Skip to main content

Platelet-activating factor (PAF) is a bioactive phospholipid that activates a number of cells including neural cells (neurons, astrocytes, oligodendrocytes, and microglia), platelets, leukocytes, monocytes, macrophages, endothelial cells, and smooth muscle cells (Aihara et al., 2000) (Montrucchio et al., 2000). A variety of stimuli, including those producing inflammation, promote the synthesis and release of PAF from neural and nonneural cells. As PAF interacts with many types of nonneural cells, it mediates processes as diverse as wound healing, physiological inflammation, angiogenesis, apoptosis, and reproduction (Montrucchio et al., 2000). Physiological concentrations (1–100 nM) of PAF promote differentiation in developing neurons and increase the strength of synaptic transmission in the mature brain. Higher concentrations of PAF (μM) that occur in pathological conditions such as head and spinal cord trauma and ischemia trigger neuronal cell death (Bazan et al., 1997; Kornecki et al., 1996). In brain tissue, PAF may be associated with neural cell migration, gene expression, calcium mobilization, noniception, and long-term potentiation (Fig. 9.1). PAF interacts with neural and nonneural cells by binding to specific receptors called as PAF receptors (PAF-Rs). These receptors have been cloned and characterized from nonneural tissues (Honda et al., 1991). Like G protein-coupled receptors, PAF-Rs possess seven transmembrane helices and signals through several G proteins such as Gαo, Gαi, Gβγ, and Gαq. PAF-Rs are associated with multiple intracellular signaling pathways (Honda et al., 1991; Clark et al., 2000).

In the cardiovascular system, PAF plays a role in embryogenesis because it regulates endothelial cell migration and angiogenesis, and may modulate cardiac function because it exhibits mechanical and electrophysiological actions on cardiomyocytes (Montrucchio et al., 2000). Moreover, PAF may contribute to the modulation of blood pressure mainly by affecting the renal vascular circulation. In pathological conditions, PAF has been involved in the hypotension and cardiac dysfunctions occurring in various cardiovascular stress situations such as cardiac anaphylaxis and hemorrhagic, traumatic, and septic shock syndromes (Montrucchio et al., 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi T., Aoki J., Manya H., Asai H., Arai H. and Inoue K. (1997). PAF analogues capable of inhibiting PAF acetylhydrolase activity suppress migration of isolated rat cerebellar granule cells. Neurosci. Lett. 235:133–136.

    Article  PubMed  CAS  Google Scholar 

  • Aihara M., Ishii S., Kume K., and Shimizu T. (2000). Interaction between neurone and microglia mediated by platelet-activating factor. Genes Cells 5:397–406.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G., Squinto S. P., Braquet P., Panetta T., and Marcheselli V. L. (1991). Platelet-activating factor and polyunsaturated fatty acids in cerebral ischemia or convulsions: Intracellular PAF-binding sites and activation of a fos/jun/AP-1 transcriptional signaling system. Lipids 26:1236–1242.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G., Fletcher B. S., Herschman H. R., and Mukherjee P. K. (1994). Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene. Proc. Natl. Acad. Sci. USA 91:5252–5256.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G., Packard M. G., Teather L., and Allan G. (1997). Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochem. Int. 30:225–231.

    Article  PubMed  CAS  Google Scholar 

  • Bennett S.A., Chen J., Pappas B.A., Roberts D.C., and Tenniswood M. (1998). Platelet activating factor receptor expression is associated with neuronal apoptosis in an in vivo model of excitotoxicity. Cell Death Differ. 5: 867–875.

    Article  PubMed  CAS  Google Scholar 

  • Bito H., Nakamura M., Honda Z., Izumi T., Iwatsubo T., Seyama Y., Ogura A., Kudo Y., and Shimizu T. (1992). Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons. Neuron 9:285–294.

    Article  PubMed  CAS  Google Scholar 

  • Brewer, C., Bonin, F., Bullock, P., Nault, M.C., Morin, J., Imbeault, S., Shen, T.Y., Franks, D.J., and Bennet, S.A. (2002). Platelet activating factor-induced apoptosis is inhibited by ectopic expression of the platelet activating factor G-protein coupled receptor. J. Neurochem. 82:1502–1511.

    Article  PubMed  CAS  Google Scholar 

  • Brodie C. (1995). Platelet activating factor induces nerve growth factor production by rat astrocytes. Neurosci. Lett. 186:5–8.

    Article  PubMed  CAS  Google Scholar 

  • Catalán R. E., Martínez A. M., Aragonés M. D., Garde E., and Díaz G. (1993). Platelet-activating factor stimulates protein kinase C translocation in cerebral microvessels. Biochem. Biophys. Res. Commun. 192:446–451.

    Article  PubMed  Google Scholar 

  • Chao W. and Olson M. S. (1993). Platelet-activating factor: Receptors and signal transduction. Biochem. J. 292:617–629.

    PubMed  CAS  Google Scholar 

  • Clark, G.D., Zorumski, C.F., McNeil, R.S., Happel, L.T., Ovella, T., McGuire, S., Bix, G.J., and Swann, J.W. (2000). Neuronal platelet-activating factor receptor signal transduction involves a pertussis toxin-sensitive G-protein. Neurochem. Res. 25:603–611.

    Article  PubMed  CAS  Google Scholar 

  • Cruzado J.M., Torras J., Riera M., Lloberas N., Herrero I., Condom E., Martorell J., Alsina J., and Grinyo J.M. (1998). Effect of a platelet-activating factor (PAF) receptor antagonist on hyperacute xenograft rejection; Evaluation in a pig kidney-human blood xenoperfusion model. Clin. Exp. Immunol. 113:136–144.

    Article  PubMed  CAS  Google Scholar 

  • DeCoster M. A., Mukherjee P. K., Davis R. J., and Bazan N. G. (1998). Platelet-activating factor is a downstream messenger of kainate-induced activation of mitogen-activated protein kinases in primary hippocampal neurons. J. Neurosci. Res. 53:297–303.

    Article  PubMed  CAS  Google Scholar 

  • del Zoppo G.J. and Mabuchi T. (2003). Cerebral microvessel responses to focal ischemia. J. Cereb. Blood Flow Metab. 23:879–894.

    Article  PubMed  Google Scholar 

  • Faden A. I. and Halt P. (1992). Platelet-activating factor reduces spinal cord blood flow and causes behavioral deficits after intrathecal administration in rats through a specific receptor mechanism. J. Pharmacol. Exp. Ther. 261:1064–1070.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: Involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007a). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J. Neurosci. Res. 85:1834–1850.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007b). Modulation of inflammation in brain: A matter of fat. J. Neurochem. 101:577–599.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    Article  PubMed  CAS  Google Scholar 

  • Furnkranz A. and Leitinger N. (2004). Regulation of inflammatory responses by oxidized phospholipids structure–function relationships. Curr. Pharmaceut. Design. 10: 915–921.

    Article  CAS  Google Scholar 

  • Han X.B., Liu X., Hsueh W., De Plaen I.G. (2004) Macrophage inflammatory protein-2 mediates the bowel injury induced by platelet-activating factor. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G1220–1226.

    Article  PubMed  CAS  Google Scholar 

  • Harris E.W. and Cotman C.W. (1986). Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci. Lett. 70:132–137.

    Article  PubMed  CAS  Google Scholar 

  • Honda Z., Nakamura M., Miki I., Minami M., Watanabe T., Shimizu T. (1991). Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature 349:342–346.

    Article  PubMed  CAS  Google Scholar 

  • Honda Z., Ishii S., and Shimizu T. (2002). Platelet-activating factor receptor. J. Biochem. 131:773–779.

    PubMed  CAS  Google Scholar 

  • Hosford D. J., Domingo M. T., Chabrier P. E., and Braquet P. (1990). Ginkgolides and platelet-activating factor binding sites. Method Enzymol. 187:433–446.

    Article  CAS  Google Scholar 

  • Hostettler M. E. and Carlson S. L. (2002). PAF antagonist treatment reduces pro-inflammatory cytokine mRNA after spinal cord injury. NeuroReport. 13:21–24.

    Article  PubMed  CAS  Google Scholar 

  • Ishii S., Matsuda Y., Nakamura M., Waga I., Kume K., Izumi T., and Shimizu T. (1996). A murine platelet-activating factor receptor gene: cloning, chromosomal localization and up-regulation of expression by lipopolysaccharide in peritoneal resident macrophages. Biochem. J. 314:671–678.

    PubMed  CAS  Google Scholar 

  • Ishii S. and Shimizu T. (2000). Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog. Lipid Res. 39:41–82.

    Article  PubMed  CAS  Google Scholar 

  • Izumi T. and Shimizu T. (1995). Platelet-activating factor receptor: Gene expression and signal transduction. Biochim. Biophys. Acta Lipids Lipid Metab. 1259:317–333.

    Article  Google Scholar 

  • Izquierdo I., Fin C., Schmitz P.K., Da Silva R.C., Jerusalinsky D., Quillfeldt J.A., Ferreira M.B., Medina J.H. and Bazan N.G. (1995). Memory enhancement by intrahippocampal, intraamygdala, or intraentorhinal infusion of platelet-activating factor measured in an inhibitory avoidance task. Proc Natl Acad Sci USA. 92:5047–5051.

    Article  PubMed  CAS  Google Scholar 

  • Junier M.P., Tiberghien C., Rougeot C., Fafeur V., and Dray F. (1988). Inhibitory effect of platelet-activating factor (PAF) on luteinizing hormone-releasing hormone and somatostatin release from rat median eminence in vitro correlated with the characterization of specific PAF receptor sites in rat hypothalamus. Endocrinology. 123:72–80.

    Article  PubMed  CAS  Google Scholar 

  • Kato K., Clark G. D., Bazan N. G., and Zorumski C. F. (1994). Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 367:175–179.

    Article  PubMed  CAS  Google Scholar 

  • Ko H.M., Seo K.H., Han S.J., Ahn K.Y., Choi I.H., Koh G.Y., Lee H.K., Ra M.S., and Im S.Y. (2002). Nuclear factor kappaB dependency of platelet-activating factor-induced angiogenesis. Cancer Res. 62:1809–1814.

    PubMed  CAS  Google Scholar 

  • Ko H.M., Park Y.M., Jung B., Kim H.A., Choi J.H., Park S.J., Lee H.K., and Im S.Y. (2005). Involvement of matrix metalloproteinase-9 in platelet-activating factor-induced angiogenesis. FEBS Lett. 679:2369–2375.

    Article  Google Scholar 

  • Ko H., Jung H.H., Seo K.H., Kang Y.R., Seo K.H., Kang Y.R., Kim H.A., Park S.J., Lee H.K., and Im S.Y. (2006). Platelet-activating factor-induced NF-kappaB activation enhances VEGF expression through a decrease in p53 activity. FEBS Lett. 580:3006–3012.

    Article  PubMed  CAS  Google Scholar 

  • Kochanek P. M., Melick J. A., Schoettle R. J., Magargee M. J., Evans R. W., and Nemoto E. M. (1990). Endogenous platelet activating factor does not modulate blood flow and metabolism in normal rat brain. Stroke. 21:459–462.

    PubMed  CAS  Google Scholar 

  • Kochanek P. M., Nemoto E. M., Melick J. A., Evans R. W., and Burke D. F. (1988). Cerebrovascular and cerebrometabolic effects of intracarotid infused platelet-activating factor in rats. J. Cereb. Blood Flow Metab. 8:546–551.

    PubMed  CAS  Google Scholar 

  • Kornecki E. and Ehrlich Y. H. (1988). Neuroregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. Science 240:1792–1794.

    Article  PubMed  CAS  Google Scholar 

  • Kornecki E. and Ehrlich Y. H. (1991). Calcium ion mobilization in neuronal cells induced by PAF. Lipids 26:1243–1246.

    Article  PubMed  CAS  Google Scholar 

  • Kornecki E., Wieraszko A., Chan J. C., and Ehrlich Y. H. (1996). Platelet activating factor (PAF) in memory formation: Role as a retrograde messenger in long-term potentiation. J. Lipid Mediat. Cell Signal. 14:115–126.

    Article  PubMed  CAS  Google Scholar 

  • Kuijpers T. W., Van den Berg J. M., Tool A. T. J., and Roos D. (2001). The impact of platelet-activating factor (PAF)-like mediators on the functional activity of neutrophils: Anti-inflammatory effects of human PAF-acetylhydrolase. Clin. Exp. Immunol. 123:412–420.

    Article  PubMed  CAS  Google Scholar 

  • Kunievsky B., Bazan N. G., and Yavin E. (1992). Generation of arachidonic acid and diacylglycerol second messengers from polyphosphoinositides in ischemic fetal brain. J. Neurochem. 59:1812–1819.

    Article  PubMed  CAS  Google Scholar 

  • Leitinger N. (2003). Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Opin. Lipidol. 14:421–430.

    Article  PubMed  CAS  Google Scholar 

  • Lo Nigro C., Chong S.S., Smith A.C.M., Dobyns W.B., Carrozzo R., and Ledbetter D.H. (1997). Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum. Mol. Genet. 6:157–164.

    Article  PubMed  CAS  Google Scholar 

  • Maclennan K. M., Smith P. F., and Darlington C. L. (1996). Platelet-activating factor in the CNS. Prog. Neurobiol. 50:585–596.

    Article  PubMed  CAS  Google Scholar 

  • Marcheselli V. L. and Bazan N. G. (1994). Platelet-activating factor is a messenger in the electroconvulsive shock-induced transcriptional activation of c-fos and zif-268 in hippocampus. J. Neurosci. Res. 37:54–61.

    Article  PubMed  CAS  Google Scholar 

  • Marcheselli V. L., Rossowska M. J., Domingo M. T., Braquet P., and Bazan N. G. (1990). Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J. Biol. Chem. 265:9140–9145.

    PubMed  CAS  Google Scholar 

  • Melnikova V. O., Mourad-Zeidan A. A., Lev D. C., and Bar-Eli M. (2006). Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. J Biol Chem. 281:2911–2922.

    Article  PubMed  CAS  Google Scholar 

  • Miller B., Sarantis M., Traynelis S. F., and Attwell D. (1992). Potentiation of NMDA receptor currents by arachidonic acid. Nature 355:722–725.

    Article  PubMed  CAS  Google Scholar 

  • Montrucchio G., Alloatti G., and Camussi G. (2000). Role of platelet-activating factor in cardiovascular pathophysiology.Physiol. Rev. 80:1669–1699.

    PubMed  CAS  Google Scholar 

  • Moqbel R., Walsh G. M., Nagakura T., MacDonald A. J., Wardlaw A. J., Iikura Y., Kay A. B. (1990). The effect of platelet-activating factor on IgE binding to, and IgE-dependent biological properties of, human eosinophils. Immunology. 70:251–257.

    PubMed  CAS  Google Scholar 

  • Mori M., Aihara M., Kume K., Hamanoue M., Kohsaka S., and Shimizu T. (1996). Localization of platelet-activating factor receptor in the rat brain. Adv. Exp. Med. Biol. 407:357–363:357–363.

    Google Scholar 

  • Morita K., Suemitsu T., Uchiyama Y., Miyasako T., and Dohi T. (1995). Platelet-activating factor mediated potentiation of stimulation- evoked catecholamine release and the rise in intracellular free Ca2+ concentration in adrenal chromaffin cells. J. Lipid Mediat. Cell Signal. 11:219–230.

    Article  PubMed  CAS  Google Scholar 

  • Morita K., Morioka W., Abdin J., Kitayama S., Nakata Y., and Dohi T. (2004). Development of tactile allodynia and thermal hyperalgesia by intrathecally administered platelet-activating factor in mice. Pain 111:351–359.

