Skip to main content

Multifunctional Polymeric Nanosystems for Tumor-Targeted Delivery

  • Chapter
Multifunctional Pharmaceutical Nanocarriers

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 4))

Cancer is the second leading cause of morbidity and mortality in the United States, with occurrences portraying an upward trend for the future. In 2007, approximately 10 million cases of cancer will occur globally, with a total of around 1.5 million new cancer cases and over 560,000 deaths expected in the United States (U.S. National Institute of Health, 2006). Strikingly, remarkable advances in diagnosis and therapy of cancer have been made over the past few decades resulting from significant advances in fundamental cancer biology. What lacks in this case is clinical translation of these advances into effective therapies. A major hurdle in cancer diagnosis and therapy is the targeted and efficacious delivery of agents to the tumor site, while avoiding adverse damage resulting from systemic administration. While systemic drug delivery already hinges largely on physicochemical properties of the drug, such as size, diffusivity, and plasma protein binding affinity, tumors possess a dense, heterogeneous vasculature and an outward net convective flow that act as hurdles to efficient drug deposition at the target site (Jang et al., 2003). Nanocarriermediated delivery has emerged as a successful strategy to enhance delivery of therapeutics and imaging agents to tumors, thereby increasing the potential for diagnosis at an earlier stage or for therapeutic success (or both). Based on the initial observation by Maeda and Matsumura that tumors possess a fenestrated vasculature, with pores on average ranging between 200 and 800 nm, and a lack of lymphatic drainage, together termed the enhanced permeability and retention (EPR) effect, it was found that colloidal carriers in the nanometer size range could target tumors passively, by specific extravasation through these fenestrations, and are retained at the site for prolonged time because of lack of lymphatic drainage (Matsumura and Meada, 1986). This physiological advantage has been used successfully to enhance delivery of diagnostic and therapeutic agents, leading to the U.S. Food and Drug Administration (FDA) approval of nanoparticle formulations such as Feridex® for diagnostic applications and Doxil® and Abraxane® for cancer therapy (U.S. Food and Drug Administration, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaron, F. H. L., A. B. Mark, A. D. Paul, et al. (2006). “Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles.” J Contr Release. 111: 128–34.

    Article  CAS  Google Scholar 

  • Ahmed, M., A. N. Lukyanov, V. Torchilin, et al. (2005). Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time. Journal of vascular and interventional radiology. 16(10): 1365–71.

    PubMed  Google Scholar 

  • Aime, S., A. Barge, C. Cabella, et al. (2004). “Targeting cells with MR imaging probes based on paramagnetic Gd(III) chelates.” Curr Pharmaceut Biotechnol. 5: 509–18.

    Article  CAS  Google Scholar 

  • Alyautdin, R. N., E. B. Tezikov, P. Ramge, et al. (1998). “Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study.” J Microencapsul. 15(1): 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Alyaudtin, R. N., A. Reichel, R. Lobenberg, et al. (2001). “Interaction of poly(butylcyanoacrylate) nanoparticles with the blood–brain barrier in vivo and in vitro.” J Drug Target. 9(3): 209–21.

    Article  PubMed  CAS  Google Scholar 

  • Amiji, M. (2006). “Polymeric delivery - Engineered nanosystems for targeted delivery of drugs and genes.” Future Drug Delivery. http://www.touchbriefings.com/pdf/1859/amiji.pdf (Accessed August 09, 2006).

  • Anderson, S. A., R. K. Rader, W. F. Westlin, et al. (2000). “Magnetic resonance contrast enhancement of neovasculature with αvβ3-targeted nanoparticles.” Magn Reson Med. 44(3): 433–9.

    Article  PubMed  CAS  Google Scholar 

  • Bakalova, R., H. Ohba, Z. Zhelev, et al. (2004). “Quantum dots as photosensitizers?” Nat Biotech. 22(11): 1360–1.

    Article  CAS  Google Scholar 

  • Bargoni, A., R. Cavalli, G. P. Zara, et al. (2001). “Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II—tissue distribution.” Pharmacol Res. 43(5): 497–502.

    Article  PubMed  CAS  Google Scholar 

  • Barth, R. F. and A. H. Soloway (1994). “Boron neutron capture therapy of primary and metastatic brain tumors.” Mol Chem Neuropathol. 21: 139–54.

    Article  PubMed  CAS  Google Scholar 

  • Becker-Hapak, M., S. S. McAllister and S. F. Dowdy (2001). “TAT-mediated protein transduction into mammalian cells.” Methods. 24(3): 247–56.

    Article  PubMed  CAS  Google Scholar 

  • Bellocq, N. C., S. H. Pun, G. S. Jensen, et al. (2003). “Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery.” Bioconjugate Chem. 14(6): 1122–32.

    Article  CAS  Google Scholar 

  • Bidwell, G. L., III, I. Fokt, W. Priebe, et al. (2007). “Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin.” Biochem Pharmacol. 73(5): 620–31.

    Article  PubMed  CAS  Google Scholar 

  • Blanchette, J and N. A. Peppas (2005). Oral chemotherapeutic delivery: design and cellular response. Ann Biomed Eng., 33(2):142–9.

    Article  PubMed  Google Scholar 

  • Brade, A. M., D. Ngo, P. Szmitco, et al. (2000). Heat-directed gene targeting of adenoviral vectors to tumor cells. Cancer Gene Ther. 7(12):1566–74.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, G., P. F. Juranka and V. Ling (1988). Mechanism of multidrug resitance. Biochem Biophys Acta. 948: 87–128.

    PubMed  CAS  Google Scholar 

  • Brown, S. B. and K. J. Mellish (2001). “Verteporfin: a milestone in opthalmology and photodynamic therapy.” Expert Opin Pharmacother. 2(2): 351–61.

    Article  PubMed  CAS  Google Scholar 

  • Calvo, P., B. Gouritin, H. Chacun, et al. (2001a). “Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery.” Pharm Res. 18(8): 1157–66.

    Article  PubMed  CAS  Google Scholar 

  • Calvo, P., B. Gouritin, I. Brigger, et al. (2001b). “PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases.” J Neurosci Methods. 111(2): 151–5.

    Article  PubMed  CAS  Google Scholar 

  • Calvo, P., B. Gouritin, H. Villarroya, et al. (2002). “Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat.” Eur J Neurosci. 15(8): 1317–26.

    Article  PubMed  Google Scholar 

  • Cegnar, M., J. Kristl and J. Kos (2005). Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours. Expert Opinion Biologicy and Therapeutics. 5(12): 1557–69.

    Article  CAS  Google Scholar 

  • Chan, W. C. W., D. J. Maxwell, X. Gao, et al. (2002). “Luminescent quantum dots for multiplexed biological detection and imaging.” Curr Opin Biotechnol. 13(1): 40–6.

    Article  PubMed  CAS  Google Scholar 

  • Chang, I. (2003). Finite element analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity. BioMedical Engineering Online, 2: 12.

    Article  PubMed  ADS  Google Scholar 

  • Chen, B., Y. Xu, T. Roskams, et al. (2001). “Efficacy of antitumoral photodynamic therapy with hypericin: relationship between biodistribution and photodynamic effects in the RIF-1 mouse tumor model.” Int J Cancer. 93(2): 275–82.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Z. Huang, D. Luck, et al. (2002a). “Preclinical studies in normal canine prostate of a novel palladium-bacteriopheophorbide (WST09) photosensitizer for photodynamic therapy of prostate cancers.” Photochem Photobiol. 76(4): 438–45.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B., T. Roskams and P. A. de Witte (2002b). “Enhancing the antitumoral effect of hypericin-mediated photodynamic therapy by hyperthermia.” Lasers Surg Med. 31(3): 158–63.

    Article  PubMed  Google Scholar 

  • Chen, J., F. Saeki, B. J. Wiley, et al. (2005). “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents.” Nano Lett. 5(3): 473–7.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Chiellini, E. E., F. Chiellini and R. Solaro (2006). Bioerodible polymeric nanoparticles for targeted delivery of proteic drugs. Journal of Nanoscience and Nanotechnology. 6(9–10): 3040–7.

    Article  PubMed  CAS  Google Scholar 

  • Cinteza, L. O., T. Y. Ohulchanskyy, Y. Sahoo, et al. (2006). “Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy.” Mol Pharm. 3(4): 415–23.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca, D. R. and Calderwood, S. K. (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones., Summer, 10(2): 86–103.

    Article  CAS  Google Scholar 

  • Cole, S. P., G. Bhardwaj, J. H. Gerlach, et al. (1992). “Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line.” Science. 258(5088): 1650–4.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Crowder, K. C., M. S. Hughes, J. N. Marsh, et al. (2005). “Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: implications for enhanced local drug delivery.” Ultrasound Med Biol. 31(12): 1693–700.

    Article  PubMed  Google Scholar 

  • Cyrus, T., P. M. Winter, S. D. Caruthers, et al. (2005). “Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy.” Expert Rev Cardiovasc Ther. 3(4): 705–15.

    Article  PubMed  CAS  Google Scholar 

  • Dayton, P., A. Klibanov, G. Brandenburger, et al. (1999). “Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles.” Ultrasound Med Biol. 25(8): 1195–201.

    Article  PubMed  CAS  Google Scholar 

  • Devalapally, H., D. Shenoy, S. Little, et al. (2007). Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer chemotherapy and pharmacology. 59(4): 477–84.

    Article  PubMed  CAS  Google Scholar 

  • Dolmans, D. E., D. Fukumura and R. K. Jain (2003). “Photodynamic therapy for cancer.” Nat Rev Cancer. 3(5): 380–7.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty, T. J., C. J. Gomer, B. W. Henderson, et al. (1998). “Photodynamic therapy.” J Natl Cancer Inst. 90(12): 889–905.

    Article  PubMed  CAS  Google Scholar 

  • Elbayoumi T. A. and V. P. Torchilin (2006). “Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: b-imaging studies.” Eur J Nucl Med Mol Imag. 33(10): 1196–1205.

    Article  CAS  Google Scholar 

  • Emerich, D. F. and C. G. Thanos (2006). “The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis.” Biomol Eng. 23(4): 171–84.

    Article  PubMed  CAS  Google Scholar 

  • Fang, J., T. Sawa, H. Maeda (2003). Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Advances in experimental medicine and biology. 519: 29–49.

    Article  PubMed  CAS  Google Scholar 

  • Farokhzad, O. C., S. Jon, A. Khademhosseini, et al. (2004). Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Research. 64(21): 7668–72.

    Article  PubMed  CAS  Google Scholar 

  • Farokhzad, O. C., J. Cheng, B. A. Teply, et al. (2006a). “Targeted nanoparticle–aptamer bioconjugates for cancer chemotherapy in vivo.” PNAS. 103(16): 6315–20.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Farokhzad O. C., J. M. Karp and R. Langer (2006b). Nanoparticle-aptamer bioconjugates for cancer targeting. Expert opinion on drug delivery. 3(3): 311–24.

    Article  PubMed  CAS  Google Scholar 

  • Fayette, J., J.-C. Soria and J.-P. Armand (2005). “Use of angiogenesis inhibitors in tumour treatment.” Eur J Canc. 41(8): 1109–16.

    Article  CAS  Google Scholar 

  • Fellner, S., B. Bauer, D. S. Miller, et al. (2002). “Transport of paclitaxel (Taxol) across the blood–brain barrier in vitro and in vivo.” J Clin Invest. 110(9): 1309–18.

    PubMed  CAS  Google Scholar 

  • Fenart, L., A. Casanova, B. Dehouck, et al. (1999). “Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood–brain barrier.” J Pharmacol Exp Ther. 291(3): 1017–22.

    PubMed  CAS  Google Scholar 

  • Fenske, D. B., I. MacLachlan and P. R. Cullis (2001). “Long-circulating vectors for the systemic delivery of genes.” Curr Opin Mol Ther. 3(2): 153–8.

    PubMed  CAS  Google Scholar 

  • Folkman, J. (1972). “Anti-angiogenesis: new concept for therapy of solid tumors.” Ann Surg. 175(3): 409–16.

    Article  PubMed  CAS  Google Scholar 

  • Frei, E., III, J. F. Holland, M. A. Schneiderman, et al. (1958). “A comparative study of two regimens of combination chemotherapy in acute leukemia.” Blood. 13(12): 1126–48.

    PubMed  Google Scholar 

  • Gabizon, A. A., H. Shmeeda, S. Zalipsky (2006). Pros and cons of the liposome platform in cancer drug targeting. Journal of liposome research. 16(3): 175–83.

    Article  PubMed  CAS  Google Scholar 

  • Gao, X., Y. Cui, R. M. Levenson, et al. (2004). “In vivo cancer targeting and imaging with semiconductor quantum dots.” Nat Biotechnol. 22(8): 969–76.

    Article  PubMed  CAS  Google Scholar 

  • Gao, X., L. Yang, J. A. Petros, et al. (2005). “In vivo molecular and cellular imaging with quantum dots.” Curr Opin Biotechnol. 16(1): 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Gao, X., W. Tao, W. Lu, et al. (2006). “Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration.” Biomaterials. 27(18): 3482–90.

    Article  PubMed  CAS  Google Scholar 

  • Genentech Biotechnology. Avastin®, Bevacizumab. Product Information Guide. http://www.avastin.com/avastin/index.jsp?hl=en&lr=&q=Avastin (Accessed September 28, 2006).

  • Genentech Biotechnology. Herceptin®, Transtuzumab. Product Information Guide. http://www.herceptin.com/herceptin/patient/index.jsp (Accessed September 28, 2006).

  • Gomez-Lopera, S. A., R. C. Plaza and A. V. Delgado (2001). “Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles.” J Colloid Interface Sci. 240(1): 40–7.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman, M. M., Fojo, T. and Bates, S. E. (2002). “Multidrug resistance in cancer: role of ATP-dependent transporters.” Nat Rev Cancer. 2: 48–58.

    Article  PubMed  CAS  Google Scholar 

  • Gudgin Dickson, E. F., R. L. Goyan and R. H. Pottier (2002). “New directions in photodynamic therapy.” Cell Mol Biol (Noisy-le-grand). 48(8): 939–54.

    CAS  Google Scholar 

  • Gulyaev, A. E., S. E. Gelperina, I. N. Skidan, et al. (1999). “Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles.” Pharm Res. 16(10): 1564–9.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, B. and V. P. Torchilin (2006). “Transactivating transcriptional activator-mediated drug delivery.” Expert Opin Drug Deliv. 3(2): 177–90.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, B., T. S. Levchenko and V. P. Torchilin (2005). “Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides.” Adv Drug Deliv Rev. 57(4): 637–51.

    Article  PubMed  CAS  Google Scholar 

  • Hainfeld, J. F., D. N. Slatkin and H. M. Smilowitz (2004). “The use of gold nanoparticles to enhance radiotherapy in mice.” Phys Med Biol. 49(18): N309–N315.

    Article  PubMed  CAS  Google Scholar 

  • Hall, C. S., J. N. Marsh, M. J. Scott, et al. (2000). “Time evolution of enhanced ultrasonic reflection using a fibrin-targeted nanoparticulate contrast agent.” J Acoust Soc Am. 108(6): 3049–57.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hall, C. S., J. N. Marsh, M. J. Scott, et al. (2001). “Temperature dependence of ultrasonic enhancement with a site-targeted contrast agent.” J Acoust Soc Am. 110(3, Pt 1): 1677–84.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Harisinghani, M. G., J. Barentsz, P. F. Hahn, et al. (2003). “Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.” N Engl J Med. 348(25): 2491–9.

    Article  PubMed  Google Scholar 

  • Harris, A. L. and D. Hochhauser (1992). Mechanisms of multidrug resistance in cancer treatment. Acta Oncol. 31(2): 205–13.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, M. E., D. C. Drummond, K. Hong, et al. (2006). “Increased target specificity of anti-HER2 genospheres by modification of surface charge and degree of PEGylation.” Mol Pharm. 3(6): 726–36.

    Article  PubMed  CAS  Google Scholar 

  • Helm, C. W., C. R. Toler, R. S. Martin, III, et al. (2007). “Cytoreduction and intraperitoneal heated chemotherapy for the treatment of endometrial carcinoma recurrent within the peritoneal cavity.” Int J Gynecol Cancer. 17(1): 204–9.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, B. W. and S. O. Gollnick (2003). Mechanistic principles of photodynamic therapy. Boca Raton, CRC Press.

    Google Scholar 

  • Hildebrandt, B., P. Wust, O. Ahlers, et al. (2002). “The cellular and molecular basis of hyperthermia.” Crit Rev Oncol Hematol. 43(1): 33–56.

    Article  PubMed  Google Scholar 

  • Hines-Peralta, A., V. Sukhatme, M. Regan, et al. (2006). “Improved tumor destruction with arsenic trioxide and radiofrequency ablation in three animal models.” Radiology. 240(1): 82–9.

    Article  PubMed  Google Scholar 

  • Hirsch, L. R., R. J. Stafford, J. A. Bankson, et al. (2003). “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.” PNAS. 100(23): 13549–54.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hopper, C. (2000). “Photodynamic therapy: a clinical reality in the treatment of cancer.” Lancet Oncol. 1: 212–19.

    Article  PubMed  CAS  Google Scholar 

  • Huwyler, J. and W. M. Pardridge (1998). “Examination of blood–brain barrier transferrin receptor by confocal fluorescent microscopy of unfixed isolated rat brain capillaries.” J Neurochem. 70(2): 883–6.

    PubMed  CAS  Google Scholar 

  • Huwyler, J., A. Cerletti, G. Fricker, et al. (2002). “By-passing of p-glycoprotein using immunoliposomes.” J Drug Target. 10(1): 73–9.

    Article  PubMed  CAS  Google Scholar 

  • Iinuma, S., K. T. Schomacker, G. Wagnieres, et al. (1999). “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model.” Cancer Res. 59(24): 6164–70.

    PubMed  CAS  Google Scholar 

  • Illum, L., L. O. Jacobsen, R. H. Muller, et al. (1987). “Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages.” Biomaterials. 8(2): 113–17.

    Article  PubMed  CAS  Google Scholar 

  • Isomoto, H., A. Ohtsuru, V. Braiden, et al. (2006). “Heat-directed suicide gene therapy mediated by heat shock protein promoter for gastric cancer.” Oncol Rep. 15(3): 629–35.

    PubMed  CAS  Google Scholar 

  • Jain, S., V. Mishra, P. Singh, et al. (2003). “RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting.” Int J Pharm. 261(1–2): 43–55.

