Skip to main content

Probabilistic Analysis

  • Chapter
  • First Online:
Combinatorial Computational Biology of RNA
  • 987 Accesses

Abstract

In this section we prove that k-noncrossing RNA structures can be generated efficiently with uniform probability. The results presented here are derived from [26] and are based on Section 2.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.A. Bender. Central and local limit theorem applied to asymptotic enumeration. J. Comb. Theory, Ser. A, 15:91–111, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  2. N.T. Cameron and L. Shapiro. Random walks, trees and extensions of Riordan group techniques. Talk, in: Annual Joint Mathematics Meetings, Baltimore, MD, 2003.

    Google Scholar 

  3. W.Y.C. Chen, E.Y.P. Deng, R.R.X. Du, R.P. Stanley, and C.H. Yan. Crossing and nesting of matchings and partitions. Trans. Amer. Math. Soc., 359:1555–1575, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  4. W.Y.C. Chen, H.S.W. Han, and C.M. Reidys. Random k-noncrossing RNA structures. Proc. Natl. Acad. Sci. USA, 106(52):22061–22066, 2009.

    Article  MathSciNet  Google Scholar 

  5. E. Deutsch and L. Shapiro. A survey of the fine numbers. Discrete Math., 241:241–265, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltzmann samplers for the random generation of combinatorial structures. Combin. Probab. Comput., 13:577–625, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Feller. An introduction to probability theory and its application. Addison-Wesley Publishing Company Inc., NY, 1991.

    Google Scholar 

  8. P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, Cambridge, England, 2009.

    MATH  Google Scholar 

  9. I.M. Gessel and X.G. Viennot. Determinants, paths, and plane partitions. preprint, 1989.

    Google Scholar 

  10. D. Gouyou-Beauschamps. Standard young tableaux of height 4 and 5. Europ. J. Combin., 10:69–82, 1989.

    Google Scholar 

  11. H.S.W. Han and C.M. Reidys. Stacks in canonical RNA pseudoknot structures. Math. Bioscience, 219, Issue 1:7–14, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  12. I.L. Hofacker. Vienna RNA secondary structure server. Nucl. Acids. Res., 31(13):3429–3431, 2003.

    Article  Google Scholar 

  13. F.W.D. Huang and C.M. Reidys. Statistics of canonical RNA pseudoknot structures. J. Theor. Biol., 253:570–578, 2008.

    Article  Google Scholar 

  14. E.Y. Jin and C.M. Reidys. Asymptotic enumeration of RNA structures with pseudoknots. Bull. Math. Biol., 70:951–970, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  15. E.Y. Jin and C.M. Reidys. RNA pseudoknots structures with arc length-length \(\ge 3\) and stack-length-length \(\ge \sigma\). Discr. Appl. Math., 158:25–36, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  16. R.B. Lyngsø and C.N.S. Pedersen. RNA pseudoknot prediction in energy-based models. J. Comput. Biol., 7:409–427, 2000.

    Article  Google Scholar 

  17. M. Renault. Lost (and found) in translation: André’s actual method and its application to the generalized ballot problem. Amer. Math. Monthly., 115:358–363, 2008.

    MATH  MathSciNet  Google Scholar 

  18. B. Salvy and P. Zimmerman. Gfun: a maple package for the manipulation of generating and holonomic functions in one variable. ACM TOMS, 20:163–177, 1994.

    Article  MATH  Google Scholar 

  19. L. Shapiro, S. Getu, W. Woan, and L. Woodson. The Riordan group. Discr. Appl. Math., 34:229–239, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  20. R.P. Stanley. Differentiably finite power series. Eur. J. Combinator., 1:175–188, 1980.

    MATH  MathSciNet  Google Scholar 

  21. H.S. Wilf. A unified setting for sequencing, ranking, and selection algorithms for combinatorial objects. Adv. Math., 24:281–291, 1977.

    MATH  MathSciNet  Google Scholar 

  22. H.S. Wilf. Combinatorial algorithms. Academic Press, NY, 1978.

    MATH  Google Scholar 

  23. D. Zeilberger. A holonomic systems approach to special functions identities. J. Comput. Appl. Math., 32:321–368, 1990.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Reidys .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reidys, C. (2011). Probabilistic Analysis. In: Combinatorial Computational Biology of RNA. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76731-4_5

Download citation

Publish with us

Policies and ethics