Skip to main content

Bioactivation and Protein Modification Reactions of Unsaturated Aldehydes

  • Chapter
  • First Online:

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume IX))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alaiz, M., and Barragan, S. 1995. Changes induced in bovine serum albumin following interactions with the lipid peroxidation product E-2-octenal. Chem. Phys. Lipids. 77:217–223.

    Article  PubMed  CAS  Google Scholar 

  • Amarnath, V., Amarnath, K., Valentine, W. M., Eng, M. A., and Graham, D. G. 1995. Intermediates in the Paal–Knorr synthesis of pyrroles. 4-Oxoaldehydes. Chem. Res. Toxicol. 8:234–238.

    Article  PubMed  CAS  Google Scholar 

  • Asselin, C., Bouchard, B., Tardif, J. C., and Des Rosiers, C. 2006. Circulating 4-hydroxynonenal-protein thioether adducts assessed by gas chromatography-mass spectrometry are increased with disease progression and aging in spontaneously hypertensive rats. Free Rad. Biol. Med. 41:97–105.

    Article  PubMed  CAS  Google Scholar 

  • Baker, A., Zidek, L., Wiesler, D., Chmelik, J., Pagel, M., and Novotny, M. V. 1998. Reaction of N-acetylglycyllysine methyl ester with 2-alkenals: an alternative model for covalent modification of proteins. Chem. Res. Toxicol. 11:730–740.

    Article  PubMed  CAS  Google Scholar 

  • Bateman, R. H., Carruthers, R., Hoyes, J. B., Jones, C., Langridge, J. I., Millar, A., and Vissers, J. P. C. 2002. A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J. Am. Soc. Mass Spectrom. 13:792–803.

    Article  PubMed  CAS  Google Scholar 

  • Bolgar, M. S., and Gaskell, S. J. 1996. Determination of the sites of 4-hydroxy-2-nonenal adduction to protein by electrospray tandem mass spectrometry. Anal. Chem. 68:2325–2330.

    Article  CAS  Google Scholar 

  • Burcham, P. C., and Pyke, S. M. 2006. Hydralazine inhibits rapid acrolein-induced protein oligomerization: role of aldehyde scavenging and adduct trapping in cross-link blocking and cytoprotection. Mol. Pharmacol. 69:1056–1065.

    PubMed  CAS  Google Scholar 

  • Conklin, D. J., Prough, R. A., and Bhatnagar, A., 2006. Aldehyde metabolism in the cardiovascular system. Mol. Biosys. 2:1–16.

    Article  Google Scholar 

  • Domon, B., and Aebersold, R. 2006. Mass spectrometry and protein analysis. Science 312:212–217.

    Article  PubMed  CAS  Google Scholar 

  • Doorn, J. A., and Petersen, D. R. 2002. Covalent modification of amino acid nucleophiles by the lipid peroxidation products 4-hydroxy-2-nonenal and 4-oxo-2-nonenal. Chem. Res. Toxicol. 15:1445–1450.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer, H., Schaur, R. J., and Zollner, H. 1991. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad. Biol. Med. 11:81–128.

    Article  PubMed  CAS  Google Scholar 

  • Fenaille, F., Guy, P. A., and Tabet, J. C. 2003. Study of protein modification by 4-hydroxy-2-nonenal and other short chain aldehydes analyzed by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 14:215–226.

    Article  PubMed  CAS  Google Scholar 

  • Fenaille, F., Tabet, J. C., and Guy, P. A. 2004. Identification of 4-hydroxy-2-nonenal-modified peptides within unfractionated digests using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 76:867–873.

    Article  PubMed  CAS  Google Scholar 

  • Furuhata, A., Ishii, T., Kumazawa, S., Yamada, T., Nakayama, T., and Uchida, K. 2003. N ɛ-(3-methylpyridinium)lysine, a major antigenic adduct generated in acrolein-modified protein. J. Biol. Chem. 278:48658–48665.

    Article  PubMed  CAS  Google Scholar 

  • Furuhata, A., Nakamura, M., Osawa, T., and Uchida, K. 2002. Thiolation of protein-bound carcinogenic aldehyde. An electrophilic acrolein–lysine adduct that covalently binds to thiols. J. Biol. Chem. 277:27919–27926.

    Article  PubMed  CAS  Google Scholar 

  • Ichihashi, K., Osawa, T., Toyokuni, S., and Uchida, K. 2001. Endogenous formation of protein adducts with carcinogenic aldehydes: implications for oxidative stress. J. Biol. Chem. 276:23903–23913.

    Article  PubMed  CAS  Google Scholar 

  • Isom, A. L., Barnes, S., Wilson, L., Kirk, M., Coward, L., and Darley-Usmar, V. 2004. Modification of cytochrome c by 4-hydroxy-2-nonenal: evidence for histidine, lysine, and arginine–aldehyde adducts. J. Am. Soc. Mass Spectrom. 15:1136–1147.

    Article  PubMed  CAS  Google Scholar 

  • Han, X., Jin, M., Breuker, K., and McLafferty, F. W. 2006. Extending top-down mass spectrometry to proteins with masses greater than 200 kilodaltons. Science 314:109–112.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, B. T., Jones, J. A., Mason, D. E., and Liebler, D. C. 2001. SALSA: a pattern recognition algorithm to detect electrophile-adducted peptides by automated evaluation of CID spectra in LC-MS-MS analyses. Anal. Chem. 73:1676–1683.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, B. T., Davey, S. W., Ham, A. J., and Liebler, D. C. 2005. P-Mod: an algorithm and software to map modifications to peptide sequences using tandem MS data. J. Proteome Res. 4:358–368.

    Article  PubMed  CAS  Google Scholar 

  • Ji, C., Kozak, K. R., and Marnett, L. J. 2004. IkappaB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J. Biol. Chem. 276:18233–18228.

    Google Scholar 

  • Lee, S. H., and Blair, I. A. 2000. Characterization of 4-oxo-2-nonenal as a novel product of lipid peroxidation. Chem. Res. Toxicol. 13:698–702.

    Article  PubMed  CAS  Google Scholar 

  • Lin, D., Lee, H. G., Liu, Q., Perry, G., Smith, M. A., and Sayre, L. M. 2005. 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 18:1219–1231.

    Google Scholar 

  • Liu, Z., Minkler, P. E., and Sayre, L. M. 2003. Mass spectroscopic characterization of protein modification by 4-hydroxy-2-(E)-nonenal and 4-oxo-2-(E)-nonenal. Chem. Res. Toxicol. 16:901–911.

    Article  PubMed  CAS  Google Scholar 

  • Miyagi, M., and Rao, K. C. S. 2007. Proteolytic 18O-labeling strategies for quantitative proteomics. Mass Spectrom. Rev. 26:121–136.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, J. E., and Vriend, G. 2001. Optimizing the hydrogen-bond network in Poisson–Boltzmann equation-based pK(a) calculations. Proteins 43:403–412.

    Article  PubMed  CAS  Google Scholar 

  • Oe, T., Lee, S. H., Silva Elipe, M. V., Arison, B. H., and Blair, I. A. 2003a. A novel lipid hydroperoxide-derived modification to arginine. Chem. Res. Toxicol. 16:1598–1605.

    Article  CAS  Google Scholar 

  • Oe, T., Arora, J. S., Lee, S. H., and Blair, I. A. 2003b. A novel lipid hydroperoxide-derived cyclic covalent modification to histone H4. J. Biol. Chem. 278:42098–42105.

    Article  CAS  Google Scholar 

  • Robino, G., Zamara, E., Novo, E., Dianzani, M. U., Parola, M. 2001. 4-hydroxy-2,3-alkenals as signal molecules modulating proliferative and adaptative cell responses. Biofactors 15:103–106.

    Article  PubMed  CAS  Google Scholar 

  • Ruef, J., Rao, G. N., Li, F., Bode, C., Patterson, C., Bhatnagar, A., and Runge, M. S. 1998. Induction of rat aortic smooth muscle cell growth by the lipid peroxidation product 4-hydroxy-2-nonenal. Circulation 97:1071–1078.

    PubMed  CAS  Google Scholar 

  • Salomon, R. G., Kaur, K., Podrez, E., Hoff, H. F., Krushinsky, A. V., and Sayre, L. M. 2000. HNE-derived 2-pentylpyrroles are generated during oxidation of LDL, are more prevalent in blood plasma from patients with renal disease or atherosclerosis, and are present in atherosclerotic plaques. Chem. Res. Toxicol. 13:557–564.

    Article  PubMed  CAS  Google Scholar 

  • Sampey, B. P., Carbone, D. L., Doorn, J. A., Drechsel, D. A. and Peterson, D. R. 2007. 4-Hydroxy-2-nonenal adduction of extracelluar signal-regulated kinase (ERK) and the inhibition of hepatocyte Erk-Est-like Protein-1-activating Protein-1 signal transduction. Mol. Pharmacol. 71:871–883.

    Article  PubMed  CAS  Google Scholar 

  • Sayre, L. M., Arora, P. K., Iyer, R. S., and Salomon, R. G. 1993. Pyrrole formation from 4-hydroxynonenal and primary amines. Chem. Res. Toxicol. 6:19–22.

    Article  PubMed  CAS  Google Scholar 

  • Sayre, L. M., Sha, W., Xu, G., Kaur, K., Nadkarni, D., Subbanagounder, G., and Salomon, R. G. 1996. Immunochemical evidence supporting 2-pentylpyrrole formation on proteins exposed to 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 9:1194–1201.

    Article  PubMed  CAS  Google Scholar 

  • Shao, B., Fu, X., McDonald, T. O., Green, P. S., Uchida, K., O'Brien, K. D., Oram, J. F., and Heinecke, J. W. 2005. Acrolein impairs ATP binding cassette transporter A1-dependent cholesterol export from cells through site-specific modification of apolipoprotein A-I. J. Biol. Chem. 280:36386–36396.

    Article  PubMed  CAS  Google Scholar 

  • Spiteller, P., Kern, W., Reiner, J., and Spiteller, G. 2001. Aldehydic lipid peroxidation products derived from linoleic acid. Biochim. Biophys. Acta 1531:188–208.

    PubMed  CAS  Google Scholar 

  • Szapacs, M. E., Riggins, J. N., Zimmerman, L. J., and Liebler, D. C. 2006. Covalent adduction of human serum albumin by 4-hydroxy-2-nonenal: kinetic analysis of competing alkylation reactions. Biochemistry 45:10521–10528.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, K., Kanematsu, M., Morimitsu, Y., Osawa, T., Noguchi, N., and Niki, E. 1998a. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J. Biol. Chem. 273:16058–16066.

    Article  CAS  Google Scholar 

  • Uchida, K., Kanematsu, M., Sakai, K., Matsuda, T., Hattori, N., Mizuno, Y., Suzuki, D., Miyata, T., Noguchi, N., Niki, E., and Osawa, T. 1998b. Protein-bound acrolein: potential markers for oxidative stress. Proc. Natl. Acad. Sci. USA. 95:4882–4887.

    Article  CAS  Google Scholar 

  • Uchida, K., and Stadtman, E. R. 1992. Selective cleavage of thioether linkage in proteins modified with 4-hydroxynonenal. Proc. Natl. Acad. Sci. USA. 89:5611–5615.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, K., and Stadtman, E. R. 1993. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction. J. Biol. Chem. 268:6388–6393.

    PubMed  CAS  Google Scholar 

  • Veronneau, M., Comte, B., and Des Rosiers, C. 2002. Quantitative gas chromatographic-mass spectrometric assay of 4-hydroxynonenal bound to thiol proteins in ischemic/reperfused rat hearts. Free Rad. Biol. Med. 33:1380–1388.

    Article  PubMed  Google Scholar 

  • Xu, G., Liu, Y., Kansal, M. M., and Sayre, L. M. 1999. Rapid cross-linking of proteins by 4-ketoaldehydes and 4-hydroxy-2-alkenals does not arise from the lysine-derived monoalkylpyrroles. Chem. Res. Toxicol. 12:855–861.

    Article  PubMed  CAS  Google Scholar 

  • Xu, G., and Sayre, L. M. 1998. Structural characterization of a 4-hydroxy-2-alkenal-derived fluorophore that contributes to lipoperoxidation-dependent protein cross-linking in aging and degenerative disease. Chem. Res. Toxicol. 11:247–251.

    Article  PubMed  CAS  Google Scholar 

  • Xu, G., and Sayre, L. M. 1999. Structural elucidation of a 2:2 4-ketoaldehyde-amine adduct as a model for lysine-directed cross-linking of proteins by 4-ketoaldehydes. Chem. Res. Toxicol. 12:862–868.

    Article  PubMed  CAS  Google Scholar 

  • Zaugg, R. H., Walder, J. A., and Klotz, I. M. 1977. Schiff base adducts of hemoglobin. Modifications that inhibit erythrocyte sickling. J. Biol. Chem. 252:8542–8548.

    PubMed  CAS  Google Scholar 

  • Zhang, W. H., Liu, J., Xu, G., Yuan, Q., and Sayre, L. M. 2003. Model studies on protein side chain modification by 4-oxo-2-nonenal. Chem. Res. Toxicol. 16:512–523.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by PO1 ES11860 and ES12062. The authors wish to thank David Hoetker for his expert technical assistance with ESI-MS analyses. JC and BGH contributed jointly as first authors in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.A. Prough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cai, J., Hill, B., Bhatnagar, A., Pierce, W., Prough, R. (2008). Bioactivation and Protein Modification Reactions of Unsaturated Aldehydes. In: Elfarra, A. (eds) Advances in Bioactivation Research. Biotechnology: Pharmaceutical Aspects, vol IX. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77300-1_9

Download citation

Publish with us

Policies and ethics