pedersen C, Linde-Laursen I (1995) The relationship between physical and genetic distances at the hor1 and hor2 loci of barley estimated by two-colour fluorescent in situ hybridization. Theor Appl Genet 91: 941–946

    Article  CAS  Google Scholar 

  • Peters J L, Cnudde F, Gerats T (2003) Forward genetics and map-based cloning approaches. Trends Plant Sci 8: 484–491

    Article  PubMed  CAS  Google Scholar 

  • Qi L, Echalier B, Friebe B, et al. (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct. Integr. Genomics 3: 39–55

    PubMed  CAS  Google Scholar 

  • Qi L L, Echalier B, Chao S, et al. (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168: 701–712

    Article  PubMed  CAS  Google Scholar 

  • Rayburn A, Biradar D, Bullock D, et al. (1993) Nuclear DNA content in F1 hybrids of maize. Heredity 70: 294–300

    Article  CAS  Google Scholar 

  • Ren C, Xu Z, Sun S, et al. (2005) Genomic DNA libraries and physical mapping. In: Meksem K, Kahl G (eds.), The handbook of plant genome mapping. Genetic and physical mapping. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 173–214

    Chapter  Google Scholar 

  • Riera-Lizarazu O, Vales M I, Ananiev E V et al. (2000) Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics 156: 327–339

    PubMed  CAS  Google Scholar 

  • Sadder M T, Weber G (2002) Comparison between genetic and physical maps in Zea mays L. of molecular markers linked to resistance against Diatreae spp. Theor Appl Genet 104: 908–915

    Article  PubMed  CAS  Google Scholar 

  • Safar J, Bartos J, Janda J, et al. (2004) Dissecting large and complex genomes: Flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39: 960–968

    Article  PubMed  CAS  Google Scholar 

  • Schwartz D C, Li X, Hernandez L, I et al. (1993) Ordered restriction maps of saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262: 110–114

    Google Scholar 

  • Shi F, Endo T (1997) Production of wheat-barley disomic addition lines possessing an aegilops cylindrica gametocidal chromosome. Genes Genet Syst 72: 243–248

    Article  Google Scholar 

  • Shizuya H, Birren B, Kim U-J, et al. (1992) Cloning and stable maintenance of 300-kilobase fragments of human DNA in Escherichia coli using and f-factor-based vector. Proc Natl Acad Sci USA 89: 8794–8797

    Article  PubMed  CAS  Google Scholar 

  • Soderlund C, Humphray S, Dunham, A et al. (2000) Contigs built with fingerprints, markers, and FPC v4.7. Genome Res 10: 1772–1787

    Article  PubMed  CAS  Google Scholar 

  • Soderlund C, Longden I, Mott R (1997) FPC: A system for building contigs from restriction fingerprinted clones. Comp Appl Biosci 13: 523–535

    PubMed  CAS  Google Scholar 

  • Stein N, Graner A (2004) Map-based gene isolation in cereal genomes. In: Gupta P, Varshney R (eds.), Cereal genomics. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 331–360

    Google Scholar 

  • Stephens J L, Brown S E, Lapitan N L V, et al. (2004) Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome 47: 179–189

    Article  PubMed  CAS  Google Scholar 

  • Sulston J, Mallett F, Durbin R, et al. (1989) Image analysis of restriction enzyme fingerprint autoradiograms. Comp Appl Biosci 5: 101–106

    PubMed  CAS  Google Scholar 

  • Sulston J, Mallett F, Staden R, et al. (1988) Software for genome mapping by fingerprinting techniques. Comp Appl Biosci 4: 125–132

    PubMed  CAS  Google Scholar 

  • Telenius H, Carter N P, Bebb C E, et al. (1992) Degenerate oligonucleotide-primed pcr: General amplification of target DNA by a single degenerate primer. Genomics 13: 718–725

    Article  PubMed  CAS  Google Scholar 

  • Thangavelu M, James A B, Bankier A, et al. (2003) HAPPY mapping in a plant genome: Reconstruction and analysis of a high-resolution physical map of a 1.9 Mbp region of Arabidopsis thaliana chromosome 4. Plant Biotech J 1: 23–31

    Article  CAS  Google Scholar 

  • The International Human Genome Mapping C (2001) A physical map of the human genome. Nature 409: 934–941

    Article  Google Scholar 

  • Valarik M, Bartos J, Kovarova P, et al. (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J 37: 940–950

    Article  PubMed  CAS  Google Scholar 

  • Varshney R K, Grosse I, Haehnel U et al. (2006) Genetic mapping and bac assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 113: 239–250

    Article  PubMed  CAS  Google Scholar 

  • Wang C-J R, Harper L, Cande W Z (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18: 529–544

    Article  PubMed  CAS  Google Scholar 

  • Wardrop J, Fuller J, Powell W, et al. (2004) Exploiting plant somatic radiation hybrids for physical mapping of expressed sequence tags. Theor Appl Genet 108: 343–348

    Article  PubMed  CAS  Google Scholar 

  • Wardrop J, Snape J, Powell W, et al. (2002) Constructing plant radiation hybrid panels. Plant J 31: 223–228

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, Dear P H, Powell W et al. (2002) Physical education – new technologies for mapping plant genomes. Trends Plant Sci 7: 521–523

    Article  PubMed  CAS  Google Scholar 

  • Wei F, Coe E, Nelson W, et al. (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3: e123

    Article  PubMed  Google Scholar 

  • Wendl M C, Waterston R H (2002) Generalized gap model for bacterial artificial chromosome clone fingerprint mapping and shotgun sequencing. Genome Res 12: 1943–1949

    Article  PubMed  CAS  Google Scholar 

  • Wong G K S, Yu J, Thayer E C et al. (1997) Multiple-complete-digest restriction fragment mapping: Generating sequence-ready maps for large-scale DNA sequencing. Proc Natl Acad Sci USA 94: 5225–5230

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Sun S, Lee M-K, et al. (2005) Whole-genome physical mapping: An overview on methods for DNA fingerprinting. In: Meksem K, Kahl G (eds.), The handbook of plant genome mapping. Genetic and physical mapping. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 257–306

    Chapter  Google Scholar 

  • You F M, Luo M-C, Gu Y Q, et al. (2007) Genoprofiler: Batch processing of high-throughput capillary fingerprinting data. Bioinformatics 23: 240–242

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Tomkins J P, Waugh R, et al. (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101: 1093–1099

    Article  CAS  Google Scholar 

  • Zhang L, Cui X, Schmitt K, et al. (1992) Whole genome amplification from a single cell: Implications for genetic analysis. Proc Natl Acad Sci 89: 5847–5851

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Bechner M C, Place M, et al. (2007) Validation of rice genome sequence by optical mapping. BMC Genomics 8: 278

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stein, N. (2009). Physical Mapping in the Triticeae. In: Muehlbauer, G., Feuillet, C. (eds) Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77489-3_11

Download citation

Publish with us

Policies and ethics