Skip to main content

Prevalence and Functions of Anthocyanins in Fruits

  • Chapter
  • First Online:
Book cover Anthocyanins

Abstract

This chapter reviews possible visual, nutritional and physiological functions of anthocyanins in fruits. Merits of the various functions are considered and discussed with reference to the prevalence of different fruit colours and the contribution of anthocyanins thereto as well as anthocyanin accumulation in response to environmental factors, seed disperser visual systems and fruit quality parameters. Blue, purple, black and most red fruits derive their colour from anthocyanin accumulating during ripening. Red and black are the most common colours of small bird-consumed fruits whereas larger ‘‘mammalian’’ fruits are more typically orange, brown or green in colour. Red fruits are conspicuous to birds with their tetrachromatic vision, but cryptic to unintended dichromatic mammalian frugivores and opportunistic insect seed predators. Blue fruits are scarce, probably because they are easy to detect by disadvantageous frugivores. Black fruits, with their very high anthocyanin levels, are fairly common despite being inconspicuous to dispersers. The prevalence of black fruits could relate to the powerful antioxidant ability of anthocyanins. On the other hand, blackness also correlates with fruit maturity and, thus, quality. Finally, the presence of anthocyanins in immature fruits and its regulation by environmental factors could relate to the photoprotective ability of anthocyanins. Since anthocyanins are able to fulfil a range of functions in plants, their adaptive value in fruits should be interpreted against a background of interaction with dispersers, genotype and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, F.W. (1932) Physical and chemical changes in the ripening of deciduous fruits. Hilgardia 6, 381–441.

    CAS  Google Scholar 

  • Altshuler, D.L. (2001) Ultraviolet reflectance in fruits, ambient light composition and fruit removal in a tropical forest. Evol. Ecol. Res. 3, 767–778.

    Google Scholar 

  • Aschan, G. and Pfanz, H. (2003) Non-foliar photosynthesis – a strategy of additional carbon acquisition. Flora 198, 81–97.

    Google Scholar 

  • Awad, M.A., De Jager, A. and Van Westing, L.M. (2000) Flavonoid and chlorogenic acid levels in apple fruit: characterization of variation. Sci. Hort. 83, 249–263.

    CAS  Google Scholar 

  • Bach, C.E. and Kelly, D. (2004) Effects of forest edges, fruit display size, and fruit colour on bird seed dispersal in a New Zealand mistletoe, Alepsis flavida. New Zeal. J. Ecol. 28, 93–103.

    Google Scholar 

  • Boss, P.K., Davies, C. and Robinson, S.P. (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol. 111, 1059–1066.

    PubMed  CAS  Google Scholar 

  • Briscoe, A.D. and Chittka, L. (2001) The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510.

    PubMed  CAS  Google Scholar 

  • Burkhardt, D. (1982) Birds, berries and UV. Naturwissenschaften 69, 153–157.

    PubMed  CAS  Google Scholar 

  • Burns, K.C. and Dalen, J.L. (2002) Foliage color contrasts and adaptive fruit color variation in a bird-dispersed plant community. Oikos 96, 463–469.

    Google Scholar 

  • Caine, N.G. and Mundy, N.I. (2000) Demonstrating of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food colour. Proc. R. Soc. Lond. B 267, 439–444.

    CAS  Google Scholar 

  • Calvo, C., Salvador, A. and Fiszman, S.M. (2001) Influence of colour intensity on the perception of colour and sweetness in various fruit-flavoured yoghurts. Eur. Food Res. Technol. 213, 99–103.

    CAS  Google Scholar 

  • Cipollini, M.L., Paulk, E., Mink, K., Vaughn, K. and Fischer, T. (2004) Defense tradeoffs in fleshy fruits: effects of resource variation on growth, reproduction, and fruit secondary chemistry in Solanum carolinense. J. Chem. Ecol. 30, 1–17.

    PubMed  CAS  Google Scholar 

  • Crisosto, C.H., Crisosto, G.M. and Ritenour, M. (2002) Testing the reliability of skin colour as an indicator of quality for early season ‘‘Brooks’’ (Prunus avium L.) cherry. Postharvest Biol. Tech. 24, 147–154.

    Google Scholar 

  • Curry, E.A. (1997) Temperatures for optimal anthocyanin accumulation in apple tissue. J. Hort. Sci. 72, 723–729.

    CAS  Google Scholar 

  • Deighton, N., Brennan, R., Finn, C. and Davies, H.V. (2000) Antioxidant properties of domesticated and wild Rubusspecies. J. Sci. Food Agric. 80, 1307–1313.

    CAS  Google Scholar 

  • Drew, R.A.I., Prokopy, R.J. and Romig, M.C. (2003) Attraction of fruit flies of the genus Bactrocera to colored mimics of host fruit. Entomol. Exp. Appl. 107, 39–45.

    Google Scholar 

  • Erez, A. and Flore, J.A. (1986) The quantitative effect of solar radiation on ‘‘Redhaven’’ peach fruit skin color. HortScience 21,1424–1426.

    Google Scholar 

  • Escribano-Bailón, M.T., Santos-Buelga, C., Alonso, G.L. and Salinas, M.R. (2002) Anthocyanin composition of the fruit of Coriaria myrtifolia L. Phytochem. Anal. 13, 354–357.

    PubMed  Google Scholar 

  • Faragher, J.D. (1983) Temperature regulation of anthocyanin accumulation in apple skin. J. Exp. Bot. 34, 1291–1298.

    CAS  Google Scholar 

  • Faragher, J.D. and Chalmers, D.J. (1977) Regulation of anthocyanin synthesis in apple skin. III Involvement of phenylalanine ammonialyase. Austr. J. Plant Physiol. 4, 133–141.

    CAS  Google Scholar 

  • Gil, M.A., García-Viguera, C., Artés, F. and Tomás-Barberán, F.A. (1995) Changes in pomegranate juice pigmentation during ripening. J. Sci. Food Agric. 68, 77–81.

    Google Scholar 

  • Gortner, W.A. (1965) Chemical and physical development of the pineapple fruit. IV. Plant pigment constituents. J. Food Sci. 30, 30–32.

    CAS  Google Scholar 

  • Gould, K.S. and Lister, C. (2006) Flavonoid functions in plants. In: Ø. M. Andersen and K.R. Markham (Eds), Flavonoids. Chemistry, Biochemistry and Applications. CRC Press, Boca Raton, pp. 397–442.

    Google Scholar 

  • Gross, J. (1987) Pigments in Fruits. Academic Press, London.

    Google Scholar 

  • Hall, I.V. and Stark, R. (1972) Anthocyanin production in cranberry leaves and fruit, related to cool temperatures at a low light intensity. Hort. Res. 12, 183–186.

    CAS  Google Scholar 

  • Hampe, A. (2003) Large-scale geographical trends in fruit traits of vertebrate-dispersed temperate plants. J. Biogeogr. 30, 487–496.

    Google Scholar 

  • Harborne, J.B. (1976) Functions of flavonoids in plants. In: T.W. Goodwin (Ed), Chemistry and Biochemistry of Plant Pigments. Academic Press, London, pp. 736–778.

    Google Scholar 

  • Harborne, J.B. (1988) Introduction to Ecological Biochemistry. Academic Press, London.

    Google Scholar 

  • Harborne, J.B. and Grayer, R.J. (1994) Flavonoids and insects. In: J.B. Harborne (Ed), The Flavonoids. Advances in Research Since 1986. Chapman & Hall/CRC, Boca Raton, pp. 589–618.

    Google Scholar 

  • Hetherington, S.E. (1997) Profiling photosynthetic competence in mango fruit. J. Hort. Sci. 72, 755–763.

    Google Scholar 

  • Honkavaara, J., Koivula, M., Korpimäki, E., Siitari, H. and Viitala, J. (2002) Ultraviolet vision and foraging in terrestrial vertebrates. Oikos 98, 505–511.

    Google Scholar 

  • Howell, J.F. (1991) Reproductive Biology. In: L.P.S. van der Geest and H.H. Evenhuis (Eds), Tortricid Pests. Elsevier Science Publishers, Amsterdam, pp. 157–174.

    Google Scholar 

  • Izhaki, I., Tsahar, E., Paluy, I. and Friedman, J. (2002) Within population variation and interrelationships between morphology, nutritional content, and secondary compounds of Rhamnus alaternus fruits. New Phytol. 156, 217–223.

    CAS  Google Scholar 

  • Jacobs, G.H. (1993) The distribution and nature of colour vision among the mammals. Biol. Rev. 68, 413–471.

    PubMed  CAS  Google Scholar 

  • Janson, C.H. (1983) Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science 219, 187–189.

    PubMed  CAS  Google Scholar 

  • Kähkönen, M.P., Heinämäki, J., Ollilainen, V. and Heinonen, M. (2003) Berry anthocyanins: isolation, identification and antioxidant activities. J. Sci. Food Agric. 83, 1403–1411.

    Google Scholar 

  • Katsoyannos, B.I. and Kouloussis, N.A. (2001) Captures of the olive fruit fly Bactrocera oleae on spheres of different colours. Entomol. Exp. Appl. 100, 165–172.

    Google Scholar 

  • Kliewer, W.M. (1970) Effect of day temperature and light intensity on coloration of Vitis viniferaL. grapes. J. Amer. Soc. Hort. Sci. 95, 693–697.

    Google Scholar 

  • Kliewer, W.M. (1977) Influence of temperature, solar radiation and nitrogen on coloration and composition of Emperor grapes. Am. J. Enol. Viticult. 28, 96–103.

    CAS  Google Scholar 

  • Kliewer, W.M. and Schultz, H.B. (1973) Effect of sprinkler cooling of grapevines on fruit growth and composition. Amer. J. Enol. Viticult. 24, 17–26.

    Google Scholar 

  • Lancaster, J.E., Reay, P.F., Norris, J. and Butler, R.C. (2000) Induction of flavonoids and phenolic acids in apple by UV-B and temperature. J. Hortic. Sci. Biotech. 75, 142–148.

    CAS  Google Scholar 

  • Larronde, F., Krisa, S., Decendit, A., Chéze, C., Deffieux, G. and Mérillon, J.M. (1998) Regulation of polyphenol production in Vitis vinifera cell suspension cultures by sugars. Plant Cell Rep. 17, 946–950.

    CAS  Google Scholar 

  • Levey, D.J. (1987) Sugar-tasting ability and fruit selection in tropical fruit-eating birds. Auk 104, 173–179.

    Google Scholar 

  • Li, X-J., Hou, J-H., Zhang, G-L., Liu, R-S., Yang, Y-G., Hu, Y-X. and Lin, J-X. (2004) Comparison of anthocyanin accumulation and morpho-anatomical features in apple skin during color formation at two habitats. Sci. Hortic-Amsterdam 99, 41–53.

    CAS  Google Scholar 

  • Lila, M.A. (2004) Plant pigments and human health. In: K.M. Davies (Ed), Plant Pigments and Their Manipulation. Annual Plant Reviews.Blackwell Publishing/ CRC Press, Boca Raton, pp. 248–274.

    Google Scholar 

  • Macheix, J-J., Fleuriet, A. and Billot, J. (1990) Fruit Phenolics. CRC Press, Boca Raton.

    Google Scholar 

  • Mack, A.L. (2000) Did fleshy fruit pulp evolve as a defence against seed loss rather than as a dispersal mechanism? J. Biosci. 25, 93–97.

    PubMed  CAS  Google Scholar 

  • Manach, C. (2004) Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79, 727–747.

    PubMed  CAS  Google Scholar 

  • Marsh, K.B., Volz, R.K. and Reay, P. (1996) Fruit colour, leaf nitrogen level, and tree vigour in ‘‘Fuji’’ apples. New Zeal. J. Crop Hort. 24, 393–399.

    Google Scholar 

  • Martin, M.M., Larsen, F.E., Higgins, S.S., Ku, M.S.B. and Andrews, P.K. (1997) Comparative growth and physiology of selected one-year-old red- and green-fruited European pear cultivars. Sci. Hort. 71, 213–226.

    Google Scholar 

  • Merzlyak, M.N. and Chivkunova, O.B. (2000) Light-stress-induced pigment changes and evidence for anthocyanin photoprotection in apples. J. Photochem. Photobiol. B: Biol. 55, 155–163.

    CAS  Google Scholar 

  • Mollon, J.D. (1989) “Tho’ she kneel’d in that place where they grew...” The uses and origins of primate colour vision. J. Exp. Biol. 146, 21–38.

    PubMed  CAS  Google Scholar 

  • Morgan, M.J., Adam, A. and Mollon, J.D. (1992) Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proc. R. Soc. Lond. B 248, 291–295.

    CAS  Google Scholar 

  • Moyer, R.A., Hummer, K.E., Finn, C.E., Frei, B. and Wrolstad, R.E. (2002). Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food. Chem. 50, 519–525.

    PubMed  CAS  Google Scholar 

  • Naumann, W.D. and Wittenberg, U. (1980) Anthocyanins, soluble solids, and titratable acidity in blackberries as influenced by preharvest temperatures. Acta Hort. 112, 183–190.

    Google Scholar 

  • Neill, S. and Gould, K.S. (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct. Plant Biol. 30, 865–873.

    CAS  Google Scholar 

  • Ödeen, A. and Håstad, O. (2003) Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol. Biol. Evol. 20, 855–861.

    PubMed  Google Scholar 

  • Osorio, D. and Vorobyev, M. (1996) Colour vision as an adaptation to frugivory in primates. Proc. R. Soc. Lond. B 263, 593–599.

    CAS  Google Scholar 

  • Osorio, D., Smith, A.C., Vorobyev, M. and Buchanan-Smith, H.M. (2004) Detection of fruit and the selection of primate visual pigments for color vision. Am. Nat. 164, 696–708.

    Google Scholar 

  • Pietrini. F., and Massacci, A. (1998) Leaf anthocyanin content changes in Zea mays L. grown at low temperature: significance for the relationship between quantum yield of PS II and the apparent quantum yield of CO2 assimilation. Photosynth. Res. 58, 213–219.

    CAS  Google Scholar 

  • Poulsen, J.R., Clark, C.J., Connor, E.F. and Smith, T.B. (2002). Differential resource use by primates and hornbills: implications for seed dispersal. Ecology 83, 228–240.

    Google Scholar 

  • Puech, A.A., Rebeiz, C.A. and Crane, J.C. (1976) Pigment changes associated with the application of Ethephon ((2-chloroethyl)phosphonic acid) to fig (Ficus carica L.) fruits. Plant Physiol. 57, 504–509.

    PubMed  CAS  Google Scholar 

  • Reay, P.F., Fletcher, R.H. and Thomas, V.J. (1998) Chlorophyll, carotenoids and anthocyanin concentrations in the skin of ‘‘Gala’’ apples during maturation and the influence of foliar applications of nitrogen and magnesium. J. Sci. Food Agric. 76, 63–71.

    CAS  Google Scholar 

  • Regan, B.C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P. and Mollon, J.D. (1998) Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrhine monkey. Vision Res. 38, 3321–3327.

    PubMed  CAS  Google Scholar 

  • Regan, B.C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P. and Mollon, J.D. (2001) Fruits, foliage and the evolution of primate colour vision. Phil. Trans. R. Soc. Lond. B 38, 3321–3327.

    Google Scholar 

  • Reyes-Carmona, J., Yousef, G.G., Martínez-Peniche, R.A. and Lila, M.A. (2005) Antioxidant capacity of fruit extracts of blackberry (Rubus sp.) produced in different climatic regions. J. Food Sci. 70, S497-S503.

    CAS  Google Scholar 

  • Riba-Hernández, P., Stoner, K.E. and Lucas, P.W. (2005) Sugar concentration of fruits and their detection via color in the Central American spider monkey (Ateles geoffroyi). Am. J. Primatol. 67, 411–423.

    PubMed  Google Scholar 

  • Richardson-Harman, N., Phelps, T., McDermott, S. and Gunson, A. (1998) Use of tactile and visual cues in consumer judgments of apple ripeness. J. Sens. Stud. 9, 121–132.

    Google Scholar 

  • Rudell, D.R., Mattheis, J.P., Fan, X. and Fellman, J.K. (2002) Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in ‘‘Fuji’’ apples. J. Amer. Soc. Hort. Sci. 127, 435–441.

    CAS  Google Scholar 

  • Schaefer, H.M., Levey, D.J., Schaefer, V. and Avery, M.L. (2006) The role of chromatic and achromatic signals for fruit detection in birds. Behav. Ecol. 17, 784–789.

    Google Scholar 

  • Schaefer, H.M. and Rolshausen, G. (2005) Plants on red alert: do insects pay attention? BioEssays 28, 65–71.

    Google Scholar 

  • Schaefer, H.M. and Schmidt, V. (2004) Detectability and content as opposing signal characteristics in fruits. Proc. R. Soc. Lond. B (Suppl.) 271, S370–S373.

    Google Scholar 

  • Schaefer, H.M., Schmidt, V. and Bairlein, F. (2003a) Discrimination abilities for nutrients: which difference matters for choosy birds and why? Anim. Behav. 65, 531–541.

    Google Scholar 

  • Schaefer, H.M., Schmidt, V. and Winkler, H. (2003b) Testing the defence trade-off hypothesis: how contents of nutrients and secondary compounds affect fruit removal. Oikos 102, 318–328.

    Google Scholar 

  • Schmidt, V., Schaefer, H.M. and Winkler, H. (2004) Conspicuousness, not colour as foraging cue in plant-animal signalling. Oikos 106, 551–557.

    Google Scholar 

  • Shepherd, T. and Griffiths, D.W. (2006) The effects of stress on plant cuticular waxes. New Phytol. 171, 469–499.

    PubMed  CAS  Google Scholar 

  • Siitari, H., Honkavaara, J. and Viitala, J. (1999) Ultraviolet reflection of berries attracts foraging birds. A laboratory study with redwings (Turdus iliacus) and bilberries (Vaccinium myrtillus). Proc. R. Soc. Lond. B 266, 2125–2129.

    Google Scholar 

  • Smillie, R.M. and Hetherington, S.E. (1999) Photoabatement by anthocyanin shields photosynthetic systems from light stress. Photosynthetica 36, 451–463.

    CAS  Google Scholar 

  • Solfanelli, C., Poggi, A., Loreti, E., Alpi, A. and Perata, P. (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 140, 637–646.

    PubMed  CAS  Google Scholar 

  • Stafford, H.A. (1994) Atnhocyanins and betalains: evolution of the mutually exclusive pathways. Plant Sci. 101, 91–98.

    CAS  Google Scholar 

  • Steward, J.M. and Cole, B.L. (1989) What do color vision defectives say about everyday tasks? Optometry Vision Sci. 66, 288–295.

    CAS  Google Scholar 

  • Steyn, W.J., Holcroft, D.M., Wand, S.J.E. and Jacobs, G. (2004a) Regulation of pear color development in relation to activity of flavonoid enzymes. J. Amer. Soc. Hort. Sci. 129, 6–12.

    CAS  Google Scholar 

  • Steyn, W.J., Holcroft, D.M., Wand, S.J.E. and Jacobs, G. (2004b) Anthocyanin degradation in detached pome fruit with reference to preharvest red color loss and pigmentation patterns of blushed and fully red pears. J. Amer. Soc. Hort. Sci. 129, 13–19.

    CAS  Google Scholar 

  • Steyn, W.J., Wand, S.J.E., Holcroft, D.M. and Jacobs, G. (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol. 155, 349–361.

    CAS  Google Scholar 

  • Stintzing, F.C. and Carle, R. (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Tech. 15, 19–38.

    CAS  Google Scholar 

  • Sumner, P. and Mollon, J.D. (2000) Chromaticity as a signal of ripeness in fruits taken by primates. J. Exp. Biol. 203, 1987–2000.

    PubMed  CAS  Google Scholar 

  • Surridge, A.K., Osorio, D. and Mundy, N.I. (2003) Evolution and selection of trichromatic vision in primates. Trends Ecol. Evol. 18, 198–205.

    Google Scholar 

  • Tiffney, B.H. (2004) Vertebrate dispersal of seed plants through time. Annu. Rev. Ecol. Evol. Syst. 35, 1–29.

    Google Scholar 

  • Traveset, A., Riera, N. and Mas, R.E. (2001). Ecology of fruit-colour polymorphism in Myrtus communis and differential effects of birds and mammals on seed germination and seedling growth. J. Ecol. 89, 749–760.

    Google Scholar 

  • Traveset, A. and Willson, M.F. (1998) Ecology of fruit-colour polymorphism in Rubus spectabilis. Evol. Ecol. 12, 331–345.

    Google Scholar 

  • Traveset, A., Willson, M.F. and Verdú, M. (2004) Characteristics of fleshy fruits in southeast Alaska: phylogenetic comparison with fruits from Illinois. Ecography 27, 41–48.

    Google Scholar 

  • Veraverbeke, E.A., Van Bruaene, N., Van Oostveldt, P. and Nicolaï, B.M. (2001) Non destructive analysis of the wax layer of apple (Malus domestica Borkh.) by means of confocal laser scanning microscopy. Planta 213, 525–533.

    PubMed  CAS  Google Scholar 

  • Voigt, F.A., Bleher, B., Fietz, J., Ganzhorn, J.U., Schwab, D. and Böhning-Gaese, K. (2004) A comparison of morphological and chemical fruit traits between two sites with different frugivore assemblages. Oecologia 141, 94–104.

    PubMed  CAS  Google Scholar 

  • Wheelwright, N.T. and Janson, C.H. (1985) Colors of fruit displays of bird-dispersed plants in two tropical forests. Am. Nat. 126, 777–799.

    Google Scholar 

  • White, I.M. and Elson-Harris, M.M. (1992) Fruit Flies of Economic Significance: Their Identification and Bionomics. CAB International, Wallingford.

    Google Scholar 

  • Whitney, K.D. (2005) Linking frugivores to the dynamics of a fruit color polymorphism. Am. J. Bot. 92, 859–867.

    Google Scholar 

  • Whitney, K.D. and Stanton, M.L. (2004). Insect seed predators as novel agents of selection on fruit color. Ecology 85, 2153–2160.

    Google Scholar 

  • Whitney, K.D. and Lister, C.E. (2004) Fruit colour polymorphism in Acacia ligulata: seed and seedling performance, clinal patterns, and chemical variation. Evol. Ecol. 18, 165–186.

    Google Scholar 

  • Willson, M.F. (1986) Avian frugivory and seed dispersal in eastern North America. Curr. Ornithol. 3, 223–279.

    Google Scholar 

  • Willson, M.F., Graff, D.A. and Whelan, C.J. (1990) Color preferences of frugivorous birds in relation to the colors of fleshy fruits. Condor 92, 545–555.

    Google Scholar 

  • Willson, M.F. and O’Dowd, D.J. (1989) Fruit color polymorphism in a bird-dispersed shrub (Rhagodia parabolica) in Australia. Evol. Ecol. 3, 40–50.

    Google Scholar 

  • Willson, M.F. and Thompson, J.N. (1982) Phenology and ecology of color in bird-dispersed fruits, or why some fruits are red when they are ‘‘green’’. Can. J. Bot. 60, 701–713.

    Google Scholar 

  • Willson, M.F. and Whelan, C.J. (1989) Ultraviolet reflectance of fruits of vertebrate-dispersed plants. Oikos 55, 341–348.

    Google Scholar 

  • Willson, M.F. and Whelan, C.J. (1990) The evolution of fruit color in fleshy-fruited plants. Am. Nat. 136, 790–809.

    Google Scholar 

  • Zhou, Y. and Singh, B.R. (2002) Red light stimulates flowering and anthocyanin biosynthesis in American cranberry. Plant Growth Regul. 38, 165–171.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Steyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Steyn, W.J. (2008). Prevalence and Functions of Anthocyanins in Fruits. In: Winefield, C., Davies, K., Gould, K. (eds) Anthocyanins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77335-3_4

Download citation

Publish with us

Policies and ethics