    Article  PubMed  CAS  Google Scholar 

  • Jang, S. H., M. G. Wientjes, D. Lu, et al. (2003). “Drug delivery and transport to solid tumors.” Pharm Res. 20(9): 1337–50.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, S. I., J. H. L. Andrade and P. G. de Gennes (1991). “Protein-surface interactions in the presence of polyethylene oxide: Simplified theory.” J Colloid Interface Sci. 142: 149–58.

    Article  CAS  Google Scholar 

  • Jeong, Y. I., S. J. Seo, I. K. Park, et al. (2005). “Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(g-benzyl L-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety.” Int J Pharm. 296(1–2): 151–61.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, C., N. Koyabu, Y. Yonemitsu, et al. (2003). “In vivo delivery of glial cell-derived neurotrophic factor across the blood–brain barrier by gene transfer into brain capillary endothelial cells.” Hum Gene Ther. 14(12): 1181–91.

    Article  PubMed  CAS  Google Scholar 

  • Johannsen, M., U. Gneveckow, L. Eckelt, et al. (2005). “Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique.” Int J Hyperthermia. 21(7): 637–47.

    Article  PubMed  CAS  Google Scholar 

  • Kakinuma, K., R. Tanaka, H. Takahashi, et al. (1996). “Drug delivery to the brain using thermosensitive liposome and local hyperthermia.” Int J Hyperthermia. 12(1): 157–65.

    Article  PubMed  CAS  Google Scholar 

  • Kawashita, M., K. Sadaoka, T. Kokubo, et al. (2006). “Enzymatic preparation of hollow magnetite microspheres for hyperthermic treatment of cancer.” J Mater Sci Mater Med. 17(7): 605–10.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., D. W. Kim, Y. H. Shim, et al. (2001). “In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy.” J Contr Release. 72(1–3): 191–202.

    Article  CAS  Google Scholar 

  • Kim, S. H., J. H. Jeong, K. W. Chun, et al. (2005). “Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)–poly(ethylene glycol)-folate conjugate.” Langmuir. 21(19): 8852–7.

    Article  PubMed  CAS  Google Scholar 

  • Kleiter, M. M., D. Yu, L. A. Mohammadian, et al. (2006). A tracer dose of technetium-99m-labeled liposomes can estimate the effect of hyperthermia on intratumoral doxil extravasation. Clinical cancer research. 12(22): 6800–7.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, H., S. Kawamoto, M. Bernardo, et al. (2006). “Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: Comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging.” J Contr Release. 111(3): 343–51.

    Article  CAS  Google Scholar 

  • Kohler, N., C. Sun, J. Wang, et al. (2005). “Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells.” Langmuir. 21: 8858–64.

    Article  PubMed  CAS  Google Scholar 

  • Kommareddy, S. and M. Amiji (2007). “Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors.” Cancer Gene Ther. 14(5): 488–98.

    Article  PubMed  CAS  Google Scholar 

  • Kong, G., R. D. Braun and M. W. Dewhirst (2000). “Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size.” Cancer Res. 60(16): 4440–5.

    PubMed  CAS  Google Scholar 

  • Kong, G., R. D. Braun and M. W. Dewhirst (2001). “Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature.” Cancer Res. 61(7): 3027–32.

    PubMed  CAS  Google Scholar 

  • Koudinova, N. V., J. H. Pinthus, A. Brandis, et al. (2003). “Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts.” Int J Cancer. 104(6): 782–9.

    Article  PubMed  CAS  Google Scholar 

  • Koziara, J. M., P. R. Lockman, D. D. Allen, et al. (2004). “Paclitaxel nanoparticles for the potential treatment of brain tumors.” J Contr Release. 99(2): 259–69.

    Article  CAS  Google Scholar 

  • Kreuter, J. (1994). “Drug targeting with nanoparticles.” Eur J Drug Metab Pharmacokinet. 19(3): 253–6.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J. (2001). “Nanoparticulate systems for brain delivery of drugs.” Adv Drug Deliv Rev. 47(1): 65–81.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J. (2004). “Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain.” J Nanosci Nanotechnol. 4(5): 484–8.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J., R. N. Alyautdin, D. A. Kharkevich, et al. (1995). “Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles).” Brain Res. 674(1): 171–4.

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J., P. Ramge, V. Petrov, et al. (2003). “Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles.” Pharm Res. 20(3): 409–16.

    Article  PubMed  CAS  Google Scholar 

  • Lammers, T., P. Peschke, R. Kuhnlein, et al. (2007). “Effect of radiotherapy and hyperthermia on the tumor accumulation of HPMA copolymer-based drug delivery systems.” J Contr Release. 117(3): 333–41.

    Article  CAS  Google Scholar 

  • Lanza, G. M. and S. A. Wickline (2001). “Targeted ultrasonic contrast agents for molecular imaging and therapy.” Prog Cardiovasc Dis. 44(1): 13–31.

    Article  PubMed  CAS  Google Scholar 

  • Lanza, G. M. and S. A. Wickline (2003). “Targeted ultrasonic contrast agents for molecular imaging and therapy.” Curr Probl Cardiol. 28(12): 625–53.

    Article  PubMed  Google Scholar 

  • Lanza, G. M., D. R. Abendschein, X. Yu, et al. (2002). “Molecular imaging and targeted drug delivery with a novel, ligand-directed paramagnetic nanoparticle technology.” Acad Radiol. 9 Suppl 2: S330–1.

    Article  PubMed  Google Scholar 

  • Lanza, G. M., P. M. Winter, S. D. Caruthers, et al. (2004). “Magnetic resonance molecular imaging with nanoparticles.” J Nucl Cardiol. 11(6): 733–43.

    Article  PubMed  Google Scholar 

  • Larina, I. V., B. M. Evers, T. V. Ashitkov, et al. (2005). “Enhancement of drug delivery in tumors by using interaction of nanoparticles with ultrasound radiation.” Technol Cancer Res Treat. 4(2): 217–26.

    PubMed  Google Scholar 

  • Li, J., X. Wang, C. Wang, et al. (2007). “The enhancement effect of gold nanoparticles in drug delivery and as biomarkers of drug-resistant cancer cells.” ChemMedChem. 2(3): 374–8.

    Article  PubMed  CAS  Google Scholar 

  • Liu, W., M. R. Dreher, D. Y. Furgeson, et al. (2006). “Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice.” J Contr Release. 116(2): 170–8.

    Article  CAS  Google Scholar 

  • Lockman, P. R., M. O. Oyewumi, J. M. Koziara, et al. (2003). “Brain uptake of thiamine-coated nanoparticles.” J Contr Release. 93(3): 271–82.

    Article  CAS  Google Scholar 

  • Loo, C., A. Lin, L. Hirsch, et al. (2004). “Nanoshell-enabled photonics-based imaging and therapy of cancer.” Technol Cancer Res Treat. 3(1): 33–40.

    PubMed  ADS  CAS  Google Scholar 

  • Loo, C., A. Lowery, N. Halas, et al. (2005). “Immunotargeted nanoshells for integrated cancer imaging and therapy.” Nano Lett. 5(4): 709–11.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Lukyanov, A. N., T. A. Elbayoumi, A. R. Chakilam and V. P. Torchilin (2004). Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release. 100(1): 135–44.

    Article  PubMed  CAS  Google Scholar 

  • Lum, A. F., M. A. Borden, P. A. Dayton, et al. (2006). “Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles.” J Contr Release. 111(1–2): 128–34.

    Article  CAS  Google Scholar 

  • Maeda, H. (2001). “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting.” Adv Enzyme Regul. 41: 189–207.

    Article  PubMed  CAS  Google Scholar 

  • Maier-Hauff, K., R. Rothe, R. Scholz, et al. (2007). “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme.” J Neurooncol. 81(1): 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, J. N., M. S. Hughes, C. S. Hall, et al. (1998). “Frequency and concentration dependence of the backscatter coefficient of the ultrasound contrast agent Albunex (R).” J Acoust Soc Am. 104: 1654–66.

    Article  ADS  CAS  Google Scholar 

  • Marsh, J. N., C. S. Hall, M. J. Scott, et al. (2002a). “Improvements in the ultrasonic contrast of targeted perfluorocarbon nanoparticles using an acoustic transmission line model.” IEEE Trans Ultrason Ferroelectr Freq Contr. 49(1): 29–38.

    Article  Google Scholar 

  • Marsh, J. N., C. S. Hall, S. A. Wickline, et al. (2002b). “Temperature dependence of acoustic impedance for specific fluorocarbon liquids.” J Acoust Soc Am. 112(6): 2858–62.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Matsumura, Y. and H. Maeda (1986). “A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS.” Canc Res. 46: 6387–92.

    CAS  Google Scholar 

  • Matsuo, H., T. Okamura, J. Chen, et al. (2000). “Efficient introduction of macromolecules and oligonucleotides into brain capillary endothelial cells using HVJ-liposomes.” J Drug Target. 8(4): 207–16.

    Article  PubMed  CAS  Google Scholar 

  • Medintz, I. L., H. T. Uyeda, E. R. Goldman, et al. (2005). “Quantum dot bioconjugates for imaging, labelling and sensing.” Nat Mater. 4(6): 435–46.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Meyer, D. E., B. C. Shin, G. A. Kong, et al. (2001). Drug targeting using thermally responsive polymers and local hyperthermia. Journal of controlled release. 74(1–3): 213–24.

    Article  PubMed  CAS  Google Scholar 

  • Morawski, A. M., P. M. Winter, K. C. Crowder, et al. (2004). “Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI.” Magn Reson Med. 51(3): 480–6.

    Article  PubMed  CAS  Google Scholar 

  • Morel, S., E. Terreno, E. Ugazio, et al. (1998). “NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium(III) complexes.” Eur J Pharm Biopharm. 45(2): 157–63.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, P., R. Bhattacharya, P. Wang, et al. (2005). “Antiangiogenic properties of gold nanoparticles.” Clin Cancer Res. 11(9): 3530–4.

    Article  PubMed  CAS  Google Scholar 

  • Murray, C. B., D. J. Norris and M. G. Bawendi (1993). “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites.” J Am Chem Soc. 115(19): 8706–15.

    Article  CAS  Google Scholar 

  • Nasongkla, N., E. Bey, J. Ren, et al. (2006). “Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems.” Nano Lett. 6(11): 2427–30.

    Article  PubMed  ADS  CAS  Google Scholar 

  • National Cancer Institute (2004). Hyperthermia in cancer treatment: questions and answers (FS 7.3). Accessed on February 27, 2007 from http://www.cancer.gov/cancertopics/factsheet/Therapy/hyperthermia.

  • National Cancer Institute (2005). “Hyperthermia in cancer treatment: questions and answers (FS 7.3).” http://www.cancer.gov/PDF/FactSheet/fs7_3.pdf (Accessed April 3, 2007).

  • Nielsen, U. B., D. B. Kirpotin, E. M. Pickering, et al. (2002). “Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis.” Biochem Biophys Acta. 1591(1–3): 109–18.

    PubMed  CAS  Google Scholar 

  • Ningaraj, N. S. (2006). Drug delivery to brain tumours: challenges and progress. Expert opinion on drug delivery. 3(4): 499–509.

    Article  PubMed  CAS  Google Scholar 

  • Nsereko, S. and M. Amiji (2002). “Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations.” Biomaterials. 23(13): 2723–31.

    Article  PubMed  CAS  Google Scholar 

  • Ojeda, R., J. L. de Paz, A. G. Barrientos, et al. (2007). “Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines.” Carbohydr Res. 342(3–4): 448–59.

    Article  PubMed  CAS  Google Scholar 

  • Olbrich, C., A. Gessner, O. Kayser, et al. (2002). “Lipid–drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate.” J Drug Target. 10(5): 387–96.

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg, S. J., J. B. Jackson, S. L. Westcott, et al. (1999). “Infrared extinction properties of gold nanoshells.” Appl Phys Lett. 75(19): 2897–9.

    Article  ADS  CAS  Google Scholar 

  • Olivier, J. C., L. Fenart, R. Chauvet, et al. (1999). “Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity.” Pharm Res. 16(12): 1836–42.

    Article  PubMed  CAS  Google Scholar 

  • Oupicky, D., K. A. Howard, C. Konak, et al. (2000). “Steric stabilization of poly-L-lysine/DNA complexes by the covalent attachment of semitelechelic poly(N-(2-hydroxypropyl) methacrylamide).” Bioconjugate Chem. 11(4): 492–501.

    Article  CAS  Google Scholar 

  • Oyewumi, M. O. and R. J. Mumper (2002). “Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy.” Bioconjugate Chem. 13(6): 1328–35.

    Article  CAS  Google Scholar 

  • Oyewumi, M. O., S. Liu, J. A. Moscow, et al. (2003). “Specific association of thiamine-coated gadolinium nanoparticles with human breast cancer cells expressing thiamine transporters.” Bioconjugate Chem. 14(2): 404–11.

    Article  CAS  Google Scholar 

  • Oyewumi, M. O., R. A. Yokel, M. Jay, et al. (2004). “Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor- bearing mice.” J Contr Release. 95(3): 613–26.

    Article  CAS  Google Scholar 

  • Paciotti, G. F., L. Myer, D. Weinreich, et al. (2004). “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery.” Drug Deliv. 11(3): 169–83.

    Article  PubMed  CAS  Google Scholar 

  • Pamujula, S., R. A. Graves, T. Freeman, et al. (2004). Oral delivery of spray dried PLGA/amifostine nanoparticles. The Journal of Pharmacy and Pharmacology. 56(9): 1119–25.

    Article  PubMed  CAS  Google Scholar 

  • Panyam, J. and V. Labhasetwar (2003). “Biodegradable nanoparticles for drug and gene delivery to cells and tissue.” Adv Drug Deliv Rev. 55(3): 329–47.

    Article  PubMed  CAS  Google Scholar 

  • Pedley, R. B., S. A. Hill, G. M. Boxer, et al. (2001). “Eradication of colorectal xenografts by combined radioimmunotherapy and combretastatin a-4 3-O-phosphate.” Cancer Res. 61(12): 4716–22.

    PubMed  CAS  Google Scholar 

  • Peira, E., P. Marzola, V. Podio, et al. (2003). “In vitro and in vivo study of solid lipid nanoparticles loaded with superparamagnetic iron oxide.” J Drug Target. 11(1): 19–24.

    Article  PubMed  CAS  Google Scholar 

  • Pelz, J. O., J. Doerfer, W. Hohenberger, et al. (2005). “A new survival model for hyperthermic intraperitoneal chemotherapy (HIPEC) in tumor-bearing rats in the treatment of peritoneal carcinomatosis.” BMC Canc. 5(1): 56.

    Article  CAS  Google Scholar 

  • Ponce, A. M., B. L. Viglianti, D. Yu, et al. (2007). Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. Journal of the National Cancer Institute. 99(1): 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Qing, S. H., L. Y. Li, X. H. Sheng, et al. (2006). “Photosensitizer nanoparticles photodynamic therapy on LOVO human colon cancer xenografts in athymic mice.” Zhonghua Wei Chang Wai Ke Za Zhi. 9(6): 530–3.

    PubMed  Google Scholar 

  • Ramge, P., J. Kreuter and B. Lemmer (1999). “Circadian phase-dependent antinociceptive reaction in mice determined by the hot-plate test and the tail-flick test after intravenous injection of dalargin-loaded nanoparticles.” Chronobiol Int. 16(6): 767–77.

    Article  PubMed  CAS  Google Scholar 

  • Ranney, D., P. Antich, E. Dadey, et al. (2005). “Dermatan carriers for neovascular transport targeting, deep tumor penetration and improved therapy.” J Contr Release. 109(1–3): 222–35.

    Article  CAS  Google Scholar 

  • Reddy, G. R., M. S. Bhojani, P. McConville, et al. (2006). “Vascular targeted nanoparticles for imaging and treatment of brain tumors.” Clin Cancer Res. 12(22): 6677–86.

    Article  PubMed  CAS  Google Scholar 

  • Reichardt, W., D. Hu-Lowe, D. Torres, et al. (2005). “Imaging of VEGF receptor kinase inhibitorinduced antiangiogenic effects in Drug-Resistant Human Adenocarcinoma Model.” Neoplasia. 7: 847–53.

    Article  PubMed  CAS  Google Scholar 

  • Ricci-Junior, E. and J. M. Marchetti (2006). “Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use.” J Microencapsul. 23(5): 523–38.

    Article  PubMed  CAS  Google Scholar 

  • Rychak, J. J., A. L. Klibanov and J. A. Hossack (2005). “Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles: in vitro verification.” IEEE Trans Ultrason Ferroelectr Freq Contr. 52(3): 421–33.

    Article  Google Scholar 

  • Sadeque, A. J., C. Wandel, H. He, et al. (2000). “Increased drug delivery to the brain by p-glycoprotein inhibition.” Clin Pharmacol Ther. 68(3): 231–7.

    Article  PubMed  CAS  Google Scholar 

  • Samia, A. C. S., S. Dayal and C. Burda (2006). Quantum Dot-based Energy Transfer: Perspectives and Potential for Applications in Photodynamic Therapy. Photochemistry and Photobiology. 82(3): 617–625.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, I., I. R. Dunay, K. Weisgraber, et al. (2005). “An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells.” Biochemistry. 44(6): 2021–9.

    Article  PubMed  CAS  Google Scholar 

  • Savolainen, J., J. E. Edwards, M. E. Morgan, et al. (2002). “Effects of a p-glycoprotein inhibitor on brain and plasma concentrations of anti-human immunodeficiency virus drugs administered in combination in rats.” Drug Metabol Dispos. 30(5): 479–82.

    Article  CAS  Google Scholar 

  • Schiffelers, R. M., A. Ansari, J. Xu, et al. (2004). “Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle.” Nucleic Acids Res. 32(19): e149.

    Article  PubMed  Google Scholar 

  • Schmidt-Erfurth, U., T. Hasan, E. Gragoudas, et al. (1994). “Vascular targeting in photodynamic occlusion of subretinal vessels.” Ophthalmology. 101(12): 1953–61.

    PubMed  CAS  Google Scholar 

  • Schmieder, A. H., P. M. Winter, S. D. Caruthers, et al. (2005). “Molecular MR imaging of melanoma angiogenesis with SSSSSSSSSSSSSS3-targeted paramagnetic nanoparticles.” Magn Reson Med. 53(3): 621–7.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, U. and B. A. Sabel (1996). “Nanoparticles, a drug carrier system to pass the blood–brain barrier, permit central analgesic effects of i.v. dalargin injections.” Brain Res. 710(1–2): 121–4.

    Article  CAS  Google Scholar 

  • Schroeder, U., P. Sommerfeld and B. A. Sabel (1998). “Efficacy of oral dalargin-loaded nanoparticle delivery across the blood–brain barrier.” Peptides. 19(4): 777–80.

    Article  PubMed  CAS  Google Scholar 

  • Schwarze, S. R. and S. F. Dowdy (2000). “In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA.” Trends Pharmacol Sci. 21(2): 45–8.

    Article  PubMed  CAS  Google Scholar 

  • Sekhar, K. R., V. N. Sonar, V. Muthusamy, et al. (2007). Novel chemical enhancers of heat shock increase thermal radiosensitization through a mitotic catastrophe pathway. Cancer research. 67(2): 695–701.

    Article  PubMed  CAS  Google Scholar 

  • Sengupta, S., D. Eavarone, I. Capila, et al. (2005). “Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system.” Nature. 436(7050): 568–72.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Shenoy, D. B. and M. M. Amiji (2005). Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamox ifen in breast cancer. International journal of pharmaceutics. 293(1–2):261–70.

    Article  PubMed  CAS  Google Scholar 

  • Shenoy, D., S. Little, R. Langer and M. Amiji (2005). Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharmaceutical research. 22(12): 2107–14.

    Article  PubMed  CAS  Google Scholar 

  • Shi, N., Y. Zhang, C. Zhu, et al. (2001). “Brain-specific expression of an exogenous gene after i.v. administration.” Proc Natl Acad Sci U S A. 98(22): 12754–9.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Shikata, F., H. Tokumitsu, H. Ichikawa, et al. (2002). “In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer.” Eur J Pharm Biopharm. 53(1): 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Shortencarier, M. J., P. A. Dayton, S. H. Bloch, et al. (2004). “A method for radiation-force localized drug delivery using gas-filled lipospheres.” IEEE Trans Ultrason Ferroelectr Freq Contr. 51(7): 822–31.

    Article  Google Scholar 

  • Siddiqui, F., C. Y. Li, S. M. Larue, et al. (2007). “A phase I trial of hyperthermia-induced interleukin-12 gene therapy in spontaneously arising feline soft tissue sarcomas.” Mol Cancer Ther. 6(1): 380–9.

    Article  PubMed  CAS  Google Scholar 

  • Simberg, D., T. Duza, J. H. Park, et al. (2007). “Biomimetic amplification of nanoparticle homing to tumors.” PNAS. 104(3): 932–6.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Soma, E. C., C. Dubernet, D. Bentolila, et al. (2000). “Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles.” Biomaterials. 21(1): 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, G., L. Prokai and N. Bodor (1998). “Targeted drug delivery to the brain via phosphonate derivatives II. Anionic chemical delivery system for zidovudine (AZT).” Int J Pharm. 166: 27–35.

    Article  CAS  Google Scholar 

  • Stewart, F., P. Baas and W. Star (1998). “What does photodynamic therapy have to offer radiation oncologists (or their cancer patients)?” Radiother Oncol. 48(3): 233–48.

    Article  PubMed  CAS  Google Scholar 

  • Storm G., T. Daemen and D. D. Lasic (1995). “Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system.” Adv Drug Deliv Rev. 17: 31–48.

    Article  CAS  Google Scholar 

  • Sukhanova, A., J. Devy, L. Venteo, et al. (2004). “Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells.” Anal Biochem. 324(1): 60–7.

    Article  PubMed  CAS  Google Scholar 

  • Sun, C., R. Sze and M. Zhang (2006). “Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI.” J Biomed Mater Res 78(3): 550–7.

    Article  CAS  Google Scholar 

  • Szymanski-Exner, A., N. T. Stowe, R. S. Lazebnik, et al. (2002). “Noninvasive monitoring of local drug release in a rabbit radiofrequency (RF) ablation model using X-ray computed tomography.” J Contr Release. 83(3): 415–25.

    Article  CAS  Google Scholar 

  • Taylor, E. M. (2002). “The impact of efflux transporters in the brain on the development of drugs for CNS disorders.” Clin Pharmacokinet. 41(2): 81–92.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, H. and H. M. Coley (2003). Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer control. 10(2): 159–65.

    PubMed  Google Scholar 

  • Tokes, Z. A., A. K. St Peteri and J. A. Todd (1980). “Availability of liposome content to the nervous system. Liposomes and the blood–brain barrier.” Brain Res. 188(1): 282–6.

    Article  PubMed  CAS  Google Scholar 

  • Tokumitsu, H., J. Hiratsuka, Y. Sakurai, T. Kobayashi, H. Ichikawa and Y. Fukumori (2000). “Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor.” Canc Lett. 150(2): 177–82.

    Article  CAS  Google Scholar 

  • Torchilin, V. P. (1996). “How do polymers prolong circulation time of liposomes?” J Liposome Res. 6: 99–116.

    Article  CAS  Google Scholar 

  • Torchilin, V. P., T. S. Levchenko, A. N. Lukyanov, et al. (2001). p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta. 1511(2): 397–411.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V. P. (2002). “TAT peptide-modified liposomes for intracellular delivery of drugs and DNA.” Cell Mol Biol Lett. 7(2): 265–7.

    PubMed  Google Scholar 

  • Torchilin, V. P. and T. S. Levchenko (2003). “TAT-liposomes: a novel intracellular drug carrier.” Curr Protein Pept Sci. 4(2): 133–40.

    Article  PubMed  CAS  Google Scholar 

  • Tran, J., Z. Master, J. L. Yu, et al. (2002). “A role for survivin in chemoresistance of endothelial cells mediated by VEGF.” PNAS. 99: 4349–54.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Tusji, A., Ed. (2000). The blood–brain barrier and drug delivery to the CNS. New York, Marcel Dekker.

    Google Scholar 

  • Uehara, M., T. Inokuchi, K. Sano, et al. (1998). “The anti-tumor effect of photodynamic therapy evaluated by bromodeoxyuridine immunohistochemistry.” Int J Oral Maxillofac Surg. 27(3): 204–8.

    Article  PubMed  CAS  Google Scholar 

  • U.S. Food and Drug Administration, “Center for Drug Evaluation and Research.” http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm (Accessed April 25, 2006).

  • U.S. National Institute of Health, “Cancer Statistics” http://www.cancer.gov/statistics/ (Accessed September 15, 2006).

  • van der Zee, J. (2002). Heating the patient: a promising approach? Ann Oncol. 13:1173–84.

    Article  PubMed  Google Scholar 

  • van Vlerken, L. E. and M. M. Amiji (2006). Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert opinion on drug delivery. 3(2): 205–16.

    Article  PubMed  Google Scholar 

  • van Vlerken, L. E., Z. Duan, M. V. Seiden, et al. (2007). “Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer.” Canc Res. 67(10): 4843–50.

    Article  Google Scholar 

  • Veenhuizen, R., H. Oppelaar, M. Ruevekamp, et al. (1997). “Does tumour uptake of Foscan determine PDT efficacy?” Int J Cancer. 73(2): 236–9.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov, S. V. (2006). Colloidal microgels in drug delivery applications. Current Pharmaceutical Design. 2006;12(36): 4703–12.

    Article  PubMed  CAS  Google Scholar 

  • Visaria, R. K., R. J. Griffin, B. W. Williams (2006). Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Molecular cancer therapeutics. 5(4): 1014–20.

    Article  PubMed  CAS  Google Scholar 

  • Voura, E. B., J. K. Jaiswal, H. Mattoussi, et al. (2004). “Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy.” Nat Med. 10(9): 993–8.

    Article  PubMed  CAS  Google Scholar 

  • Wachsberger, P., R. Burd and A. P. Dicker (2003). “Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction.” Clin Cancer Res. 9(6): 1957–71.

    PubMed  CAS  Google Scholar 

  • Wani, M. C., H. L. Taylor, M. E. Wall, et al. (1971). “Plant antitumor agents VI. The isolation and structure of Taxol, a novel antitumor and anitleukemic agent from Taxus brevifolia.” J Am Chem Soc. 18(3): 242–60.

    Google Scholar 

  • Weinberg, B. D., E. Blanco, S. F. Lempka, et al. (2007). “Combined radiofrequency ablation and doxorubicin-eluting polymer implants for liver cancer treatment.” J Biomed Mater Res A. 81(1): 205–13.

    PubMed  Google Scholar 

  • Weissig, V. 2005. Targeted drug delivery to mammalian mitochondria in living cells. Expert Opin Drug Deliv. 2(1): 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Weissig, V., S. V. Boddapati, S. M. Cheng and G. G. D’Souza (2006). Liposomes and liposome-like vesicles for drug and DNA delivery to mitochondria.J Liposome Res. 16(3): 249–64.

    Article  PubMed  CAS  Google Scholar 

  • Wickline, S. A. and G. M. Lanza (2003). “Nanotechnology for molecular imaging and targeted therapy.” Circulation. 107(8): 1092–5.

    Article  PubMed  Google Scholar 

  • Winter, P. M., S. D. Caruthers, A. Kassner, et al. (2003a). “Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αVβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging.” Canc Res. 63(18): 5838–43.

    CAS  Google Scholar 

  • Winter, P. M., A. M. Morawski, S. D. Caruthers, et al. (2003b). “Molecular imaging of angiogenesis in early-stage atherosclerosis with αVβ3-integrin-targeted nanoparticles.” Circulation. 108(18): 2270–4.

    Article  PubMed  CAS  Google Scholar 

  • Wong, H. L., R. Bendayan, A. M. Rauth, et al. (2006). “Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer.” J Contr Release. 116(3): 275–84.

    Article  CAS  Google Scholar 

  • Wood, B. J., J. K. Locklin, A. Viswanathan, et al. (2007). Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. Journal of vascular and interventional radiology. 18(1 Pt 1): 9–24.

    Article  PubMed  Google Scholar 

  • Wu, X., H. Liu, J. Liu, et al. (2003). “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.” Nat Biotechnol. 21(1): 41–6.

    Article  PubMed  CAS  Google Scholar 

  • Wust, P., B. Hildebrandt, G. Sreenivasa, et al. (2002). “Hyperthermia in combined treatment of cancer.” Lancet Oncol. 3(8): 487–97.

    Article  PubMed  CAS  Google Scholar 

  • Wust, P., U. Gneveckow, M. Johannsen, et al. (2006). “Magnetic nanoparticles for interstitial thermotherapy—feasibility, tolerance and achieved temperatures.” Int J Hyperther. 22(8): 673–85.

    Article  CAS  Google Scholar 

  • Yang, S. C., L. F. Lu, Y. Cai, et al. (1999a). “Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain.” J Contr Release. 59(3): 299–307.

    Article  CAS  Google Scholar 

  • Yang, S., J. Zhu, Y. Lu, et al. (1999b). “Body distribution of camptothecin solid lipid nanoparticles after oral administration.” Pharmaceut Res. 16(5): 751–7.

    Article  CAS  Google Scholar 

  • Zara, G. P., R. Cavalli, A. Bargoni, et al. (2002a). “Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues.” J Drug Target. 10(4): 327–35.

    Article  PubMed  CAS  Google Scholar 

  • Zara, G. P., A. Bargoni, R. Cavalli, et al. (2002b). “Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats.” J Pharmaceut Sci. 91(5): 1324–33.

    Article  CAS  Google Scholar 

  • Zhang, X., J. Xie, S. Li, et al. (2003). “The study on brain targeting of the amphotericin B liposomes.” J Drug Target. 11(2): 117–22.

    Article  MATH  PubMed  CAS  Google Scholar 

  • Zhao, M., D. A. Beauregard, L. Loizou, et al. (2001). “Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent.” Natl Med. 1: 1241–1244.

    Article  CAS  Google Scholar 

  • Zhao, S., M. Borden, S. H. Bloch, et al. (2004). “Radiation-force assisted targeting facilitates ultrasonic molecular imaging.” Mol Imag. 3(3): 135–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Magadala, P., van Vlerken, L.E., Shahiwala, A., Amiji, M.M. (2008). Multifunctional Polymeric Nanosystems for Tumor-Targeted Delivery. In: Torchilin, V. (eds) Multifunctional Pharmaceutical Nanocarriers. Fundamental Biomedical Technologies, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76554-9_2

Download citation

Publish with us

Policies and ethics