Skip to main content

Reelin and the Cerebellum

  • Chapter
Reelin Glycoprotein

The cerebellum is a large, complex brain structure that mediates essential functions for movement, balance, cognition, and language (Ito, 2005). Development of the cerebellum critically depends on Reelin signaling. Complete deficiency of Reelin causes a severe cerebellar malformation, with extensive cellular disorganization and hypoplasia. Identical cerebellar defects are observed in mice lacking downstream components of the Reelin signaling pathway, including Reelin receptors VLDLR and ApoER2, adapter protein Dab1, or kinases Fyn and Src. The brain malformation results in ataxia and loss of balance, manifesting as a reeling gait in mice (hence the name Reelin) and multiple neurological problems in humans. More subtle abnormalities of Reelin signaling may underlie important neurobehavioral disorders in humans. In particular, some studies have linked RELN gene polymorphisms and reduced Reelin expression to autism. Since cerebellar defects are frequently observed in autistic brains, an attractive hypothesis is that Reelin signaling abnormalities may cause autism by perturbing cerebellar development or plasticity.

Despite growing biomedical significance, our understanding of how Reelin regulates cerebellar morphogenesis is far from complete. Reelin, its receptors, and downstream effectors are expressed by different cohorts of cells at different time points throughout cerebellar development. Most Reelin-producing cells are located near the surface of the developing cerebellar cortex, including cells of the rostral rhombic lip migratory stream (RLS), the nuclear transitory zone (NTZ), and the external granular layer (EGL). Other Reelin-producing cells are located deeper in the cerebellum, including some neurons of the deep cerebellar nuclei (DCN) and internal granular layer. Much evidence suggests that one important function of Reelin is to promote detachment of Purkinje cells from radial glia in the mantle zone of the embryonic cerebellar cortex, thus allowing multiple Purkinje cells to migrate along the same radial glia. The migrating Purkinje cells respond to Reelin signaling by activating a signaling cascade that includes Reelin receptors (VLDLR and ApoER2), adapter protein Dab1, and kinases Src and Fyn. Besides promoting Purkinje cell detachment from radial glia, Reelin may also regulate Purkinje cell spreading and monolayer formation, radial glia morphology, granule cell proliferation, unipolar brush cell migration, DCN cytoarchitecture, axon guidance, dendrite morphology, and synaptic plasticity. These mechanisms will require further basic research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikawa, H., Nonaka, I., Woo, M., Tsugane, T., and Esaki, K. (1988). Shaking rat Kawasaki (SRK): a new neurological mutant in the Wistar strain. Acta Neuropathol. (Berl.) 76:366-372.

    Google Scholar 

  • Altman, J., and Bayer, S. A. (1985a). Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J. Comp. Neurol. 231:1-26.

    Article  PubMed  Google Scholar 

  • Altman, J., and Bayer, S. A. (1985b). Embryonic development of the rat cerebellum. II. Translocation and regional distribution of the deep neurons. J. Comp. Neurol. 231:27-41.

    Article  PubMed  Google Scholar 

  • Altman, J., and Bayer, S. A. (1985c). Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J. Comp. Neurol. 231:42-65.

    Article  PubMed  Google Scholar 

  • Bauman, M. L., and Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: a review and future directions. Int. J. Del. Neurosci. 23:183-187

    Article  Google Scholar 

  • Borrell, V., Del Río, J. A., Alcántara, S., Derer, M., Martínez, A., D’Arcangelo, G., Nakajima, K., Mikoshiba, K., Derer, P., Curran, T., and Soriano, E. (1999). Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J. Neurosci. 19:1345-1358.

    PubMed  Google Scholar 

  • Carper, R. A., and Courchesne, E. (2000). Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain 123:836-844.

    Article  PubMed  Google Scholar 

  • Chang, B. S., Duzcan, F., Kim, S., Cinbis, M., Aggarwal, A., Apse, K. A., Ozdel, O., Atmaca, M., Zencir, S., Bagci, H., and Walsh, C. A. (2007). The role of RELN in lissencephaly and neu-ropsychiatric disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144:58-63.

    Google Scholar 

  • Cheng, L., Samad, O. A., Xu, Y., Mizuguchi, R., Luo, P., Shirasawa, S., Goulding, M., and Ma, Q. (2005). Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes. Nature Neurosci. 8:1510-1515.

    Article  PubMed  Google Scholar 

  • Chizhikov, V. V., Lindgren, A. G., Currie, D. S., Rose, M. F., Monuki, E. S., and Millen, K. J. (2006). The roof plate regulates cerebellar cell-type specification and proliferation. Development 133:2793-2804.

    Article  PubMed  Google Scholar 

  • Corrales, J. D., Blaess, S., Mahoney, E. M., and Joyner, A. L. (2006). The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development 133:1811-1821.

    Article  PubMed  Google Scholar 

  • Del Río, J. A., Heimrich, B., Borrell, V., Förster, E., Drakew, A., Alcántara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., Derer, P., Frotscher, M., and Soriano, E. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70-74.

    Article  PubMed  Google Scholar 

  • Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds α3β1 integrin and inhibits neuronal migration. Neuron 27:33-44.

    Article  PubMed  Google Scholar 

  • Englund, C., Kowalczyk, T., Daza, R. A. M., Dagan, A., Lau, C., Rose, M. F., and Hevner, R. F. (2006). Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J. Neurosci. 26:9184-9195.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H. (2005). Reelin glycoprotein: structure, biology and roles in health and disease. Mol. Psychiatry 10:251-257.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Halt, A. R., Realmuto, G., Earle, J., Kist, D. A., and Merz, A. (2002). Purkinje cell size is reduced in cerebellum of patients with autism. Cell. Mol. Neurobiol. 22:171-175.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Snow, A. V., Stary, J. M., Araghi-Niknam, M., Reutiman, T. J., Lee, S., Brooks, A. I., and Pearce, D. A. (2005). Reelin signaling is impaired in autism. Biol. Psychiatry 57:777-787.

    Article  PubMed  Google Scholar 

  • Fink, A. J., Englund, C., Daza, R. A. M., Pham, D., Lau, C., Nivison, M., Kowalczyk, T., and Hevner, R. F. (2006). Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J. Neurosci. 26:3066-3076.

    Article  PubMed  Google Scholar 

  • Förster, E., Jossin, Y., Zhao, S., Chai, X., Frotscher, M., and Goffinet, A. M. (2006). Recent progress in understanding the role of reelin in radial neuronal migration, with specific empha-sis on the dentate gyrus. Eur. J. Neurosci. 23:901-909.

    Article  PubMed  Google Scholar 

  • Goffinet, A. M. (1983). The embryonic development of the cerebellum in normal and reeler mutant mice. Anat. Embryol. 168:73-86.

    Article  PubMed  Google Scholar 

  • Goffinet, A. M., So, K.-F., Yamamoto, M., Edwards, M., and Caviness, V. S., Jr. (1984). Architectonic and hodological organization of the cerebellum in reeler mutant mice. Brain Res. Dev. Brain Res. 16:263-276.

    Article  Google Scholar 

  • Goldowitz, D., Cushing, R. C., Laywell, E., D’Arcangelo, G., Sheldon, M., Sweet, H. O., Davisson, M., Steindler, D., and Curran, T. (1997). Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J. Neurosci. 17:8767-8777.

    PubMed  Google Scholar 

  • Hatten, M. E. (1999). Central nervous system neuronal migration. Annu. Rev. Neurosci. 22:511-539.

    Article  PubMed  Google Scholar 

  • Hevner, R. F., Shi, L., Justice, N., Hsueh, Y.-P., Sheng, M., Smiga, S., Bulfone, A., Goffinet, A. M., Campagnoni, A. T., and Rubenstein, J. L. R. (2001). Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353-366.

    Article  PubMed  Google Scholar 

  • Hong, S. E., Shugart, Y. Y., Huang, D. T., Al Shahwan, S., Grant, P. E., Hourihane, J. O’B., Martin, N. D. T., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26:93-96.

    Google Scholar 

  • Hoshino, M., Nakamura, S., Mori, K., Kawauchi, T., Terao, M., Nishimura, Y. V., Fukuda, A., Fuse, T., Matsuo, N., Sone, M., Watanabe, M., Bito, H., Terashima, T., Wright, C. V. E., Kawaguchi, Y., Nakao, K., and Nabeshima, Y. (2005). Ptf1a, a bHLH transcription gene, defines GABAergic neuronal fates in the cerebellum. Neuron 47:201-213.

    Article  PubMed  Google Scholar 

  • Ilijic, E., Guidotti, A., and Mugnaini, E. (2005). Moving up or moving down? Malpositioned cer-ebellar unipolar brush cells in reeler mouse. Neuroscience 136:633-647.

    Article  PubMed  Google Scholar 

  • Ito, M. (2005). Bases and implications of learning in the cerebellum—adaptive control and inter-nal model mechanism. Prog. Brain Res. 148:95-109.

    Article  PubMed  Google Scholar 

  • Jensen, P., Zoghbi, H. Y., and Goldowitz, D. (2002). Dissection of the cellular and molecular events that position cerebellar Purkinje cells: a study of the math1 null-mutant mouse. J. Neurosci. 22:8110-8116.

    PubMed  Google Scholar 

  • Kemper, T. L., and Bauman, M. (1998). Neuropathology of infantile autism. J. Neuropathol. Exp. Neurol. 57:645-652.

    Article  PubMed  Google Scholar 

  • Kikkawa, S., Yamamoto, T., Misaki, K., Ikeda, Y., Okado, H., Ogawa, M., Woodhams, P. L., and Terashima, T. (2003). Missplicing resulting from a short deletion in the reelin gene causes reeler-like neuronal disorders in the mutant Shaking Rat Kawasaki. J. Comp. Neurol. 463:303-315.

    Article  PubMed  Google Scholar 

  • Kuemerle, B., Gulden, F., Cherosky, N., Williams, E., and Herrup, K. (2007). The mouse Engrailed genes: a window into autism. Behav. Brain Res. 176:121-132.

    Article  PubMed  Google Scholar 

  • Kuo, G., Arnaud, L., Kronstad-O’Brien, P., and Cooper, J. A. (2005). Absence of Fyn and Src causes a reeler-like phenotype. J. Neurosci. 25:8578-8586.

    Article  PubMed  Google Scholar 

  • Laurence, J. A., and Fatemi, S. H. (2005). Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 4:206-210.

    Article  PubMed  Google Scholar 

  • Machold, R., and Fishell, G. (2005). Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17-24.

    Article  PubMed  Google Scholar 

  • Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J. P., and Sotelo, C. (1977). Anatomical, physi-ological and biochemical studies of the cerebellum from reeler mutant mouse. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 281:1-28.

    Article  Google Scholar 

  • Maricich, S. M., and Herrup, K. (1999). Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J. Neurobiol. 41:281-294.

    Article  PubMed  Google Scholar 

  • Miale, I. L., and Sidman, R. L. (1961). An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp. Neurol. 4:277-296.

    Article  PubMed  Google Scholar 

  • Mills, J., Niewmierzycka, A., Oloumi, A., Rico, B., St-Arnaud, R., Mackenzie, I. R., Mawji, N. M., Wilson, J., Reichardt, L. F., and Dedhar, S. (2006). Critical role of integrin-linked kinase in granule cell precursor proliferation and cerebellar development. J. Neurosci. 26:830-840.

    Article  PubMed  Google Scholar 

  • Miyata, T., Nakajima, K., Aruga, J., Takahashi, S., Ikenaka, K., Mikoshiba, K., and Ogawa, M. (1996). Distribution of a reeler gene-related antigen in the developing cerebellum: an immu-nohistochemical study with an allogeneic antibody CR-50 on normal and reeler mice. J. Comp. Neurol. 372:215-228.

    Article  PubMed  Google Scholar 

  • Miyata, T., Nakajima, K., Mikoshiba, K., and Ogawa, M. (1997). Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J. Neurosci. 17:3599-3609.

    PubMed  Google Scholar 

  • Nolte, J. (1999). The Human Brain: An Introduction to Its Functional Anatomy, 4th ed. Mosby, St. Louis.

    Google Scholar 

  • Palmen, S. J. M. C., van Engeland, H., Hof, P. R., and Schmitz, C. (2004). Neuropathological findings in autism. Brain 127:2572-2583.

    Article  PubMed  Google Scholar 

  • Perez-Garcia, C. G., Tissir, F., Goffinet, A. M., and Meyer, G. (2004). Reelin receptors in develop-ing laminated brain structures of mouse and human. Eur. J. Neurosci. 20:2827-2832.

    Article  PubMed  Google Scholar 

  • Pickett, J., and London, E. (2005). The neuropathology of autism: a review. J. Neuropathol. Exp. Neurol. 64:925-935.

    Article  PubMed  Google Scholar 

  • Rakic, P. (1988). Specification of cerebral cortical areas. Science 241:170-176.

    Article  PubMed  Google Scholar 

  • Rakic, P. (1995). A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18:383-388.

    Article  PubMed  Google Scholar 

  • Rice, D. S., and Curran, T. (2001). Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24:1005-1039.

    Article  PubMed  Google Scholar 

  • Rice, D. S., Sheldon, M., D’Arcangelo, G., Nakajima, K., Goldowitz, D., and Curran, T. (1998). Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organiza-tion in the mammalian brain. Development 125:3719-3729.

    PubMed  Google Scholar 

  • Ruiz i Altaba, A., Palma, V., and Dahmane, N. (2002). Hedgehog-Gli signaling and the growth of the brain. Nature Rev. Neurosci. 3:24-33.

    Google Scholar 

  • Sanada, K., Gupta, A., and Tsai, L.-H. (2004). Disabled-1-regulated adhesion of migrating neu-rons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 42:197-211.

    Article  PubMed  Google Scholar 

  • Schuurmans, C., and Guillemot, F. (2002). Molecular mechanisms underlying cell fate specifica-tion in the developing telencephalon. Curr. Opin. Neurobiol. 12:26-34.

    Article  PubMed  Google Scholar 

  • Sgaier, S. K., Millet, S., Villanueva, M. P., Berenshteyn, F., Song, C., and Joyner, A. L. (2005). Morphogenetic and cellular movements that shape the mouse cerebellum: insights from genetic fate mapping. Neuron 45:27-40.

    PubMed  Google Scholar 

  • Sheldon, M., Rice, D. S., D’Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730-733.

    Article  PubMed  Google Scholar 

  • Sotelo, C. (2004). Cellular and genetic regulation of the development of the cerebellar system. Prog. Neurobiol. 72:295-339.

    Article  PubMed  Google Scholar 

  • Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.

    Article  PubMed  Google Scholar 

  • Wang, V. Y., Rose, M. F., and Zoghbi, H. Y. (2005). Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31-43.

    Article  PubMed  Google Scholar 

  • Yuasa, S., Kitoh, J., Oda, S., and Kawamura, K. (1993). Obstructed migration of Purkinje cells in the developing cerebellum of the reeler mutant mouse. Anat. Embryol. 188:317-329.

    Article  PubMed  Google Scholar 

  • Yuasa, S., Kawamura, K., Kuwano, R., and Ono, K. (1996). Neuron-glia interrelations during migration of Purkinje cells in the mouse embryonic cerebellum. Int. J. Dev. Neurosci. 14:429-438.

    Article  PubMed  Google Scholar 

  • Zervas, M., Millet, S., Ahn, S., and Joyner, A. L. (2004). Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43:345-357.

    Article  PubMed  Google Scholar 

  • Zhang, L., and Goldman, J. E. (1996). Generation of cerebellar interneurons from dividing pro-genitors in white matter. Neuron 16:47-54.

    Article  PubMed  Google Scholar 

  • Zhu, Y., Yu, T., Zhang, X.-C., Nagasawa, T., Wu, J. Y., and Rao, Y. (2002). Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nature Neurosci. 5:719-720.

    Article  PubMed  Google Scholar 

  • Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., and Littman, D. R. (1998). Function of the chemokine CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595-599.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Hevner, R.F. (2008). Reelin and the Cerebellum. In: Fatemi, S.H. (eds) Reelin Glycoprotein. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76761-1_10

Download citation

Publish with us

Policies and ethics