Skip to main content

Power Amplifiers at 60GHz and Beyond

  • Chapter
mm-Wave Silicon Technology

Part of the book series: Series on Integrated Circuits and Systems ((ICIR))

  • 2374 Accesses

Recently, there has been growing interest in using silicon-based integrated circuits at high microwave and millimeter wave frequencies. The high level of integration offered by silicon enables numerous new topologies and architectures for low-cost reliable SoC applications at microwave and millimeter wave bands, such as broadband wireless access (e.g., WiMax) [1], vehicular radars at 24GHz and 77GHz [2][3], short range communications at 24GHz and 60GHz [4][5][6], and ultra narrow pulse generation for UWB radar [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Hosh, D. R. Wolter, J. G. Andrews, et al., “Broadband Wireless Access with WiMax/802.16: Current Performance Benchmarks and Future Potential,” IEEE Comminications Magazine, vol. 43, pp. 129-136, Feb 2005.

    Google Scholar 

  2. U. R. Pfeiffer, et al., “A 77GHz SiGe PowerAmplifier for Potential Applications inAutomotive Radar Systems,” Proceedings of RFIC, pp. 91-94, June 2004.

    Google Scholar 

  3. A. Natarajan, et al., “A 77-GHz Phased-Array Transceiver with On-chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 2807-2819, Dec 2006.

    Article  Google Scholar 

  4. A. Natarajan, A. Komijani and A. Hajimiri, “A Fully Integrated 24-GHz Phased-Array Transmitter in CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 2502-2514, Dec 2005.

    Article  Google Scholar 

  5. C. H. Doan, S. Emami, A. Niknejad, et al., “Millimeter-Wave CMOS Design,” IEEE Journal of Solid-State Circuits, vol. 40, pp.144-155, Jan 2005.

    Article  Google Scholar 

  6. B. Razavi, “A 60-GHz CMOS Receiver Front-End,” IEEE Journal of Solid-State Circuits, vol. 41, pp.17-22, Jan 2006.

    Article  Google Scholar 

  7. S. Vitebskiy, L. Carin, M. A. Ressler, et al. “Ultra-Wideband, Short-Pulse Ground-Penetrating Radar: Simulation and Measurement,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, pp. 762-772, May 1997.

    Article  Google Scholar 

  8. C. H. Doan, S. Emami, A. Niknejad, and R. W. Broderson, “Millimeter-Wave CMOS Design,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.

    Article  Google Scholar 

  9. B. Razavi, R. H. Yan, K. F. Lee, “Impact of Distributed Gate Resistance on the Performance of MOS Devices,” IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 41, no. 11, pp. 750-754, Nov. 1994.

    Article  Google Scholar 

  10. M. Racanelli and P. Kempf, “SiGe BiCMOS Technology for Communication Products,” Proc. IEEE Custom Integrated Circuits Conf., pp. 331-334, Sep. 2003.

    Google Scholar 

  11. A. J. Joseph, et al., “Status and Direction of Communication Technologies-SiGe BiCMOS and RFCMOS,” Proceedings of the IEEE, Vol. 93, no.9, pp. 1539-1558, Sept. 2005.

    Article  Google Scholar 

  12. B. Kleveland, C. H. Diaz, D. Wook, L. Madden, T. H. Lee, and S. S. Wong, “Exploiting CMOS Reverse Interconnect Scaling in MultigigahertzAmplifier and Oscillator Design,” IEEE Journal of Solid-State Circuits, vol. 36, no. 10, pp. 1480-1488, Oct. 2001.

    Article  Google Scholar 

  13. L. Zhu, “Guided-Wave Characteristics of Periodic Coplanar Waveguides with Inductive Loading: Unit-Length Transmission Parameters,” IEEE Trans. on Microwave Theory and Techniques, vol. 51, no. 10, pp. 2133-2138, Oct. 2003.

    Article  Google Scholar 

  14. F. Aryanfar and K. Sarabandi, “Compact millimeter-wave filters using distributed capacitively loaded CPW resonators,” IEEE Trans. on Microwave Theory and Techniques, vol. 54, no. 3, pp. 1161-1165, Mar. 2006.

    Article  Google Scholar 

  15. A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm Fully-Integrated Power Amplifier in 0.18µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9, pp. 1901-08, Sept. 2005.

    Article  Google Scholar 

  16. HFSS, High frequency structure simulator [Online]. Available: http://www.ansoft.com

  17. IE3D, MoM-based electromagnetic simulator [Online]. Available: http://www.zeland.com

  18. A. Komijani and A. Hajimiri, “A 24 GHz, +14.5 dBm fully-integrated power amplifier in 0.18µm CMOS,” Proc. IEEE Custom Integrated Circuits Conf., Oct. 2004, pp. 561-564.

    Google Scholar 

  19. Advanced Design System (ADS), TLINP: 2-Terminal Physical Transmission Line Model [Online], Available: http://eesof.tm.agilent.com/products/adsoview.html

  20. W. H. Haydl, “On the use of Vias in Conductor-Backed Coplanar Circuits,” IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 6, pp. 1571-1577, June 2002.

    Article  Google Scholar 

  21. A. Komijani and A. Hajimiri, “A Wideband 77GHz, 17.5dBm Power Amplifier in Silicon,” IEEE Custom Integrated Circuits Conference, pp. 571-575, Sept. 2005.

    Google Scholar 

  22. R. Aparicio and A. Hajimiri, “Capacity Limits and Matching Properties of Integrated Capacitors,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 384-393, March 2002.

    Article  Google Scholar 

  23. D. M. Pozar, Microwave Engineering, Wiley, 2005.

    Google Scholar 

  24. T. Sowlati and D. M. W. Leenaerts, “A 2.4GHz 0.18µm CMOS Self-Biased Cascode Power Amplifier,” IEEE Journal of Solid-State Circuits, vol. 38, no. 8, pp. 1318-1324, Aug. 2003.

    Article  Google Scholar 

  25. E. O. Johnson, “Physical limitations on frequency and power parameters of transistors,” IRE Int. Convention Record, vol. 13, pp. 27-34, Mar. 1965.

    Article  Google Scholar 

  26. K. K. Ng, M. R. Frei, and C. A. King, “Reevaluation of the fT BVceo Limit on Si Bipolar Transistors,” IEEE Trans. on Electron Devices, vol. 45, no. 8, pp. 1854-1855, Aug. 1998.

    Article  Google Scholar 

  27. S. D. Kee, The class E/F family of harmonictuned switching power amplifiers. Ph.D. Thesis, Caltech, 2002.

    Google Scholar 

  28. I. Aoki, et al., “Distributed Active Transformer: A New Power Combining and Impedance Transformation Techniques,” IEEE MTT, pp. 316-332, Jan. 2002.

    Google Scholar 

  29. H. Veenstra, G. A. M. Hurkx, D. van Goor, H. Brekelmans, and J. R. Long, “Analyses and Design of Bias Circuits Tolerating Output Voltages above BVCEO,” IEEE Journal of Solid-State Circuits, vol. 40, no. 10, pp. 2008-2018, Oct. 2005.

    Article  Google Scholar 

  30. B. A. Floyd, et al., “SiGe Bipolar Transceiver Circuits Operating at 60GHz,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 156-167, Jan. 2005.

    Article  Google Scholar 

  31. E. Afshari, H. Bhat, X. Li, andA. Hajimiri, “Electrical Funnel: A Broadband Signal Combining Method,” IEEE International Solid-State Circuits Conference, pp. 206-208, Feb. 2006.

    Google Scholar 

  32. H. O. Granberg, “Broadband Transformers and Power Combining Techniques for RF,” Motorola Applications Note AN749, Motorola Semiconductor Products, Inc.

    Google Scholar 

  33. D. B. Rutledge, Nai-Shuo Cheng, R. A. York, R. M. Weikle, M. P. De Lisio, “Failures in Power-Combining Arrays,” IEEE Trans. Microwave Theory and Techniques, vol. 47, no. 7, part 1, pp. 1077-1082, July 1999.

    Article  Google Scholar 

  34. U. R. Pfeiffer and D. Gordon, “A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, pp. 857-865, May 2007.

    Article  Google Scholar 

  35. H. Kaufman, “Bibliography of Nonuniform Transmission Lines,” IRE Transactions—Antennas and Propagation, vol. 3, pp. 218-220, 1955.

    Article  Google Scholar 

  36. A. C. Scott, Active and Nonlinear Wave Propagation in Electronics, Wiley, New York, NY, 1970.

    Google Scholar 

  37. M. J.W. Rodwell, M. Kamegawa, R.Yu, M. Case, E. Carman, and K. Giboney, “GaAs Nonlinear Transmission Lines for Picosecond Pulse Generation and Millimeter-Wave Sampling,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 7, pp. 1194-1204, July 1991.

    Article  Google Scholar 

  38. W.-S. Duan, “Nonlinear Waves Propagating in the Electrical Transmission Line,” Europhysics Letters, vol. 66, pp. 192-197, 2004.

    Article  Google Scholar 

  39. E. Afshari and A. Hajimiri, “Nonlinear Transmission Line for Signal Shaping on Silicon,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 744-752, 2005.

    Article  Google Scholar 

  40. E. Afshari, H. S. Bhat, A. Hajimiri, and J. E. Marsden, “Extremely Wideband Signal Shaping Using One-and Two-Dimensional Nonuniform Nonlinear Transmission Lines,” Journal of Applied Physics, vol. 99, 2006.

    Google Scholar 

  41. E.Afshari, H. S. Bhat, andA. Hajimiri, “Electrical Lens: a NovelAnalog FourierTransformation Technique,” IEEE Transactions on Circuits and Systems I, submitted.

    Google Scholar 

  42. K. C.Gupta and M. D. Abouzahra, Analysis and Design of Planar Microwave Components IEEE Press, 1994.

    Google Scholar 

  43. B. Jagannathan, et al., “Self-aligned SiGe NPN transistors with 285 GHz fmax and 207 GHz fT in a manufacturable technology,” IEEE Electron Device Lett., vol. 23, no. 5, pp. 258-260, 2002.

    Article  MathSciNet  Google Scholar 

  44. S. C. Cripps, RF Power Amplifiers for Wireless Communications, Boston, MA: Artech House, 1999.

    Google Scholar 

  45. H. Li, H. M. Rein, T. Suttorp, and J. Böck, “Fully Integrated SiGe VCOs with Powerful Output Buffer for 77-GHz Automotive Radar Systems and Applications Around 100-GHz,” IEEE Journal of Solid-State Circuits, vol. 39, no. 10, pp. 1650-1658, Oct. 2004.

    Article  Google Scholar 

  46. E. Afshari, H. Bhat, and A. Hajimiri, “Electrical Funnel: A Broadband Signal Combining Method,” IEEE Journal of Solid-State Circuits, submitted.

    Google Scholar 

  47. E. Worner, C. Wild, W. Muller-Sebert, R. Locher, and P. Koidl, “Thermal conductivity of CVD diamond films: High-precision, temperature-resolved measurements,” Diamond and Related Materials, Vol. 5, No. 6, pp. 688-692, 1996.

    Article  Google Scholar 

  48. U. R. Pfeiffer, D. Goren, B. A. Floyd, and S. K. Reynolds, “SiGe Transformer Matched Power Amplifier for Operation at millimeter-wave Frequencies,” Eur. Solid-State Circuits Conf., Sep. 2005, pp. 141-144.

    Google Scholar 

  49. A. Valdes-Garcia, S. Reynolds, and U. R. Pfeiffer, “A 60 GHz Class-E Power Amplifier in SiGe,” Proc. Asian Solid-State Circuits Conf., 2006, pp. 199-202.

    Google Scholar 

  50. C. Wang, Y. Cho, C. Lin, H. Wang, C. Chen, D. Niu, J. Yeh, C. Lee, and J. Chern, “A 60 GHz Transmitter with Integrated Antenna in 0.18µm SiGe BiCMOS Technology,” IEEE International Solid-State Circuits Conference, 2006, pp. 186-187.

    Google Scholar 

  51. U. R. Pfeiffer and D. Gordon, “A 20 dBm Fully-Integrated 60 GHz SiGe Power Amplifier With Automatic Level Control,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1455-1463, July 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Afshari, E., Komijani, A. (2008). Power Amplifiers at 60GHz and Beyond. In: Niknejad, A.M., Hashemi, H. (eds) mm-Wave Silicon Technology. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76561-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76561-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76558-7

  • Online ISBN: 978-0-387-76561-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics