Skip to main content

Mathematical Modeling and Computer Simulation

  • Chapter
  • First Online:

Abstract

Once upon a time, man started to use models in his practical activity. Modeling continues to play a very important role in studying natural phenomena and processes as well as helping to create modern engineering systems. Additionally, modeling is used in biology and medicine to find the mechanisms of function and malfunction concerning the organs of living organisms at both the micro and macro level.

Generally, a model has been defined [1] as the reconstruction of something found or created in the real world, a simplified representation of a more complex form, process, or idea, which may enhance understanding and facilitate prediction. The object of the model is called the original, or prototype system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referencesc

  1. Bekey, G.A., Models and reality: some reflections on the art and science of simulation. Simulation, 1977. 29: 161–164.

    Article  Google Scholar 

  2. Kogan, B.Y. and I.M. Tetelbaum, Modeling techniques in scientific research. Automation and Remote Control, 1979. 40: 917–924.

    Google Scholar 

  3. Karplus, W.J., The spectrum of mathematical models. Perspectives in Computing, 1983. 3: 4–13.

    Google Scholar 

  4. Noble, D., A modification of the Hodgkin-Huxley equations applicable to Purkinje fiber action and pace-maker potentials. J Physiol, 1962. 160: 317–352.

    Google Scholar 

  5. Wiener, N. and A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mexico, 1946. 16: 205–265.

    MathSciNet  Google Scholar 

  6. Krinsky, V.I., Fibrillation in excitable media. Problems in Cybernetics, 1968. 20: 59–80.

    Google Scholar 

  7. Moe, G.K., W.C. Rheinboldt, and J.A. Abildskov, A computer model of atrial fibrillation. Am Heart J, 1964. 67: 200–220.

    Article  Google Scholar 

  8. Hodgkin, A.L. and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952. 117: 500–544.

    Google Scholar 

  9. Moskalenko, A.V., A.V. Rusakov, and Y.E. Elkin, A new technique of ECG analysis and its application to evaluation of disorders during ventricular tachycardia. Chaos, Solitons & Fractals, 2008. 36: 66–72.

    Article  Google Scholar 

  10. van der Pol, B. and J. van der Mark, The heartbeat considered as relaxation oscillations, and an electrical model of the heart. Archives Neerlandaises Physiologe De L'Homme et des Animaux, 1929. XIV: 418–443.

    Google Scholar 

  11. Rao, V.S.H. and N. Yadaiah, Parameter identification of dynamical systems. Chaos, Solitons & Fractals, 2005. 23: 1137–1151.

    Article  MATH  MathSciNet  Google Scholar 

  12. Tzypkin, Y.Z., Information Theory of Identification. 1995, Moscow: Nauka-Fizmatlit.

    Google Scholar 

  13. Ostwald, W., Periodische erscheinungen bei der auflosung des chrom in sauren. Zeit Phys Chem, 1900. 35: 33–76 and 204–256.

    Google Scholar 

  14. Lillie, R.S., The electrical activation of passive iron wires in nitric acid. J Gen Physiol, 1935. 19: 109–126.

    Article  Google Scholar 

  15. Bonhoeffer, K.F., Modelle der nervenerregung. Naturwissenschaften, 1953. 40: 301–311.

    Article  Google Scholar 

  16. Nagumo, J., R. Suzuki, and S. Sato. Electrochemical active network. in Notes of Professional Group on Nonlinear Theory of IECE. 1963. Japan.

    Google Scholar 

  17. Smith, E.E. and A.C. Guyton, An iron heart model for study of cardiac impulse transmission. Physiologist, 1961. 4: 112.

    Google Scholar 

  18. Suzuki, R., Electrochemical neuron model. Adv Biophys, 1976. 9: 115–156.

    Google Scholar 

  19. MacGregor, R.J. and E.R. Lewis, Neural Modeling: Electrical Signal Processing in the Nervous System. 1977, New York: Plenum.

    Google Scholar 

  20. Winfree, A.T., The Geometry of Biological Time. 1980, New York: Springer-Verlag.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Ja. Kogan .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kogan, B.J. (2010). Mathematical Modeling and Computer Simulation. In: Introduction to Computational Cardiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76686-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76686-7_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76685-0

  • Online ISBN: 978-0-387-76686-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics