Skip to main content

Hepatic Bioactivation and Drug-Induced Liver Injury

  • Chapter
  • First Online:
Advances in Bioactivation Research

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume IX))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aithal, G. P., Ramsay, L., Daly, A. K., Sonchit, N., Leathart, J. B. S., Alexander,?G., Kenna, J. G., Caldwell, J., and Day, C.P. 2004. Hepatic adducts, circulating antibodies and cytokine polymorphism in patients with diclofenac hepatotoxicity. Hepatology 39:1430–1440.

    Article  PubMed  CAS  Google Scholar 

  • Anders, M. W. 2004. Glutathione-dependent bioactivation of haloalkanes and haloalkenes. Drug Metab. Rev. 36:583–594.

    Article  PubMed  CAS  Google Scholar 

  • Atzori, L., Dore, M., and Congiu, L. 1989. Aspects of allyl alcohol toxicity. Drug Metab. Drug Interact. 7:295–319.

    CAS  Google Scholar 

  • Baily, M. J., and Dickinson, R. G. 2003. Acyl glucuronide reactivity in perspective: Biological consequences. Chem. Biol. Interact. 145:117–137.

    Article  CAS  Google Scholar 

  • Baillie, T.A., and Kassahun, K. 2001. Biological reactive intermediates in drug discovery and development: a perspective from the pharmaceutical industry. Adv. Exp. Med. Biol. 500:45–51.

    Article  PubMed  CAS  Google Scholar 

  • Bakke, O. M., Manocchia, M., de Abayo, F., Kaitin, K. I., and Lasagna, L. 1995. Drug safety discontinuations in the United Kingdom, the United States, and Spain from 1974 through 1993: A regulatory perspective. Clin. Pharmacol. Ther. 58:108–117.

    Article  PubMed  CAS  Google Scholar 

  • Battista, J. R., and Marnett, L. J. 1985. Prostaglandin H synthase-dependent epoxidation of aflatoxin B1. Carcinogenesis 6:1227–1229.

    Article  PubMed  CAS  Google Scholar 

  • Benedetti, M. S. 2001. Biotransformation of xenobiotics by amine oxidases. Fund. Clin. Pharmacol. 15: 75–84.

    Google Scholar 

  • Benet, L. Z., Spahn-Langguth, H., Iwakawa, S., Volland, C., Mizuma, T., Mayer, S., Mutschler, E., and Lin, E. T. 1993. Predictability of the covalent binding of acidic drugs in man. Life Sci. 53:PL141–146.

    Article  Google Scholar 

  • Berardinis, V. E., Moulis, C., Maurice, M., Beaune, P., Pessayre, D., Pompon, D., and Loeper, J. 2000. Human microsomal epoxide hydrolase is the target of germander-induced autoantibodies on the surface of human hepatocytes. Mol. Pharmacol. 58:542–551.

    PubMed  Google Scholar 

  • Bessems, J. G. M., and Vermeulen, N. P. E. 2001. Paracetamol (acetaminophen)-induced toxicity: Molecular and biochemical mechanisms, analogues and protective approaches. Crit. Rev. Toxicol. 31:55–138.

    Article  PubMed  CAS  Google Scholar 

  • Boelsterli, U. A., Zimmerman, H. J., and Kretz-Rommel, A. 1995. Idiosyncratic liver toxicity of nonsteroidal antiinflammatory drugs: molecular mechanisms and pathology. Crit. Rev. Toxicol. 25:207–235.

    Article  PubMed  CAS  Google Scholar 

  • Boelsterli, U. A. 2002. Xenobiotic acyl glucuronides and acyl CoA thioesters as protein-reactive metabolites with the potential to cause idiosyncratic drug reactions. Curr. Drug Metab. 3:439–450.

    Article  PubMed  CAS  Google Scholar 

  • Boelsterli, U. A. 2003. Idiosyncratic drug hepatotoxicity revisited: New insights from mechanistic toxicology. Toxicol. Mech. Meth. 13:3–20.

    Article  CAS  Google Scholar 

  • Bolze, S., Bromet, N., Gay-Feutry, C., Massiere, F., Boulieu, R., and Hulot, T. 2002. Development of an in vitro screening model for the biosynthesis of acyl glucuronide metabolites and the assessment of their reactivity toward human serum albumin. Drug Metab. Dispos. 30:404–413.

    Article  PubMed  CAS  Google Scholar 

  • Bonierbale, E., Valadon, P., Pous, C., Desfosses, B., Dansette, P.M., and Mansuy, D. 1999. Opposite behaviors of reactive metabolites of tienilic acid and its isomer toward liver proteins: Use of specific anti-tienilic acid–protein addduct antibodies and the possible relationship with different hepatotoxic effects of the two compounds. Chem. Res. Toxicol. 12:286–296.

    Article  PubMed  CAS  Google Scholar 

  • Brunborg, G., Holme, J. A., and Hongslo, J. K. 1995. Inhibitory effects of paracetamol on DNA repair in mammalian cells. Mutat. Res. 342:157–170.

    Article  PubMed  CAS  Google Scholar 

  • Castell, J. V., and Castell, M. 2006. Allergic hepatitis induced by drugs. Curr. Opin. Allergy Clin. Immunol. 6:258–265.

    PubMed  CAS  Google Scholar 

  • Cheeseman, K. H., Albano, E. F., Tomasi, A., and Slater, T. F. 1985. Biochemical studies on the metabolic activation of halogenated alkanes. Environ. Health Perspect. 64:85–101.

    Article  PubMed  CAS  Google Scholar 

  • Clark, C. J., Creighton, S., Portmann, B., Taylor, C., Wendon, J. A., and Cramp,?M. E. 2002. Acute liver failure associated with antiretroviral treatment for HIV: A report of six cases. J. Hepatol. 36:295–310.

    Article  PubMed  Google Scholar 

  • Corcoran, G. B., Wong, B. K., and Neese, B. L. 1987. Early sustained rise in total liver calcium during acetaminophen hepatotoxicity in mice. Res. Commun. Chem. Pathol. Pharmacol. 58:291–305.

    PubMed  CAS  Google Scholar 

  • Corcoran, G. B., Bauer, J. A., and Lau, T. A. 1988. Immediate rise in intracellular calcium and glycogen phosphorylase activity upon acetaminophen covalent binding leading to hepatotoxicity in mice. Toxicology 50:157–167.

    Article  PubMed  CAS  Google Scholar 

  • Cribb, A. E., Lee, B. L., Trepanier, L. A., and Spielberg, S. P. 1996a. Adverse reactions to sulphonamide and sulphonamide-trimethoprim antimicrobials: clinical syndromes and pathogenesis. Adverse Drug React. Toxicol. Rev. 15:9–50.

    CAS  Google Scholar 

  • Cribb, A. E., Nuss, C. E., Alberts, D. W., Lamphere, D. B., Grant, D. M., ?Grossman, S. J., and Spielberg, S. P. 1996b. Covalent binding of sulfamethoxazole reactive metabolites to human and rat liver subcellular fractions assessed by immunochemical detection. Chem. Res. Toxicol. 9:500–507.

    Article  CAS  Google Scholar 

  • Daly, A. K., Aithal, G. P., Leathart, J. B. S., Swainsbury, R. A., Dang, T. S., and Day, C. P. 2007. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8 and ABCC2 genotypes. Gastroenterology 132:272–281.

    Article  PubMed  CAS  Google Scholar 

  • De Groot, H., and Sies, H. 1989. Cytochrome P-450, reductive metabolism, and cell injury. Drug Metab. Rev. 20:275–284.

    Article  PubMed  Google Scholar 

  • De Montellano, P. R., and Correia, M. A. 1995. Inhibition of cytochrome P450 enzymes. In Cytochrome P450: Structure, Mechanism, and Biochemistry. 2 nd Edn. pp. 308–333.New York: Plenum Press.

    Google Scholar 

  • Dieckhaus, C. M., Fernandez-Metzler, C. L., King, R., Krolikowski, P. H., and Baillie, T. A. 2005. Negative ion tandem mass spectrometry for the detection of glutathione conjugates. Chem. Res. Toxicol. 18:630–638.

    Article  PubMed  CAS  Google Scholar 

  • Dietze, E. C., Schäfer, A., Omichinski, J. G., and Nelson, S. D. 1997. Inactivation of glyceraldehyde-3-phosphate dehydrogenase by a reactive metabolite of acetaminophen and mass spectral characterization of an arylated active site peptide. Chem. Res. Toxicol. 10:1097–1103.

    Article  PubMed  CAS  Google Scholar 

  • Djuric, Z. 1989. Reductive metabolism and DNA binding of misonidazole. Toxicol. Appl. Pharmacol. 101:47–54.

    Article  PubMed  CAS  Google Scholar 

  • Ebner, T., Heinzel, G., Prox, A., Beschke, K., and Wachsmuth, H. 1999. Disposition and chemical stability of telmisartan 1-O-acylglucuronide. Drug Metab. Dispos. 27:1143–1149.

    PubMed  CAS  Google Scholar 

  • Evans, D. C., Watt, A. P., Nicoll-Griffith, D. A., and Baillie, T. A. 2004. Drug– protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem. Res. Toxicol. 17:3–16.

    Article  PubMed  CAS  Google Scholar 

  • Fau, D., Lekehal, M., Farrell, G., Moreau, A., Moulis, C., Feldman, G. Haouzi,?D., and Pesayre, D. 1997. Diterpenoids from germander, an herbal medicine, induce apoptosis in isolated rat hepatocytes. Gastroenterology 113:1334–1346.

    Article  PubMed  CAS  Google Scholar 

  • FDA. 2000. Clinical White Paper. CDER-PhRMA-AASLD Conference on Drug-induced Hepatotoxicity pp. 1–13.

    Google Scholar 

  • Fowler, R., and Imrie, K. 2001. Thalidomide-associated hepatitis: a case report. Am. J. Hematol. 66:300–302.

    Article  PubMed  CAS  Google Scholar 

  • Frank, H., Haussmann, H. J., and Remmer, H.1982. Metabolic activation of carbon tetrachloride: induction of cytochrome P-450 with phenobarbital or 3-methylcholanthrene and its effect on covalent binding. Chem. Biol. Interact. 40:193–208.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, E.P., Wienkers, L.C., Stapleton, P.L., Kunze, K.L., and Eaton, D.L. 1994. Role of human microsomal and human complementary DNA-expressed cytochromes P4501A2 and P4503A4 in the bioactivation of aflatoxin B1. Cancer Res. 54:101–108.

    PubMed  CAS  Google Scholar 

  • Gan, J., Harper, T. W., Hsueh, M. M., Qu, Q., Humphreys, W. G. 2005. Dansyl glutathione as a trapping agent for the quantitative estimation and identification of reactive metabolites. Chem. Res. Toxicol. 18:896–903.

    Article  PubMed  CAS  Google Scholar 

  • Glatt, H. 1997. Bioactivation of mutagens via sulfation. FASEB J. 11:314–321.

    PubMed  CAS  Google Scholar 

  • Glatt, H. 2000. Sulfotransferases in the bioactivation of xenobiotics. Chem. Biol. Interact. 129:141–170.

    Article  PubMed  CAS  Google Scholar 

  • Glatt, H., Boeing, H., Engelke, C. E. H., Ma, L., Kuhlow, A., Pabel, U., Pomplun,?D., Teubner, W., and Meinl, W. 2001. Human cytosolic sulfotransferases: genetics, characteristics, toxicological aspects. Mutat. Res. 482:27–40.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, G. B., Spielberg, S. P., Blake, D. A., and Balasubramanian, V. 1981. Thalidomide teratogenesis: Evidence for a toxic arene oxide metabolite. Proc. Natl. Acad. Sci. USA 78:2545–2548.

    Google Scholar 

  • Grillo, M. P., Hua, F., Knutson, C. G., Ware, J. A., and Li, C. 2003. Mechanistic studies on the bioactivation of dichlofenac: Identification of dichlofenac-S-acyl-glutathione in vitro in incubations with rat and human hepatocytes. Chem. Res. Toxicol. 16:1410–1417.

    Article  PubMed  CAS  Google Scholar 

  • Guengerich, F.P. 1996. The chemistry of cytochrome P450 reactions. In: Cytochrome P450: Metabolic and toxicological aspects. C. Ioannides ed, pp. 55–74. CRC Press, Boca Raton.

    Google Scholar 

  • Guengerich, F. P., Johnson, W. W., Shimada, T., Ueng, Y. F., Yamazaki, H., and Langouet, S. 1998. Activation and detoxication of aflatoxin B1. Mutat. Res. 402:121–128.

    Article  PubMed  CAS  Google Scholar 

  • Guengerich, F. P. 2002. N-hydroxyarylamines. Drug Metab. Rev. 34:607–623.

    Article  PubMed  CAS  Google Scholar 

  • Haenen, G. R. M., Vermeulen, N. P. E., Tai Tin Tsoni, J. N. L., Regetti, H. M. N., Timmerman, H., and Bast, A. 1988. Activation of the microsomal glutathione S-?transferase and reduction of the glutathione dependent protection against lipid?peroxidation by acrolein. Biochem. Pharmacol. 37:1933–1938.

    Article  PubMed  CAS  Google Scholar 

  • Hanje, A. J., Shamp, J. L., Thomas, F. B., and Meis, G. M. 2006. Thalidomide-induced severe hepatotoxicity. Pharmacotherapy 26:1018–1022.

    Article  PubMed  Google Scholar 

  • Hansena, J. M., Carneyb, E. W., and Harris C. 1999. Differential alteration by thalidomide of the glutathione content of rat vs. rabbit conceptuses in vitro. Reprod. Toxicol. 13:547–554.

    Google Scholar 

  • Hargus, S. J., Martin, B. M., George, J. W., and Pohl, L. R. 1995. Covalent modification of rat liver dipeptidyl peptidase IV (CD26) bu the nonsteroidal anti-inflammatory drug diclofenac. Chem. Res. Toxicol. 8: 993–996.

    Google Scholar 

  • Hoag, M. K., Trevor, A. J., Kalir, A., Castagnoli, N. Jr. 1987. Phencyclidine iminium ion. NADPH-dependent metabolism, covalent binding to macromolecules, and inactivation of cytochrome(s) P-450. Drug Metab. Dispos. 15:485–490.

    CAS  Google Scholar 

  • Hoivik, D. J., Manautou, J. E., Tveit, A., Mankowski, D. C., Khairallah, E. A. and Cohen, S. D. 1996. Evidence suggesting that the 58-kDa acetaminophen binding protein is a preferential target for acetaminophen electrophile. Fund. Appl. Toxicol. 32:79–86.

    Article  CAS  Google Scholar 

  • Hongslo, J. K., Smith, C. V., Brunborg, G., Soderlund, E. J. and Holme, J. A. 1994. Genotoxicity of paracetamol in mice and rats. Mutagenesis 9: 93–100.

    Article  CAS  Google Scholar 

  • Huang, Y. S., Chern, H. D., Su, W. J., Wu, J. C., Lai, S. L., Yang, S. Y., ?Chang,??F.??Y., and Lee, S. D. 2002. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 35:883–889.

    Article  PubMed  CAS  Google Scholar 

  • Inskeep, P. B., Koga, N., Cmarik, J. L., and Guengerich, F. P. 1986. Covalent binding of 1,2-dihaloalkanes to DNA and stability of the major DNA adduct, S42-(N7-guanyl)ethyl] glutathione. Cancer Res. 46:2839–2844.

    PubMed  CAS  Google Scholar 

  • James, L. P., Mayeux, P. R. and Hinson, J. A. 2003. Acetaminophen-induced hepatotoxicity. Drug Metab. Dispos. 31:1499–1506.

    Article  PubMed  CAS  Google Scholar 

  • Jaeschke, H., Gores, G. J., Cederbaum, A. I., Hinson, J. A., Pessayre, D., and Lemasters, J. J. 2002. Mechanisms of hepatotoxicity. Tox. Sci. 65:166–176.

    Google Scholar 

  • Jean, P., Lopez-Garcia, P., Dansette, P., Mansuy, D., and Goldstein, J.L. 1996. Oxidation of tienilic acid by human yeast-expressed cytochromes P-450 2C8, 2C9, 2C18, and 2C19. Evidence that this drug is a mechanism-based inhibitor specific for cytochrome P-450 2C9. Eur. J. Biochem. 241: 797–804.

    Article  CAS  Google Scholar 

  • Jollow, D. J.,Mitchell, J. R., Potter, W. Z., Davis, D. C., Gillette, J. R. and Brodie,??B. B. 1973. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 187:195–202.

    PubMed  CAS  Google Scholar 

  • Jumira-Romet, M., Crawford, K. and Huang, H. S. 1994. Comparative cytotoxicity of non-steroidal anti-inflammatory drugs in primary cultures of rat hepatocytes. Toxicol. in Vitro 8:55–66.

    Article  Google Scholar 

  • Kalgutkar, A. S., Dalvie, D. K., O'Donnell, J. P., Taylor, T. J., Sahakian, D. C. 2002. On the diversity of oxidative bioactivation reactions on nitrogen- ?containing xenobiotics. Curr. Drug Metab. 3:379–424.

    Article  PubMed  CAS  Google Scholar 

  • Kaplowitz, N. 2005. Idiosyncratic drug hepatotoxicity. Nature Rev. Drug Discov. 4:489–499.

    Article  CAS  Google Scholar 

  • Kassahun, K., Pearson, P. G., Tang, W., McIntosh, I., Leung, K., Elmore, C., Dean, D., Wang, R., Doss, G., Baillie, T. A. 2001. Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo. Evidence for novel biotransformation pathways involving quinone methide formation and thiazolidinedione ring scission. Chem. Res. Toxicol. 14:62–70.

    CAS  Google Scholar 

  • Kerr, B. M., Thummel, K. E., Wurden, C. J., Klein, S. M., Kroetz, D. L., Gonzalez, F. J., and Levy, R. H. 1994. Human liver carbamazepine metabolism: Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem. Pharmacol. 47:1969–1979.

    Article  PubMed  CAS  Google Scholar 

  • Khairallah, E. A., Bruno, M. K., Hong, M. and Cohen, S. D. 1995. Cellular consequences of protein adduct formation (abstract). Toxicologist 15:86.

    Google Scholar 

  • Knowles, S. R., Uetrecht, J., and Shear, N.H. 2000. Idiosyncratic drug reactions: the reactive metabolite syndromes. Lancet 356:1587–1591.

    Article  PubMed  CAS  Google Scholar 

  • Kretz-Rommel, A., and Boelsterli, U. A. 1993. Diclofenac covalent binding is dependent on acyl glucuronide formation and is inversely related to P450-mediated acute cell injury in cultured rat hepatocytes. Toxicol. Appl. Pharmacol. 120:155–161.

    Article  PubMed  CAS  Google Scholar 

  • Kretz-Rommel, A., and Boelsterli, U. A. 1994. Mechanism of covalent adduct formation of diclofenac to rat hepatic microsomal proteins: Retention of the glucuronic acid moiety. Drug Metab. Dispos. 22:956–961.

    PubMed  CAS  Google Scholar 

  • Kretz-Rommel, A., and Boelsterli, U. A. 1995. Cytotoxic activity of T-cells and non T-cells from diclofenac-immunized mice against cultured syngeneic hepatocytes exposed to diclofenac. Hepatology 22:213–222.

    Article  PubMed  CAS  Google Scholar 

  • Lai, W. G., Zahid, N., and Uetrecht, J. P. 1999. Metabolism of trimethoprim to a reactive iminoquinone methide by activated human neutrophils and hepatic microsomes. J. Pharmacol. Exp. Ther. 291:292–299.

    PubMed  CAS  Google Scholar 

  • Lake-Bakaar, G., Scheuer, P. J., and Sherlock, S. 1987 Hepatic reactions associated with ketoconazole in the United Kingdom. Br. Med. J. 294: 419–422.

    Article  CAS  Google Scholar 

  • Lee, W. M. 2003. Drug-induced hepatotoxicity. N. Eng. J. Med. 349:474–485.

    Article  CAS  Google Scholar 

  • Lewis, D. F. V. 2004. 57 Varieties: the human cytochromes P450. Pharmacogenomics 5:305–318.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J. H. 2006. ‘Hy’s law’, the ‘Rezulin rule’ and other predictors of severe drug-induced hepatotoxicity: putting risk–benefit into perspective. Pharmacoepidemiol. Drug Saf. 15: 221–229.

    Article  PubMed  CAS  Google Scholar 

  • Lim, H. K., Duczak, Jr., N., Brougham, L., Elliot, M., Patel, K., and Chan, K. 2005. Automated screening with confirmation of mechanism-based inactivation of CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP1A2 in pooled human liver microsomes. Drug Metab. Dispos. 33:1211–1219.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia, M. P., Dansette, P. M., and Mansuy, D. 1994. Thiophene derivatives as new mechanism-based inhibitors of cytochromes P-450: inactivation of yeast-expressed human liver cytochrome P-450 2C9 by tienilic acid. Biochemistry 33:166–175.

    Article  PubMed  CAS  Google Scholar 

  • Masubuchi, Y., Yamada, S., and Horie, T. 2000. Possible mechanism of hepatocyte injury induced by diphenylamine and its structurally related nonsteroidal anti-inflammatory drugs. J. Pharmacol. Exp. Ther. 292: 982–987.

    Google Scholar 

  • Martinez, G. R., Loureiro, A. P. M., Marques, S. A., Miyamoto, S., Yamaguchi, L. F., Onuki, J., Almeida, E. A., Garcia, C. M. C., Barbosa, L. F., Medeiros, M. H. G., and Di Mascio, P. 2003. Oxidative and alkylating damage in DNA. Mutat. Res. 544:115–127.

    Article  PubMed  CAS  Google Scholar 

  • Matzinger, P. 1994. Tolerance, danger and the extended family. Annual Rev. Immunol. 12:991–1045.

    Article  CAS  Google Scholar 

  • Navarro, V. J., and Senior, J. R. 2006. Drug-related hepatotoxicity. N. Eng. J. Med. 354:731–739.

    Article  CAS  Google Scholar 

  • Mitchell, J. R., Jollow, D .J., Potter, W. Z., Davis, D. C., Gillette, J. R., and Brodie,??B. B. 1973a. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J. Pharmacol. Exp. Ther. 187:185–194.

    CAS  Google Scholar 

  • Mitchell, J. R., Jollow, D. J., Potter, W. Z., Davis, D. C., Gillette, J. R., and Brodie,??B. B. 1973b. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther. 187:211–217.

    CAS  Google Scholar 

  • Mitchell, J. R., Nelson, W. L., Potter, W. Z., Sasame, H. A., and Jollow, D. J. 1976. Metabolic activation of furosemide to chemically reactive, hepatotoxic metabolite. J. Pharmacol. Exp. Ther. 199:41–52.

    PubMed  CAS  Google Scholar 

  • Nelson, S. D. 1982. Metabolic activation and drug toxicity. J. Med. Chem. 25:753–765.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, S. D. 2001. Structure toxicity relationships – how useful are they in predicting toxicities of new drugs. Adv. Exp. Med. Biol. 500:33–43.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, S. D., Mitchell, J. R., Timbrell, J. A., Snodgrass, W. R., and Corcoran, G. B. 3rd 1976. Isoniazid and iproniazid: activation of metabolites to toxic intermediates in man and rat. Science 193:901–903.

    Google Scholar 

  • Njoku, D., Laster, M. J., Gong, D. H., Eger, E. I., 2 nd, Reed, G. F., and Martin, J. L. 1997. Biotransformation of halothane, enflurane, isoflurane, and desfurane to trifluoroacetylated liver proteins: association between protein acylation and hepatic injury. Anesth. Analg. 84:173–178.

    PubMed  CAS  Google Scholar 

  • O’Brien, P .J. 1991. Molecular mechanisms of quinone cytotoxicity. Chem. Biol. Interact. 80:1–41.

    Article  PubMed  Google Scholar 

  • Olsen, J., Li, C., Bjørnsdottir, I., Sidenius, U., Hansen, S. H., and Benet, L. Z. 2005. In vitro and in vivo studies on acyl-coenzyme A-dependent bioactivation of zomepirac in rats. Chem. Res. Toxicol. 18:1729–1736.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, J., Li, C., Skonberg, C., Bjørnsdottir, I., Sidenius, U., Benet L. Z., and Hansen, S. H. 2007. Studies on the metabolism of tolmetin to the chemically reactive acyl-coenzyme A thioester intermediate in rats. Drug Metab. Dispos. 35:758–764.

    Article  PubMed  CAS  Google Scholar 

  • Ostapowicz, G., Fontana, R. J., Schiodt, F. V., Larson, A., Davern, T. J., Han, S. H. B., McCashland, T. M., Shakil, O., Hay, E., Hynan, L., Crippen, J. S., Blei, A. T., Samuel, G., Reisch, J., Lee, W. M. and the U.S. Acute Liver Failure Study Group. 2002. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Intern. Med. 137:947–954.

    PubMed  Google Scholar 

  • Park, B. K., Pirmohamed, M., and Kitteringham, N. R. 1998. Role of drug disposition in drug hypersensitivity: a chemical, molecular, and clinical perspective. Chem. Res. Toxicol. 11:969–988.

    Article  PubMed  CAS  Google Scholar 

  • Parrish, D. D., Schlosser, M. J., Kapeghian, J. C., and Traina, V. M. 1997. Activation of CGS 12094 (prinomide metabolite) to 1,4-benzoquinone by myeloperoxidase: implications for human idiosyncratic agranulocytosis. Fundam. Appl. Toxicol. 35:197–204.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, R. E., Vakkalagadda, G. R., and Leeder, J. S. 2002. Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites. Drug Metab. Dispos. 30:1170–1179.

    CAS  Google Scholar 

  • Pichler, W. J. 2005. Direct T-cell stimulation by drugs – bypassing the innate immune system. Toxicol. 209: 95-100.

    Google Scholar 

  • Pirmohamed, M., Nasibitt, D. J., Gordon, F., and Park, B. K. 2002. The danger hypothesis – potential role in idiosyncratic drug reactions. Toxicol. 181-182: 55–63.

    Google Scholar 

  • Pohl, L. R., and Branchflower, R. V. 1981. Covalent binding of electrophilic metabolites to macromolecules. Meth. Enzymol. 77:43–50.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, L. R., Satoh, H., Christ, D. D., and Kenna, J. G. 1988. The immunologic and metabolic basis of drug hypersensitivities. Annu. Rev. Pharmacol. Toxicol. 28:367–387.

    Article  PubMed  CAS  Google Scholar 

  • Pol, S., Vallet-Pichard, A., and Fontaine, H. 2002. Hepatatis C and human immune deficiency coinfection in the era of highly active retroviral therapy. J.Viral. Hepat. 9:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Ponsada, X., Bort, R., Jover, R., Go´mez-Lecho´n, M. J., and Castell, J. V. 1995. Molecular mechanism of diclofenac hepatotoxicity: Association of cell injury with oxidative metabolism and decrease in ATP levels. Toxicol. In Vitro. 9:439–444.

    Google Scholar 

  • Poon, G. K., Chen, Q., Teffera, Y., Ngui, J. S., Griffin, P. R., Braun, M. P., Doss, G. A., Freeden, C., Stearns, R. A., Evans, D. C., Baillie, T. A., and Tang, W. 2001. Bioactivation of diclofenac via benzoquinone imine intermediates – identification of urinary mercapturic acid derivatives in rats and humans. Drug Metab. Dispos. 29:1608–1613.

    PubMed  CAS  Google Scholar 

  • Pumford, N. R., Martin, B. M., and Hinson, J.A.1992. A metabolite of acetaminophen covalently binds to the 56 kDa selenium binding protein. Biophys. Biochem. Res. Comm. 182:1348–1355.

    Article  CAS  Google Scholar 

  • Pumford, N. R., Myers, T. G., Davila. J. C., Highet, R. J., and Pohl, L. R. 1993. Immunochemical detection of liver protein adducts of the nonsteroidal anti-inflammatory drug diclofenac. Chem. Res. Toxicol. 6:147–150.

    Google Scholar 

  • Qian, L., and Ortiz de Montellano, P. R. 2006. Oxidative activation of thiacetazone by the Mycobacterium tuberculosis flavin monooxygenase EtaA and human FMO1 and FMO3. Chem. Res. Toxicol. 19:443–449.

    Article  CAS  Google Scholar 

  • Riley, T. R., 3rd, and Smith, J. P.1998. Ibuprofen-induced hepatotoxicity in patients with chronic hepatitis C: a case series. Am. J. Gastroenterol. 93:1563–1565.

    PubMed  Google Scholar 

  • Ripp, S. L., Overby, L. H., Philpot, R. M., and Elfarra, A. A.1997. Oxidation of cysteine S-conjugates by rabbit liver microsomes and cDNA-expressed flavin-containing monooxygenases: studies with S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2,2-trichlorovinyl)-L-cysteine, S-allyl-L-cysteine, and S-benzyl-L-cysteine. Mol. Pharmacol. 51:507–515.

    PubMed  CAS  Google Scholar 

  • Roberts, D. W., Bucci, T. J., Benson, R. W., Warbritton, A. R., McRae, T. A., Pumford, N. R., and Hinson, J. A. 1991. Immunohistochemical localization and quantification of the 3-(cysteine-S-yl)-acetaminophen protein adduct in acetaminophen hepatotoxicity. Am. J. Pathol. 138:359–371.

    PubMed  CAS  Google Scholar 

  • Rodriquez, J. R., and Acosta, D. 1997. Metabolism of ketoconazole and deacetylated ketoconazole by rat hepatic microsomes and flavin-containing monooxygenases. Drug Metab. Dispos. 25:772–777.

    Google Scholar 

  • Ross, D., Kepa, J. K., Winski, S. L., Beall, H. D., Anwar, A., and Siegel, D. 2000. NAD(P)H:quinone oxidoreductase 1 (NQO1): Chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem. Biol. Interact. 129:77–97.

    Article  PubMed  CAS  Google Scholar 

  • Roth, R. A., Harkema, J. R., Pestka, J. P., and Ganey, P. E. 1997. Is exposure to bacterial endotoxin a determinant of susceptibility to intoxication from xenobiotic agents Toxciol. Appl. Pharmacol. 147:300–311.

    Article  CAS  Google Scholar 

  • Sallustio, B., and Holbrook, F. L. 2001. In vivo perturbation of rat hepatocyte canalicular membrane function by diclofenac. Drug Metab. Dispos. 29:1535–1538.

    PubMed  CAS  Google Scholar 

  • Schmidt, L. E., Dalhoff, K., and Poulsen, H. E. 2002. Acute versus chronic alcohol consumption in acetaminophen-induced hepatotoxicity. Hepatology 35:876–882.

    Article  PubMed  Google Scholar 

  • Schmitz, G., Stauffert, I., Sippel, H., Lepper H., and Estler, C.-J. 1992. Toxicity of diclofenac to isolated hepatocytes. J. Hepatol. 14:408–409.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, R. B. 1988. Mechanism-Based Enzyme Inactivation: Chemistry and Enzymology. Vol. I. pp.3–30. Boca Raton: CRC Press, Inc.

    Google Scholar 

  • Soglia, J. R., Contillo, L. G., Kalgutkar, A. S., Zhao, S., Hop, C. E., Boyd, J. G., and Cole, M. J. 2006. A semiquantitative method for the determination of reactive metabolite conjugate levels in vitro utilizing liquid chromatography – tandem mass spectrometry and novel quaternary ammonium glutathione analogues. Chem. Res. Toxicol. 19:480–490.

    Article  PubMed  CAS  Google Scholar 

  • Spahn-Langguth, H., Dahms, M., and Hermening, A. 1996. Acyl glucuronides: covalent binding and its potential relevance. Adv. Exp. Med. Biol. 387:313–328.

    PubMed  CAS  Google Scholar 

  • Testa, B. 1995. The metabolism of drugs and other xenobiotics. Biochemistry of redox reactions. London: Academic Press.

    Google Scholar 

  • Timbrell, J. A., Mitchell, J. R., Snodgrass, W. R., and Nelson S. 1980. Isoniazid hepatotoxicity: the relationship between covalent binding and metabolism in vivo. J. Pharmacol. Exp. Ther. 213:364–369.

    PubMed  CAS  Google Scholar 

  • Tirmenstein, M. A., and Nelson, S. D. 1990. Acetaminophen-induced oxidation of protein thiols: contribution of impaired thiol metabolilzing enzymes to the breakdown of adenine nucleotides. J. Biol. Chem. 265:3059–3065.

    PubMed  CAS  Google Scholar 

  • Uetrecht, J. 2001. Prediction of a new drug’s potential to cause idiosyncratic reactions. Curr. Opin. Drug Discov. Devel. 4:55–59.

    PubMed  CAS  Google Scholar 

  • van Puijenbroek, E. P., Egberts, A. C., Meyboom, R. H., and Leufkens, H. G. 2002. Different risks for NSAID-induced anaphylaxis. Ann. Pharmacother. 36:24–29.

    Article  PubMed  Google Scholar 

  • Varghese, A. J., and Whitmore, G. F. 1985. Properties of 2-hydroxylaminoimidazoles and their implications for the biological effects of 2-nitroimidazoles. Chem. Biol. Interact. 56:269–287.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, C. 2000. Prostaglandin H synthetases and their importance in chemical toxicity. Curr. Drug Metab. 1:391–404.

    Article  PubMed  CAS  Google Scholar 

  • Wade, L. T., Kenna, J. G., and Caldwell, J. 1997. Immunochemical identification of mouse hepatic protein adducts derived from the nonsteroidal anti-inflammatory drugs diclofenac, sulindac and ibuprofen. Chem. Res. Toxicol. 10: 546–555.

    Google Scholar 

  • Walker, R. M., and McElligott, T. F. 1981. Furosemide induced hepatotoxicity. J. Pathol. 135:301–314.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, J. S., Reese, M. J., and Thurmond, L. M. 2002. The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes. Chem. Biol. Interact. 142:135–154.

    Article  PubMed  CAS  Google Scholar 

  • Whitcomb, D. C., and Block, D. G. 1994. Association of acetaminophen hepatotoxicity with fasting and ethanol use. J. Am. Med. Assoc. 272:1845–1850.

    Article  CAS  Google Scholar 

  • Wirth, P. J., Bettis, C. J., and Nelson, W.L. 1976. Microsomal metabolism of furosemide. Evidence for the nature of the reactive intermediate involved in covalent binding. Mol. Pharmacol. 12:759–768.

    CAS  Google Scholar 

  • Yamamoto, T., Suou, T., and Hirayama, C. 1986. Elevated serum aminotransferase induced by isoniazid in relation to isoniazid acetylator phenotype. Hepatology 6:295–298.

    Article  PubMed  CAS  Google Scholar 

  • Yan, Z., Li, J., Huebert, N., Caldwell, G. W., Du, Y., and Zhong, H. 2005. Detection of a novel reactive metabolite of diclofenac: evidence for CYP2C9-mediated bioactivation via arene oxides. Drug Metab. Dispos. 33:706–713.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, S., Duan, W., Huang, M., and Chen, Y.-Z. 2005. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab. Rev. 37:41–213.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. Kemper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kemper, R.A., Lai, G. (2008). Hepatic Bioactivation and Drug-Induced Liver Injury. In: Elfarra, A. (eds) Advances in Bioactivation Research. Biotechnology: Pharmaceutical Aspects, vol IX. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77300-1_11

Download citation

Publish with us

Policies and ethics