Skip to main content

Aqueous Veins and Open Angle Glaucoma

  • Chapter
  • First Online:

Abstract

The aqueous veins are visible on the surface of the eye and contain aqueous being returned to the general circulation. Aqueous veins are of great importance because aqueous outflow system models can be judged by their ability to predict and explain properties of directly visible aqueous flow. Aqueous humor circulation through the anterior segment of the eye involves one of the vascular circulatory loops that is driven down a continuous pressure gradient initially set up by the heart. Aqueous exits the eye by passing through the trabecular meshwork to Schlemm’s canal. After entering Schlemm’s canal, aqueous enters collector channels that have a lumen in communication with the aqueous veins. The aqueous vein lumen in turn communicates with episcleral veins that return blood to the general circulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ascher KW. Aqueous veins. Am J Ophthalmol. 1942;25:31.

    Google Scholar 

  2. Goldmann H. Abfluss des Kammerwassers beim Menschen. Ophthalmologica. 1946;111:146–152.

    Article  CAS  PubMed  Google Scholar 

  3. Bill A. Basic physiology of the drainage of aqueous humor. Exp Eye Res. 1977;25(suppl):291–304.

    Article  PubMed  Google Scholar 

  4. Kinsey VE, Reddy DV. Chemistry and dynamics of aqueous humor. In: Prince JH, ed. The Rabbit in Eye Research. Springfield: Thomas; 1964:218–219.

    Google Scholar 

  5. Ascher KW. Physiologic importance of the visible elimination of intraocular fluid. Am J Ophthalmol. 1942;25:1174–1209.

    Google Scholar 

  6. De Vries S. De Zichtbare Afvoer Van Het Kamerwater. 1st ed. Amsterdam: Drukkerij Kinsbergen; 1947.

    Google Scholar 

  7. Ascher KW. The Aqueous Veins: Biomicroscopic Study of Aqueous Humor Elimination. Springfield, IL: Charles C. Thomas; 1961.

    Google Scholar 

  8. Ascher KW. The Aqueous Veins. Vol 1. Springfield, IL: Charles C. Thomas; 1961.

    Google Scholar 

  9. Goldmann H. Weitere Mitteilung über den Abfluss des Kammer­wassers beim Menschen. Ophthalmologica. 1946;112:344–346.

    Article  CAS  PubMed  Google Scholar 

  10. Stepanik J. Measuring velocity of flow in aqueous veins. Am J Ophthalmol. 1954;37:918.

    CAS  PubMed  Google Scholar 

  11. Thomassen TL, Bakken K. Anatomical investigations into the exit canals of aqueous humor. Acta Ophthalmol. 1951;29:257.

    Google Scholar 

  12. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts, Part I. Br J Ophthalmol. 1951;35:291.

    Article  CAS  PubMed  Google Scholar 

  13. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts, Part II, Aqueous veins. Br J Ophthalmol. 1952;36:265.

    Article  CAS  PubMed  Google Scholar 

  14. Johnstone MA. The aqueous outflow system as a mechanical pump: evidence from examination of tissue and aqueous movement in human and non-human primates. J Glaucoma. 2004;13:421–438.

    Article  PubMed  Google Scholar 

  15. Ascher KW. Local pharmacologic effects on aqueous veins. Am J Ophthalmol. 1942;25:1301.

    Google Scholar 

  16. Ascher KW. Backflow phenomena in aqueous veins. Am J Ophthalmol. 1944;27:1074.

    Google Scholar 

  17. Thomassen TL. On aqueous veins. Acta Ophthalmol. 1947;25:369–378.

    Google Scholar 

  18. Thomassen TL, Perkins ES, Dobree JH. Aqueous veins in glaucomatous eyes. Br J Ophthalmol. 1950;34:221.

    Article  CAS  PubMed  Google Scholar 

  19. Kleinert H. The compensation maximum: a new glaucoma sign in aqueous veins. Arch Ophthalmol. 1951;46:618.

    CAS  Google Scholar 

  20. Bill A. Blood circulation and fluid dynamics in the eye. Physiol Rev. 1975;55:383–417.

    CAS  PubMed  Google Scholar 

  21. Phillips CI, Tsukahara S, Hosaka O, Adams W. Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump? Ophthalmic Res. 1992;24(6):338–343.

    Article  CAS  PubMed  Google Scholar 

  22. Coleman DJ, Trokel S. Direct-recorded intraocular pressure variations in a human subject. Arch Ophthalmol. 1969;82:637–640.

    CAS  PubMed  Google Scholar 

  23. Johnstone MA. A new model describes an aqueous outflow pump and explores causes of pump failure in glaucoma. In: Grehn H, Stamper R, eds. Essentials in Ophthalmology: Glaucoma II. Vol 2. Heidelberg: Springer; 2006.

    Google Scholar 

  24. Ascher KW, Spurgeon WM. Compression tests on aqueous veins of glaucomatous eyes; application of hydrodynamic principles to the problem of intraocular-fluid elimination. Am J Ophthalmol. 1949;32(Part II):239.

    PubMed  Google Scholar 

  25. Vries S. De zichtbare Afvoer von het Kamerwater. Amsterdam: Drukkerij Kinsbergen; 1947.

    Google Scholar 

  26. Weinstein P. New concepts regarding anterior drainage of the eye. Br J Ophthalmol. 1950;34:161.

    Article  CAS  PubMed  Google Scholar 

  27. Humphrey JD. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. 1st ed. New York: Springer; 2002.

    Google Scholar 

  28. Kaufman PL. Pressure-dependent outflow. In: Ritch R, Shields MB, Krupin T, eds. The Glaucomas, vol. 1. St. Louis: Mosby; 1996:307–333.

    Google Scholar 

  29. Flocks M. The anatomy of the trabecular meshwork as seen in tangential section. Arch Ophthalmol. 1957;56:708–718.

    Google Scholar 

  30. Fine BS. Structure of the trabecular meshwork and the canal of Schlemm. Trans Am Acad Ophthalmol Otolaryngol. 1966;70(5):777–790.

    CAS  PubMed  Google Scholar 

  31. Hogan MJ, Alvarado J, Weddell JE. Histology of the Human Eye, and Atlas and Textbook. Philadelphia: Saunders; 1971.

    Google Scholar 

  32. Ellingsen BA, Grant WM. The relationship of pressure and aqueous outflow in enucleated human eyes. Invest Ophthalmol. 1971;10(6):430–437.

    CAS  PubMed  Google Scholar 

  33. Ellingsen BA, Grant WM. Trabeculotomy and sinusotomy in enucleated human eyes. Invest Ophthalmol. 1972;11(1):21–28.

    CAS  PubMed  Google Scholar 

  34. Johnstone MA, Grant WM. Pressure-dependent changes in structure of the aqueous outflow system in human and monkey eyes. Am J Ophthalmol. 1973;75:365–383.

    CAS  PubMed  Google Scholar 

  35. Van Buskirk EM, Grant WM. Lens depression and aqueous outflow in enucleated primate eyes. Am J Ophthalmol. 1973;76(5):632–640.

    PubMed  Google Scholar 

  36. Van Buskirk EM. Changes in facility of aqueous outflow induced by lens depression and intraocular pressure in excised human eyes. Am J Ophthalmol. 1976;82(5):736–740.

    PubMed  Google Scholar 

  37. Van Buskirk EM. Anatomic correlates of changing aqueous outflow facility in excised human eyes. Invest Ophthalmol Vis Sci. 1982;22(5):625–632.

    PubMed  Google Scholar 

  38. Johnstone MA. Aqueous outflow: the case for a new model. Rev Ophthalmol. 2007;14:79–84.

    Google Scholar 

  39. Fung YC. Biomechanics: Circulation. New York: Springer; 1996.

    Google Scholar 

  40. Grierson I, Lee WR. The fine structure of the trabecular meshwork at graded levels of intraocular pressure. (1) Pressure effects within the near-physiological range (8-30 mmHg). Exp Eye Res. 1975;20(6):505–521.

    Article  CAS  PubMed  Google Scholar 

  41. Grierson I, Lee WR. The fine structure of the trabecular meshwork at graded levels of intraocular pressure. (2) Pressures outside the physiological range (0 and 50 mmHg). Exp Eye Res. 1975;20(6):523–530.

    Article  CAS  PubMed  Google Scholar 

  42. Grierson I, Lee WR. Changes in the monkey outflow apparatus at graded levels of intraocular pressure: a qualitative analysis by light microscopy and scanning electron microscopy. Exp Eye Res. 1974;19(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  43. Lee WR, Grierson I. Relationships between intraocular pressure and the morphology of the outflow apparatus. Trans Ophthalmol Soc U K. 1974;94(2):430–449.

    CAS  PubMed  Google Scholar 

  44. Gong H, Ruberti J, Overby D, Johnson M, Freddo TF. A new view of the human trabecular meshwork using quick-freeze, deep-etch electron microscopy. Exp Eye Res. 2002;75(3):347–358.

    CAS  PubMed  Google Scholar 

  45. Freddo TF, Gong H. Anatomy of the ciliary body and outflow pathways. In: Duane’s Clinical Ophthalmology, William Tasman, ed., Lipincott Williams and Wilkins. 2007;3:1–18.

    Google Scholar 

  46. Gong H, Underhill CB, Freddo TF. Hyaluronan in the bovine ocular anterior segment, with emphasis on the outflow pathways. Invest Ophthalmol Vis Sci. 1994;35(13):4328–4332.

    CAS  PubMed  Google Scholar 

  47. LaBarbera M, Vogel S. The design of fluid transport systems in organisms. Am Sci. 1982;70:54–60.

    Google Scholar 

  48. LaBarbera M. Principles of design of fluid transport systems in zoology. Science. 1990;249(4972):992–1000.

    Article  CAS  PubMed  Google Scholar 

  49. Zamir M, Ritman E. The Physics of Pulsatile Flow. New York: Springer; 2000.

    Google Scholar 

  50. Ethier CR, Johnson M, Ruberti J. Ocular biomechanics and biotransport. Annu Rev Biomed Eng. 2004;6:249–273.

    Article  CAS  PubMed  Google Scholar 

  51. Ethier CR, Coloma FM, Sit AJ, Johnson M. Two pore types in the inner-wall endothelium of Schlemm’s canal. Invest Ophthalmol Vis Sci. 1998;39(11):2041–2048.

    CAS  PubMed  Google Scholar 

  52. Bill A, Svedbergh B. Scanning electron microscopic studies of the trabecular meshwork and the canal of Schlemm - an attempt to localize the main resistance to outflow of aqueous humor in man. Acta Ophthalmol. 1972;50(3):295–320.

    CAS  Google Scholar 

  53. Johnson M, Chan D, Read AT, Christensen C, Sit A, Ethier CR. The pore density in the inner wall endothelium of Schlemm’s canal of glaucomatous eyes. Invest Ophthalmol Vis Sci. 2002;43(9):2950–2955.

    PubMed  Google Scholar 

  54. Stepanik J. Diurnal tonographic variations and their relation to visible aqueous outflow. Am J Ophthalmol. 1954;38:629.

    CAS  PubMed  Google Scholar 

  55. Thomassen TL. The venous tension of eyes suffering from simple glaucoma. Acta Ophthalmol. 1947;25:221.

    Google Scholar 

  56. Levick JR. Cardiovascular Physiology. 3rd ed. London: Arnold; 2003.

    Google Scholar 

  57. Gartner, S. Blood vessels of the conjunctiva. Arch. Ophthamol. 1944;32:464–476.

    Google Scholar 

  58. Goldmann H. Weitere Mitteilung uber den Abfluss des Kammer­wassers beim Menschen. Ophthalmologica. 1946;112:344.

    Article  CAS  PubMed  Google Scholar 

  59. Cambiaggi A. Effeto della jaluronidasi sulla pressone intraocular e sull’asetto della vene dell’accqueo. Boll Soc Biol Sper. 1958;34:1–7.

    Google Scholar 

  60. Kleinert H. Uber das Zustandekommen der augendrucksenkenden Wirkung des Adrenalins und anderer gefassverengender Pharmaka. Von Graefes Arch Ophthalmol. 1955;157:24–30.

    Article  CAS  Google Scholar 

  61. Kleinert H. Das durch Druck auf das Auge erzielte Ruckflussphanomen in den Kammerwasservenen. Klin Monatsbl Augenheilkd. 1951;122:726.

    Google Scholar 

  62. Ascher KW. Glaucoma and the aqueous veins. Am J Ophthalmol. 1942;25(11):1309–1315.

    Google Scholar 

  63. Goldmann H. Uber Abflussdruck und Glasstab-phanomen. Patho­genese des einfachen Glaukoms. Ophthalmologica. 1948;116:193.

    Article  Google Scholar 

  64. Miyata N. Study of aqueous vein. II. Study of aqueous vein in glaucoma. Acta Soc Ophthalmol Jpn. 1957;61:253.

    Google Scholar 

  65. Friberg TR, Sanborn G, Weinreb RN. Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol. 1987;103(4):523–526.

    CAS  PubMed  Google Scholar 

  66. Kronfeld PC, McGarry HT, Smith HE. Gonioscopic study on the canal of Schlemm. Am J Ophthalmol. 1942;25:1163.

    Google Scholar 

  67. Schirmer KE. Reflux of blood in the canal of Schlemm quantitated. Can J Ophthalmol. 1969;4:40–44.

    CAS  PubMed  Google Scholar 

  68. Schirmer KE. Gonioscopic assessment of blood in Schlemm’s canal. Correlation with glaucoma tests. Arch Ophthalmol. 1971;85(3):263–267.

    CAS  PubMed  Google Scholar 

  69. Smith R. Blood in the canal of Schlemm. Br J Ophthalmol. 1956;40:358.

    Article  CAS  PubMed  Google Scholar 

  70. Suson EB, Schultz RO. Blood in Schlemm’s canal in glaucoma suspects. A study of the relationship between blood-filling pattern and outflow facility in ocular hypertension. Arch Ophthalmol. 1969;81(6):808–812.

