Skip to main content

Involvement of Platelet-Activating Factor in Neurological Disorders

  • Chapter
Metabolism and Functions of Bioactive Ether Lipids in the Brain
  • 568 Accesses

Platelet-activating factor (PAF) is a potent proinflammatory lipid mediator that is not stored, but synthesized by activated neural cells (neurons, astrocytes, oligodendrocytes, and microglial cells) as well as by nonneural cells (platelets, inflammatory, and endothelial cells) on demand by remodeling and de novo synthesis pathways. PAF receptors (PAF-Rs) are widely distributed in different brain regions and are present on the cell surface as well as in intracellular membrane compartments. In normal brain, levels of PAF are low, but levels of lyso-PAF are quite high. Thus levels of PAF in the hippocampus are higher than in cerebellum and cortex. These observations suggest that PAF is present in its inactive form in the brain tissue (Tiberghien et al., 1991). Concentration of PAF decreases with age (Tokumura et al., 1992). Under normal conditions, the synthesis of PAF in brain occurs through de novo synthesis. Normally, de novo synthesis is not influenced by the external stimulus. In response to PAF-R stimulation, injury, chemoelectroconvulsion and oxidative stress, the remodeling pathway is activated in neural and nonneural cells. Treatment of neural or nonneural cells with neurotransmitters such as dopamine and acetylcholine stimulates PAF synthesis in a calcium-dependent manner (Sogos et al., 1990). PAF is also synthesized by neurons and glial cells following stimulation with glutamate. PAF synthesis requires glutamate-mediated stimulation of NMDA receptors and subsequent elevation of intracellular calcium ions.

Microglia, which express functional PAF-Rs to a high level show a marked chemotactic response to PAF. Microglia derived from PAF-receptor-deficient mice do not show chemotactic response (Aihara et al., 2000). Thus, PAF functions as a key messenger in neuron–microglial interactions. PAF-Rs generate specific signals that are transduced by downstream effector and pathways, which may be specific to each brain cell type. Although the synthesis and release of PAF under pathological conditions in the brain has been recognized, the relative contribution of various neural and nonneural cell types for the synthesis of PAF remains unknown. Furthermore, target cells and brain regions for PAF action have not been fully identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arditi M., Manogue K. R., Caplan M., and Yogev R. (1990). Cerebrospinal fluid cachectin/tumor necrosis factor-α and platelet-activating factor concentrations and severity of bacterial meningitis in children. J. Infect. Dis. 162:139–147.

    PubMed  CAS  Google Scholar 

  • Adachi T., Aoki J., Manya H., Asou H., Arai H., and Inoue K. (1997). PAF analogues capable of inhibiting PAF acetylhydrolase activity suppress migration of isolated rat cerebellar granule cells. Neurosci. Lett. 235:133–136.

    PubMed  CAS  Google Scholar 

  • Adunsky A., Hershkowitz M., Atar E., Bakoun M., and Poreh A. (1999). Infarct volume, neurological severity and PAF binding to platelets of patients with acute cerebral ischemic stroke. Neurol. Res. 21:645–648.

    PubMed  CAS  Google Scholar 

  • Aihara M., Ishii S., Kume K., and Shimizu T. (2000). Interaction between neurone and microglia mediated by platelet-activating factor. Genes Cells. 5:397–406.

    PubMed  CAS  Google Scholar 

  • Akisu M., Huseyinov A., Yalaz M., Cetin H., Kultursay N. (2003). Selective head cooling with hypothermia suppresses the generation of platelet-activating factor in cerebrospinal fluid of newborn infants with perinatal asphyxia. Prostaglandins Leukot. Essent. Fatty Acids. 69:45–50.

    PubMed  CAS  Google Scholar 

  • Anrather J., Racchumi G., and Iadecola C. (2006). NF-ÎşB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J. Biol. Chem. 281:5657–5667.

    PubMed  CAS  Google Scholar 

  • Arimura A., Nagata M., Watanabe A., Nakamura K., Takeuchi M., and Harada M. (1990). Production of active and passive anaphylactic shock in the WBB6F1 mouse, a mast cell-deficient strain. Experientia. 46:739–742.

    PubMed  CAS  Google Scholar 

  • Bate C., Salmona M., and Williams A. (2004a). The role of platelet activating factor in prion and amyloid-beta neurotoxicity. NeuroReport. 15:509–513.

    PubMed  CAS  Google Scholar 

  • Bate C., Reid S., and Williams A. (2004b). Phospholipase A2 inhibitors or platelet-activating factor antagonists prevent prion replication. J. Biol. Chem. 279:36405–36411.

    PubMed  CAS  Google Scholar 

  • Bate C., Salmona M., Diomede L., and Williams A. (2004c). Squalestatin cures prion-infected neurons and protects against prion neurotoxicity. J. Biol. Chem. 279:14983–14990.

    PubMed  CAS  Google Scholar 

  • Bate C., Salmona M., and Williams A. (2004d). Ginkgolide B inhibits the neurotoxicity of prions or amyloid-beta1–42. J. Neuroinflamm. 1:4.

    Google Scholar 

  • Bazan N. G. (1998). The neuromessenger platelet-activating factor in plasticity and neurodegeneration. Prog. Brain Res. 118:281–291.

    PubMed  CAS  Google Scholar 

  • Bazan N. G., Packard M. G., Teather L., and Allan G. (1997). Bioactive lipids in excitatory neurotransmission and neuronal plasticity. Neurochem. Int. 30:225–231.

    PubMed  CAS  Google Scholar 

  • Bellizzi M. J., Lu S. M., Masliah E., and Gelbard H. A. (2005). Synaptic activity becomes excitotoxic in neurons exposed to elevated levels of platelet-activating factor. J. Clin. Invest. 115:3185–3192.

    PubMed  CAS  Google Scholar 

  • Bennett S. A., Chen J., Pappas B. A., Roberts D. C., and Tenniswood M. (1998). Platelet activating factor receptor expression is associated with neuronal apoptosis in an in vivo model of excitotoxicity. Cell Death Differ. 5:867–875.

    PubMed  CAS  Google Scholar 

  • Birkle D. L., Kurian P., Braquet P., and Bazan N. G. (1988). Platelet-activating factor antagonist BN52021 decreases accumulation of free polyunsaturated fatty acid in mouse brain during ischemia and electroconvulsive shock. J. Neurochem. 51:1900–1905.

    PubMed  CAS  Google Scholar 

  • Bix G. J., and Clark G. D. (1998). Platelet-activating factor receptor stimulation disrupts neuronal migration in vitro. J. Neurosci. 18:307–318.

    PubMed  CAS  Google Scholar 

  • Blasquez C., Jegou S., Delarue C., Delbrnde C., Bunel D. T., Blasquez P., and Vaudry H. (1990). Effect of platelet-activating factor on hypothalamic and hypophyseal pro-opiomelanocortin-related peptides and hypothalamo-pituitary-adrenal axis in the rat. Eur. J. Pharmacol. 177:145–153.

    PubMed  CAS  Google Scholar 

  • Brochet B., Guinot P., Orgogozo J. M., Confavreux C., Rumbach L., Lavergne V., and The Ginkgolide Study Group in Multiple Sclerosis. (1995). Double blind placebo controlled multicentre study of ginkgolide B in treatment of acute exacerbations of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 58:360–362.

    PubMed  CAS  Google Scholar 

  • Cabellos C., MacIntyre D. E., Forrest M., Burroughs M., Prasad S., and Tuomanen E. (1992). Differing roles for platelet-activating factor during inflammation of the lung and subarachnoid space. The special case of Streptococcus pneumoniae. J. Clin. Invest. 90:612–618.

    PubMed  CAS  Google Scholar 

  • Callea L., Arese M., Orlandini A., Bargnani C., Priori A., and Bussolino F. (1999). Platelet activating factor is elevated in cerebral spinal fluid and plasma of patients with relapsing-remitting multiple sclerosis. J. Neuroimmunol. 94:212–221.

    PubMed  CAS  Google Scholar 

  • Camussi G., Tetta C., and Baglioni C. (1990). Antiflammins inhibit synthesis of platelet-activating factor and intradermal inflammatory reactions. Adv. Exp. Med. Biol. 279:161–172.

    PubMed  CAS  Google Scholar 

  • Catalan R. E., Martinez A. M., Aragones M. D., Fernandez I., Miguel B. G., Calcerrada M. C., and Perez M. J. (1994). Platelet-activating factor inhibits Na+, K+ ATPase activity in rat brain. Neurosci. Res. 19:241–244.

    PubMed  CAS  Google Scholar 

  • Cederholm A., Svenungsson E., Stengel D., Fei G. Z., Pockley A. G., Ninio E., and Frostegard J. (2004). Platelet-activating factor-acetylhydrolase and other novel risk and protective factors for cardiovascular disease in systemic lupus erythematosus. Arthritis Rheum. 50:2869–2876.

    PubMed  CAS  Google Scholar 

  • Chang H. W., Kwon S., Kim H., Lee K., Kim M., Moon T., and Baek S. (2002). Platelet-activating factor acetylhydrolase activity in cerebrospinal fluid of children with acute systemic or neurological illness. Ann. Neurol. 51:760–763.

    PubMed  CAS  Google Scholar 

  • Chao W., and Olson M. S. (1993). Platelet-activating factor: Receptors and signal transduction. Biochem. J. 292:617–629.

    PubMed  CAS  Google Scholar 

  • Chong S. S., Pack S. D., Roschke A. V., Tanigami A., Carrozzo R., Smith A. C., Dobyns W. B., and Ledbetter D. H. (1997). A revision of the lissencephaly and Miller-Dieker syndrome critical regions in chromosome 17p13.3. Hum. Mol. Genet. 6:147–155.

    PubMed  CAS  Google Scholar 

  • Clark G. D., Happel L. T., Zorumski C. F., and Bazan N. G. (1992). Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron. 9:1211–1216.

    PubMed  CAS  Google Scholar 

  • Clark G. D., Zorumski C. F., McNeil R. S., Happel L. T., Ovella T., McGuire S., Bix G. J., and Swann J. W. (2000). Neuronal platelet-activating factor receptor signal transduction involves a pertussis toxin-sensitive G-protein. Neurochem. Res. 25:603–611.

    PubMed  CAS  Google Scholar 

  • Cundell D. R., Gerard N. P., Gerard C., Idanpaan H. I., and Tuomanen E. I. (1995). Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature. 377:435–438.

    PubMed  CAS  Google Scholar 

  • De Coster M. A., Mukherjee P. K., Davis R. J., and Bazan N. G. (1998). Platelet-activating factor is a downstream messenger of kainate-induced activation of mitogen-activated protein kinases in primary hippocampal neurons. J. Neurosci. Res. 53:297–303.

    CAS  Google Scholar 

  • Del Sorbo L., DeMartino A., Biancone L., Bussolati B., Conaldi P. G., Tonioli A., and Cammassi G. (1999). The synthesis of platelet-activating factor modulates chemotaxis of monocytes induced by HIV-1 Tat. Eur. J Immunol. 29:1513–1521.

    PubMed  CAS  Google Scholar 

  • Faden A. I., and Tzendzalian P. A. (1992). Platelet-activating factor antagonists limit glycine changes and behavioral deficits after brain trauma. Am. J. Physiol. 263:R909–R914.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., and Horrocks L. A. (2004). Plasmalogens, and other ether lipids. In Ether Lipids, A. Nicolaou and G. Kokotos (Eds.). Oily, Bridgwater, England, pp. 107–134.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007). Modulation of inflammation in brain: A matter of fat. J. Neurochem. 101:577–599.

    PubMed  CAS  Google Scholar 

  • Feuerstein G. Z. (1996). Platelet-activating factor: A case for its role in CNS function and brain injury. J. Lipid Mediat. Cell Signal. 14:109–114.

    PubMed  CAS  Google Scholar 

  • Frey R. S., Gao X., Javaid K., Siddiqui S. S., Rahman A., and Malik A. B. (2006). Phosphatidylinositol 3-kinase ÉŁ signaling through protein kinase Cζ induces NADPH oxidase-mediated oxidant generation and NF-ÎşB activation in endothelial cells. J. Biol. Chem. 281:16128–16138.

    PubMed  CAS  Google Scholar 

  • Gelbard H. A., Nottet H. S., Swindell S., Jett M., Dzenko K. A., Genis P., White P., Wang L., Choi Y. B., and Zhang D. (1994). Platelet-activating factor: A candidate human immunodeficiency virus type 1-induced neurotoxin. J. Virol. 68:4628–4635.

    PubMed  CAS  Google Scholar 

  • Gilboe D. D., Kintner D., Fitzpatrick J. H., Emoto S. E., Esanu A., Braquet P. G., and Bazan N. G. (1991). Recovery of post-ischemic brain metabolism and function following treatment with a free radical scavenger and platelet-activating factor antagonists. J. Neurochem. 56:311–319.

    PubMed  CAS  Google Scholar 

  • Glass J. D., and Wesselingh S. L. (2001). Microglia in HIV-associated neurological diseases. Microsc. Res. Tech. 54:95–105.

    PubMed  CAS  Google Scholar 

  • Graham R. M., Strahan M. E., Norman K. W., Watkins D. N., Strum M. J., and Taylor R. R. (1994). Platelet and plasma platelet-activating factor in sepsis and myocardial infarction. J. Lipid Mediat. Cell Signal. 9:167–182.

    PubMed  CAS  Google Scholar 

  • Grissom C. K., Orme J. F., Jr., Richer L. D., McIntyre T. M., Zimmerman G. A., and Elstad M. R. (2003). Platelet-activating factor acetylhydrolase is increased in lung lavage fluid from patients with acute respiratory distress syndrome. Crit. Care Med. 31:770–775.

    PubMed  CAS  Google Scholar 

  • Guo Z. M., Qian C., Peters C. J., and Liu C. T. (1993). Changes in platelet-activating factor, catecholamine, and serotonin concentrations in brain, cerebrospinal fluid, and plasma of pichinde virus-infected guinea pigs. Lab. Anim. Sci. 43:569–574.

    PubMed  CAS  Google Scholar 

  • Hattori M., Adachi H., Tsijimoto M., Arai H., Inoue K. (1994). Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase. Nature. 370:216–218.

    PubMed  CAS  Google Scholar 

  • Hirashima Y., Kato R., Endo S., Takaku A., Karasawa K., and Nojima S. (1993a). Immunofluorescent localization of platelet-activating factor (PAF) in the rat. Histochem. J. 25:830–833.

    PubMed  CAS  Google Scholar 

  • Hirashima Y., Endo S., Otsuji T., Karasawa K., Nojima S., and Takaku A. (1993b). Platelet-activating factor and cerebral vasospasm following subarachnoid hemorrhage. J. Neurosurg. 78:592–597.

    PubMed  CAS  Google Scholar 

  • Hirashima Y., Endo S., Ohmori T., Kato R., and Takaku A. (1994). Platelet-activating factor (PAF) concentration and PAF acetylhydrolase activity in cerebrospinal fluid of patients with subarachnoid hemorrhage. J. Neurosurg. 80:31–36.

    PubMed  CAS  Google Scholar 

  • Hirashima Y., Endo S., KaraSawa K., Sato N., YokoYama K., Kurimoto M., Ikeda H., Setaka M., and Takaku A. (1999). Deficient platelet-activating factor and related enzymes in hemimegalencephaly. Childs Nerv. Syst. 15:98–101.

    PubMed  CAS  Google Scholar 

  • Honda Z., Ishii S., and Shimizu T. (2002). Platelet-activating factor receptor. J. Biochem. 131:773–779.

    PubMed  CAS  Google Scholar 

  • Hostettler M. E., and Carlson S. L. (2002). PAF antagonist treatment reduces pro-inflammatory cytokine mRNA after spinal cord injury. Neuroreport. 13:21–24.

    PubMed  CAS  Google Scholar 

  • Hostettler M. E., Knapp P. E., and Carlson S. L. (2002). Platelet-activating factor induces cell death in cultured astrocytes and oligodendrocytes: Involvement of caspase-3. Glia. 38:228–239.

    PubMed  Google Scholar 

  • Ishii I., Izumi T., Ui M., and Shimizu T. (1997). High and low affinity mutants of platelet-activating factor receptor. Adv. Exp. Med. Biol. 433:249–253.

    PubMed  CAS  Google Scholar 

  • Ishii S., and Shimizu T. (2000). Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog. Lipid Res. 39:41–82.

    PubMed  CAS  Google Scholar 

  • Kald B., Smedh K., Olaison G., Sjodahl R., and Tagesson C. (1996). Platelet-activating factor acetylhydrolase activity in intestinal mucosa and plasma of patients with Crohn’s disease. Digestion. 57:472–477.

    PubMed  CAS  Google Scholar 

  • Karcher L., Zagermann P., and Krieglstein J. (1984). Effect of an extract of Ginkgo biloba on rat brain energy metabolism in hypoxia. Naunyn Schmiedebergs Arch. Pharmakol. 327:31–35.

    CAS  Google Scholar 

  • Kelley D. S., Taylor P. C., Nelson G. J., Schmidt P. C., Ferretti A., Erickson K. L., Yu R., Chandra R. K., and Mackey B. E. (1999). Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men. Lipids. 34:317–324.

    PubMed  CAS  Google Scholar 

  • Kihara Y., Ishii S., Kita Y., Toda A., Shimada A., and Shimizu T. (2005). Dual phase regulation of experimental allergic encephalomyelitis by platelet-activating factor. J. Exp. Med. 202:853–863.

    PubMed  CAS  Google Scholar 

  • Kim H. J., Lee S. R., and Moon K. D. (2003). Ether fraction of methanol extracts of Gastrodia elata, medicinal herb protects against neuronal cell damage after transient global ischemia in gerbils. Phytother. Res. 17:909–912.

    PubMed  Google Scholar 

  • Ko H. M., Seo K. H., Han S. J., Ahn K. Y., Choi I. H., Koh G. Y., Lee H. K., Ra M. S., and Im S. Y. (2002). Nuclear factor kappa B dependency of platelet-activating factor-induced angiogenesis. Cancer Res. 62:1809–1814.

    PubMed  CAS  Google Scholar 

  • Kravchenko V. V., Pan Z., Han J., Herbert J. M., Ulevitch R. J., and Ye R. D. (1995). Platelet-activating factor induces NF-kappa B activation through a G protein-coupled pathway. J. Biol. Chem. 270:14928–14934.

    PubMed  CAS  Google Scholar 

  • Kumar R., Harvey S. A., Kester M., Hanahan D. J., and Olson M. S. (1988). Production and effects of platelet-activating factor in the rat brain. Biochim. Biophys. Acta. 963:375–383.

    PubMed  CAS  Google Scholar 

  • Lindsberg P. J., Hallenbeck J. M., and Feuerstein G. (1991). Platelet-activating factor in stroke and brain injury. Ann. Neurol. 30:117–129.

    PubMed  CAS  Google Scholar 

  • Maclennan K. M., Smith P. F., and Darlington C. L. (1996). Platelet-activating factor in the CNS. Prog. Neurobiol. 50:585–596.

    PubMed  CAS  Google Scholar 

  • Makristathis A., Stauffer F., Feistauer S. M., Georgopoulos A. (1993). Bacteria induce release of platelet-activating factor (PAF) from polymorphonuclear neutrophil granulocytes: Possible role for PAF in pathogenesis of experimentally induced bacterial pneumonia. Infect. Immun. 61:1996–2002.

    PubMed  CAS  Google Scholar 

  • Manya H., Aoki J., Kato H., Ishii J., Hino S., Arai H., and Inoue K. (1999). Biochemical characterization of various catalytic complexes of the brain platelet-activating factor acetylhydrolase. J. Biol. Chem. 274:31827–31832.

    PubMed  CAS  Google Scholar 

  • Margues S. A., Dy L. C., Southall M. D., Yi O., Smietana E., Kapur R., Margues M., Travers J. B., and Spandau D. F. (2002). The platelet-activating factor receptor activates the extracellular signal-regulated kinase mitogen-activated protein kinase and induces proliferation of epidermal cells through an epidermal growth factor-receptor-dependent pathway. J. Pharmacol. Exp. Ther. 300:1026–1035.

    Google Scholar 

  • Miller A. A., Drummond G. R., and Sobey C. G. (2006). Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol. Ther. 111:928–948.

    PubMed  CAS  Google Scholar 

  • Moon T. C., Kim M. S., Lee S. J., Lee T. Y., Kwon S. H., Baek S. H., and Chang H. W. (2003). Detection and characterization of 45 kDa platelet activating factor acetylhydrolase in cerebrospinal fluid of children with meningitis. Arch. Pharm. Res. 26:554–558.

    PubMed  CAS  Google Scholar 

  • Mueller H. W., Haught C. A., McNatt J. M., Chi K., Gaskell S. J., Johnston D. A., and Willerson J. T. (1995). Measurement of platelet-activating factor in a canine model of coronary thrombosis and in endarterectomy samples from patients with advanced coronary artery disease. Circ. Res. 77:54–63.

    PubMed  CAS  Google Scholar 

  • Mueller M. H., Geis M., Glatzle J., Kasparek M., Meile T., Jehle E. C., Kreis M. E., and Zittel T. T. (2007). Risk of fecal diversion in complicated perianal Crohn’s disease. J. Gastrointest. Surg. 11:529–537.

    PubMed  CAS  Google Scholar 

  • Nagase T., Ishii S., Katayama H., Fukuchi Y., Ouchi Y., and Shimizu T. (1997). Airway responsiveness in transgenic mice overexpressing platelet-activating factor receptor. Roles of thromboxanes and leukotrienes. Am. J. Respir. Crit. Care Med. 156:1621–1627.

    PubMed  CAS  Google Scholar 

  • Nagase T., Kurihara H., Kurihara Y., Aoki-Nagase T., Nagai R., and Ouchi Y. (1999). Disruption of ET-1 gene enhances pulmonary responses to methacholine via functional mechanism in knockout mice. J. Appl. Physiol. 87:2020–2024.

    PubMed  CAS  Google Scholar 

  • Nishida K., Markey S. P., Kustova Y., Morse H. C., Skolnick P., Basile A. S., and Sei Y. (1996). Increased brain levels of platelet-activating factor in a murine acquired immune deficiency syndrome are NMDA receptor-mediated. J. Neurochem. 66:433–435.

    PubMed  CAS  Google Scholar 

  • Noris M., Benigni A., Boccardo P., Gotti E., Benfenati E., Aiello S., Todeschini M., and Remmuzzi G. (1993). Urinary excretion of platelet activating factor in patients with immune-mediated glomerulonephritis. Kidney Int. 43:426–429.

    PubMed  CAS  Google Scholar 

  • Nottet H. S., Jett M., Flanagan C. R., Zhai Q. H., Persidsky Y., Rizzino A., Bernton E. W., Genis P., Baldwin T., Schwartz J. H., LaBenz C. J., and Gendelman H. E. (1995). A regulatory role for astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-alpha by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J. Immunol. 154:3567–3581.

    PubMed  CAS  Google Scholar 

  • Partrick D. A., Moore E. E., Moore F. A., Biffl W. L., and Barnett C. C. (1997). Reduced PAF-acetylhydrolase activity is associated with postinjury multiple organ failure. Shock. 7:170–174.

    PubMed  CAS  Google Scholar 

  • Quarck R., De Geest B., Stengel D., Mertens A., Lox M., Theilmeier G., Michiels C., Raes M., Bult H., Collen D., Van Veldhoven P., Ninio E., and Holvolt P. (2001). Adenovirus-mediated gene transfer of human platelet-activating factor-acetylhydrolase prevents injury-induced neointima formation and reduces spontaneous atherosclerosis in apolipoprotein E-deficient mice. Circulation. 103:2495–2500.

    PubMed  CAS  Google Scholar 

  • Rehder V., Jensen J. R., and Kater S. B. (1992). The initial stages of neural regeneration are dependent upon intracellular calcium levels. Neuroscience. 51:565–574.

    PubMed  CAS  Google Scholar 

  • Ring A., Weiser J. N., and Tuomanen E. I. (1998). Pneumococcal trafficking across the blood–brain barrier. Molecular analysis of a novel bidirectional pathway. J. Clin. Invest. 102:347–360.

    PubMed  CAS  Google Scholar 

  • Rubin B. B., Downey G. P., Koh A., Degousee N., Ghomashchi F., Nallan L., Stefanski E., Harkin D. W., Sun C. X., Smart B. P., Lindsay T. F., Cherepanov V., Vachon E., Kelvin D., Sadilek M., Brown G. E., Yaffe M. B., Plumb J., Grinstein S., Glogauer M., and Gelb M. H. (2005). Cytosolic phospholipase A2–α is necessary for platelet-activating factor biosynthesis, efficient neutrophil-mediated bacterial killing, and the innate immune response to pulmonary infection–cPLA2–α does not regulate neutrophil NADPH oxidase activity. J. Biol. Chem. 280:7519–7529.

    PubMed  CAS  Google Scholar 

  • Sarchielli P., Alberti A., Coppola F., Baldi A., Gallai B., Floridi A., Floridi A., Capocchi G., and Gallai V. (2004). Platelet-activating factor (PAF) in internal jugular venous blood of migraine without aura patients assessed during migraine attacks. Cephalalgia. 24:623–630.

    PubMed  CAS  Google Scholar 

  • Schifitto G., Sacktor N., Marder K., McDermott M. P., McArthur J. C., Kieburtz K., Small S., Epstein L. G., and The Neurological AIDS Research Consortium. (1999). Randomized trial of the platelet-activating factor antagonist lexipafant in HIV-associated cognitive impairment. Neurology. 53:391–396.

    PubMed  CAS  Google Scholar 

  • Serebruany V. L., Gurbel P. A., Murugesan S. R., Lowry D. R., Sturm E., and Svetlov S. I. (1998). Depressed plasma platelet-activating factor acetylhydrolase in patients presenting with acute myocardial infarction. Cardiology. 90:127–130.

    PubMed  CAS  Google Scholar 

  • Serradji N., Martin M., Bensaid O., Cisternino S., Rousselle C., Dereuddre-Bosquet N., Huet J., Redeuilh C., Lamouri A., Doug L. Z., Clayette P., Scherrmann J. M., Dormont D., and Heymans F. (2004). Structure–activity relationships in platelet-activating factor. 12. Synthesis and biological evaluation of platelet-activating factor antagonists with anti-HIV-1 activity. J. Med. Chem. 47:6410–6419.

    PubMed  CAS  Google Scholar 

  • Shi L. C., Wang H. Y., and Friedman E. (1998). Involvement of platelet-activating factor in cell death induced under ischemia/postischemia-like conditions in an immortalized hippocampal cell line. J. Neurochem. 70:1035–1044.

    Article  PubMed  CAS  Google Scholar 

  • Shmueli O., Cahana A., and Reiner O. (1999). Platelet-activating factor (PAF) acetylhydrolase activity, LIS1 expression, and seizures. J. Neurosci. Res. 57:176–184.

    PubMed  CAS  Google Scholar 

  • Sogos V., Bussolino F., Pilia E., Torrelli S., and Gremo F. (1990). Acetylcholine-induced production of platelet-activating factor by human fetal brain cells in culture. J. Neurosci. Res. 27:706–711.

    PubMed  CAS  Google Scholar 

  • Shmelzer Z., Haddad N., Admon E., Pessach I., Leto T. L., Eitan-Hazan Z., Hershfinkel M., and Levy R. (2003). Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by the NADPH oxidase in phagocytes. J. Cell Biol. 162:683–692.

    PubMed  CAS  Google Scholar 

  • Tai C. Y., Dujardin D. L., Faulkner N. E., and Vallee R. B. (2002). Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J. Cell Biol. 156:959–968.

    PubMed  CAS  Google Scholar 

  • Takehara S., Mikashima H., Muramoto Y., Terasawa M., Setoguchi M., and Tahara T. (1990). Pharmacological actions of Y-24180, a new specific antagonist of platelet activating factor (PAF). II. Interactions with PAF and benzodiazepine receptors. Prostaglandins. 40:571–583.

    PubMed  CAS  Google Scholar 

  • Tanaka T., Iimori M., Tsukatani H., Tokumura A. (1994). Platelet-aggregating effects of platelet-activating factor-like phospholipids formed by oxidation of phosphatidylcholines containing an sn-2-polyunsaturated fatty acyl group. Biochim. Biophys. Acta. 1210:202–208.

    PubMed  CAS  Google Scholar 

  • Tanaka T., Serneo F. F., Higgins C., Gambello M. J., Wynshaw-Boris A., and Gleeson J. G. (2004). Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165:709–721.

    PubMed  CAS  Google Scholar 

  • Taylor K. E., Richardson A. J., and Stein J. F. (2001). Could platelet activating factor play a role in developmental dyslexia? Prostaglandins Leukot. Essent. Fatty Acids. 64:173–180.

    CAS  Google Scholar 

  • Tetta C., Bussolino F., Modena V., Montrucchio G., Segoloni G., Pescarmona G., and Camussi G. (1990). Release of platelet-activating factor in systemic lupus erythematosus. Int. Arch. Allergy Appl. Immunol. 91:244–256.

    PubMed  CAS  Google Scholar 

  • Tiberghien C., Laurent L., Junier M. P., and Dray F. (1991). A competitive receptor binding assay for platelet-activating factor (PAF): Quantification of PAF in rat brain. J. Lipid Mediat. 3:249–266.

    PubMed  CAS  Google Scholar 

  • Tjoelker L. W., and Stafforini D. M. (2000). Platelet-activating factor acetylhydrolases in health and disease. Biochim. Biophys. Acta. 1488:102–123.

    PubMed  CAS  Google Scholar 

  • Tokumura A., Tsutsumi T., and Tsukatani H. (1992). Transbilayer movement and metabolic fate of ether-linked phosphatidic acid (1-O-octadecyl-2-acetyl-sn-glycerol 3-phosphate) in guinea pig peritoneal polymorphonuclear leukocytes. J. Biol. Chem. 267:7275–7283.

    PubMed  CAS  Google Scholar 

  • Tokutomi T., Maruiwa H., Hirohata M., Miyagi T., and Shigemori M. (2001). Production of platelet-activating factor by neuronal cells in the rat brain with cold injury. Neurol. Res. 23:605–611.

    PubMed  CAS  Google Scholar 

  • Tselepis A. D., Elisaf M., Besis S., Karabina S. A., Chapman M. J., and Siamopoulou A. (1999). Association of the inflammatory state in active juvenile rheumatoid arthritis with hypo-high-density lipoproteinemia and reduced lipoprotein-associated platelet-activating factor acetylhydrolase activity. Arthritis Rheum. 42:373–383.

    PubMed  CAS  Google Scholar 

  • Tsukioka K., Matsuzaki M., Nakamata M., Kayahara H., and Nakagawa T. (1996). Increased plasma level of platelet-activating factor (PAF) and decreased serum PAF acetylhydrolase (PAFAH) activity in adults with bronchial asthma. J. Invest. Allergol. Clin. Immunol. 6:22–29.

    CAS  Google Scholar 

  • Turunen P., Puhakka H., Rutanen J., Hiltunen M. O., Heikura T., Gruchala M., Yla-Herttuala S. (2005). Intravascular adenovirus-mediated lipoprotein-associated phospholipase A2 gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Atherosclerosis. 179:27–33.

    PubMed  CAS  Google Scholar 

  • Unno N., Nakamura T., Kaneko H., Uchiyama T., Yamamoto N., Sugatani J., Miwa M., and Nakamura S. (2000). Plasma platelet-activating factor acetylhydrolase deficiency is associated with atherosclerotic occlusive disease in Japan. J. Vasc. Surg. 32:263–267.

    PubMed  CAS  Google Scholar 

  • Yamada Y., Yoshida H., Ichihara S., Imaizumi T., Satoh K., and Yotaka M. (2000). Correlations between plasma platelet-activating factor acetylhydrolase (PAF-AH) activity and PAF-AH genotype, age, and atherosclerosis in a Japanese population. Atherosclerosis. 150:209–216.

    PubMed  CAS  Google Scholar 

  • Yamamoto Y., and Gaynor R. B. (2004). IkappaB kinases: Key regulators of the NF-kappa B pathway. Trends Biochem. Sci. 29:72–79.

    PubMed  CAS  Google Scholar 

  • Zablocka B., Lukasiuk K., Lazarewicz J. W., and Domanska-Janik S. (1995). Modulation of ischemic signal by antagonists of N-methyl-D-aspartate, nitric oxide synthase, and platelet-activating factor in gerbil hippocampus. J. Neurosci. Res. 40:233–240.

    PubMed  CAS  Google Scholar 

  • Zhang X., Pan X. L., Liu X. T., Wang S., and Wang L. J. (2007). Down-regulation of platelet-activating factor receptor gene expression during focal reversible cerebral ischemia in rats. Neurochem. Res. 32:451–456.

    PubMed  CAS  Google Scholar 

  • Zhu J., Brackett N. L., Aballa T. C., Lynne C. M., Witt M. A., Kort H. I., and Roudebush W. E. (2006). High seminal platelet-activating factor acetylhydrolase activity in men with spinal cord injury. J. Androl. 27:429–433.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Involvement of Platelet-Activating Factor in Neurological Disorders. In: Metabolism and Functions of Bioactive Ether Lipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77401-5_10

Download citation

Publish with us

Policies and ethics