    Article  PubMed  CAS  Google Scholar 

  • Nogami K., Hirashima Y., Endo S., and Takaku A. (1997). Involvement of platelet-activating factor (PAF) in glutamate neurotoxicity in rat neuronal cultures. Brain Res. 754:72–78.

    Article  PubMed  CAS  Google Scholar 

  • Olney J. W., Fuller T., and de Gubareff T. (1979). Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res. 176:91–100.

    Article  PubMed  CAS  Google Scholar 

  • Ottino P., He J., Axelrod T. W., Bazan H. E. (2005). PAF-induced furin and MT1-MMP expression is independent of MMP-2 activation in corneal myofibroblasts. Invest. Ophthalmol. Vis. Sci. 46:487–496.

    Article  PubMed  Google Scholar 

  • Packard M. G., Teather L. A., and Bazan N. G. (1996). Effects of intrastriatal injections of platelet-activating factor and the PAF antagonist BN 52021 on memory. Neurobiol. Learn. Mem. 66:176–182.

    Article  PubMed  CAS  Google Scholar 

  • Pan Z., Kravchenko V. V., Ye R. D. (1995). Platelet-activating factor stimulates transcription of the heparin-binding epidermal growth factor-like growth factor in monocytes. Correlation with an increased kappa B binding activity. J Biol Chem. 270:7787–7790.

    Article  PubMed  CAS  Google Scholar 

  • Panwala C. M., Jones J. C., and Viney J. L. (1998). A novel model of inflammatory bowel disease: Mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J. Immunol. 161:5733–5744.

    PubMed  CAS  Google Scholar 

  • Pettorossi V. E., and Grassi S. (2001). Different contributions of platelet-activating factor and nitric oxide in long-term potentiation of the rat medial vestibular nuclei. Acta Otolaryngol Suppl. 545:160–165.

    Article  PubMed  CAS  Google Scholar 

  • Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    Article  PubMed  CAS  Google Scholar 

  • Prescott S. M., McIntyre T. M., Zimmerman G. A., and Stafforini D. M. (2002). Sol Sherry lecture in thrombosis – Molecular events in acute inflammation. Arterioscler. Thromb. Vasc. Biol. 22:727–733.

    Article  PubMed  CAS  Google Scholar 

  • Qu X. W., Wang H., Rozenfeld R. A., Huang W., and Hsueh W. (1999). Type I nitric oxide synthase (NOS) is the predominant NOS in rat small intestine. Regulation by platelet-activating factor. Biochim. Biophys. Acta. 1451:211–217.

    Article  PubMed  CAS  Google Scholar 

  • Raggers R. J., Vogels I., and Van Meer G. (2001). Multidrug-resistance P-glycoprotein (MDR1) secretes platelet-activating factor. Biochem. J. 357:859–865.

    Article  PubMed  CAS  Google Scholar 

  • Reiner O., Carrozzo R., Shen Y., Wehnert M., Faustinella F., Dobyns W. B., Caskey C. T., and Ledbetter D. H. (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717–721.

    Article  PubMed  CAS  Google Scholar 

  • Snyder F. (1995). Platelet-activating factor: The biosynthetic and catabolic enzymes. Biochem. J. 305:689–705.

    PubMed  CAS  Google Scholar 

  • Squinto S. P., Block A. L., Braquet P., and Bazan N. G. (1989). Platelet-activating factor stimulates a fos/jun/AP-1 transcriptional signaling system in human neuroblastoma cells. J. Neurosci. Res. 24:558–566.

    Article  PubMed  CAS  Google Scholar 

  • Svensson C. I. and Yaksh T. L. (2002). The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu. Rev. Pharmacol. Toxicol. 42:553–583.

    Article  PubMed  CAS  Google Scholar 

  • Taheri F. and Bazan H. E. (2007). Platelet-activating factor overturns the transcriptional repressor disposition of Sp1 in the expression of MMP-9 in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 48:1931–1941.

    Article  PubMed  Google Scholar 

  • Teather L. A., Afonso V. M., and Wurtman R. J. (2006). Inhibition of platelet-activating factor receptors in hippocampal plasma membranes attenuates the inflammatory nociceptive response in rats. Brain Res. 1097:230–233.

    Article  PubMed  CAS  Google Scholar 

  • Teather L. A., Magnusson J. E., Chow C. M., and Wurtman R. J. (2002). Environmental conditions influence hippocampus-dependent behaviours and brain levels of amyloid precursor protein in rats. Eur. J. Neurosci. 16:2405–2415.

    Article  PubMed  Google Scholar 

  • Tokuoka S. M., Ishii S., Kawamura N., Satoh M., Shimada A., Sasaki S., Hirotsune S., Wynshaw-Boris A., and Shimizu T. (2003). Involvement of platelet-activating factor and LIS1 in neuronal migration. Eur. J. Neurosci. 18:563–570.

    Article  PubMed  Google Scholar 

  • Tsuda M., Ishii S., Masuda T., Hasegawa S., Nakamura K., Nagata K., Yamashita T., Furue H., Tozaki-Saitoh H., Yoshimura M., Koizumi S., Shimizu T., and Inoue K. (2007a). Reduced pain behaviors and extracellular signal-related protein kinase activation in primary sensory neurons by peripheral tissue injury in mice lacking platelet-activating factor receptor. J Neurochem. 102:1658–1668.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M., Hasegawa S., and Inoue K. (2007b). P2X receptors-mediated cytosolic phospholipase A(2) activation in primary afferent sensory neurons contributes to neuropathic pain. J Neurochem.103:1408–1416

    Article  PubMed  CAS  Google Scholar 

  • Vahidy W.H., Ong W.Y., Farooqui A.A., and Yeo J.-F. (2006). Pronociceptive effects of central nervous lysophospholipids in a mouse model of orofacial pain. Exp. Brain Res. 174:781–785.

    Article  PubMed  CAS  Google Scholar 

  • Wang J.H., and Sun G.Y. (2000). Platelet activating factor (PAF) antagonists on cytokine induction of iNOS and sPLA2 in immortalized astrocytes (DITNC). Neurochem. Res. 25:613–619.

    Article  PubMed  CAS  Google Scholar 

  • Williams J. H., Errington M. L., Lynch M. A., and Bliss T. V. P. (1989). Arachidonic acid induces a long-term activity dependent enhancement of synaptic transmission in the hippocampus. Nature. 341:739–742.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y., Zhang B. S., Hua Z. C., Johns R. A., Bredt D. S., and Tao Y. X. (2004). Targeted disruption of PSD-93 gene reduces platelet-activating factor-induced neurotoxicity in cultured cortical neurons. Exp. Neurol. 189:16–24.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H., Imaizumi T., Tanji K., Matsumiya T., Sakaki H., Kimura D., Cui X. F., Kumagai M., Tamo W., Shibata T., Hatakeyama M., Sato Y., and Satoh K. (2002). Platelet-activating factor enhances the expression of vascular endothelial growth factor in normal human astrocytes. Brain Res. 944:65–72.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H., Imaizumi T., Tanji K., Sakaki H., Metoki N., Hatakeyama M., Yamashita K., Ishikawa A., Taima K., Sato Y., Kimura H., and Satoh K. (2005). Platelet-activating factor enhances the expression of nerve growth factor in normal human astrocytes under hypoxia. Mol. Brain Res. 133:95–101.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q., Seltmann H., Zouboulis C. C., and Travers J. B. (2006). Activation of platelet-activating factor receptor in SZ95 sebocytes results in inflammatory cytokine and prostaglandin E2 production. Exp. Dermatol. 15:769–774.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman G. A., Elstad M. R., Lorant D. E., McIntyre T. M., Prescott S. M., Topham M. K., Weyrich A. S., and Whatley R. E. (1996). Platelet-activating factor (PAF): Signalling and adhesion in cell–cell interactions. Adv. Exp. Med. Biol. 416:297–304.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Roles of Platelet-Activating Factor in Brain. In: Metabolism and Functions of Bioactive Ether Lipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77401-5_9

Download citation

Publish with us

Policies and ethics