    CAS  PubMed  Google Scholar 

  71. Kronfeld PC. Further gonioscopic studies on the canal of Schlemm. AMA Arch Ophthalmol. 1949;41:393.

    CAS  Google Scholar 

  72. Dvorak-Theobald G, Quentin K. Aqueous pathways in some cases of glaucoma. Trans Am Ophthalmol Soc. 1955;53:301–315.

    CAS  PubMed  Google Scholar 

  73. Nichols WM, O’Rourke MF. McDonald’s Blood Flow in Arteries. 5th ed. London: Hodder Arnold; 2005.

    Google Scholar 

  74. Hodgson TH, MacDonald RK. Slitlamp studies on the flow of aqueous humor. Br J Ophthalmol. 1954;38:266.

    Article  CAS  PubMed  Google Scholar 

  75. Johnstone MA, Martin E, Mills R. Brimonidine-dependent pulsatile aqueous discharge to the episcleral veins. Invest Ophthalmol Vis Sci. 2006;47S:253.

    Google Scholar 

  76. Johnstone MA, Martin E, Jamil A. Latanoprost instillation results in a rapid directly measurable increase in conventional aqueous outflow. Invest Ophthalmol. 2007;48:76.

    Google Scholar 

  77. Reitsamer HA, Posey M, Kiel JW. Effects of a topical alpha2 adrenergic agonist on ciliary blood flow and aqueous production in rabbits. Exp Eye Res. 2006;82(3):405–415.

    Article  CAS  PubMed  Google Scholar 

  78. Katzung BG. Basic and Clinical Pharmacology. 10th ed. New York: McGraw-Hill; 2007.

    Google Scholar 

  79. Georgopoulos GT, Diestelhorst M, Fisher R, Ruokonen P, Krieglstein GK. The short-term effect of latanoprost on intraocular pressure and pulsatile ocular blood flow. Acta Ophthalmol Scand. 2002;80(1):54–58.

    Article  CAS  PubMed  Google Scholar 

  80. Geyer O, Man O, Weintraub M, Silver DM. Acute effect of latanoprost on pulsatile ocular blood flow in normal eyes. Am J Ophthalmol. 2001;131(2):198–202.

    Article  CAS  PubMed  Google Scholar 

  81. Liu CJ, Ko YC, Cheng CY, Chou JC, Hsu WM, Liu JH. Effect of latanoprost 0.005% and brimonidine tartrate 0.2% on pulsatile ocular blood flow in normal tension glaucoma. Br J Ophthalmol. 2002;86(11):1236–1239.

    Article  PubMed  Google Scholar 

  82. McKibbin M, Menage MJ. The effect of once-daily latanoprost on intraocular pressure and pulsatile ocular blood flow in normal tension glaucoma. Eye. 1999;13(Pt 1):31–34.

    PubMed  Google Scholar 

  83. Shapiro AH. Steady flow in collapsible tubes. J Biomech Eng. 1977;99:126–147.

    Article  Google Scholar 

  84. Shapiro AH. Physiological and medical aspects of flow in collapsible tubes. In: Proceedings of Sixth Canadian Congress of Applied Mechanics. Vancouver, BC; 1977.

    Google Scholar 

  85. Kamm RD. Flow in collapsible tubes. In: Skalak R, Chien S, eds. Hanbook of Bioengineering. New York: McGraw-Hill; 1987.

    Google Scholar 

  86. Holt JP. Flow through collapsible tubes and through in situ veins. IEEE Trans Biomed Eng. 1969;16:274–283.

    Article  CAS  PubMed  Google Scholar 

  87. Hedges TR, Baron EM, Hedges TR, Sinclair SH. The retinal venous pulse: its relation to optic disc characteristics and choroidal pulse. Ophthalmology. 1994;101:542–547.

    PubMed  Google Scholar 

  88. Johnstone MA. Pressure-dependent changes in configuration of the endothelial tubules of Schlemm’s canal. Am J Ophthalmol. 1974;78(4):630–638.

    CAS  PubMed  Google Scholar 

  89. Johnstone MA, Tanner D, Chau B. Endothelial tubular channels in Schlemm’s canal. Invest Ophthalmol Vis Sci. 1980;19:123.

    Google Scholar 

  90. Smit BA, Johnstone MA. Effects of viscoelastic injection into Schlemm’s canal in primate and human eyes: potential relevance to viscocanalostomy. Ophthalmology. 2002;109(4):786–792.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Johnstone, M., Jamil, A., Martin, E. (2010). Aqueous Veins and Open Angle Glaucoma. In: Schacknow, P., Samples, J. (eds) The Glaucoma Book. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76700-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76700-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-76699-7

  • Online ISBN: 978-0-387-76700-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics