Skip to main content
  • 3725 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Huber, Robust Statistics. New York: J. Wiley & Sons, 1981.

    Book  MATH  Google Scholar 

  2. A. L. Gibbs and F. E. Su, "On choosing and bounding probability metrics,” International Statistical Review, vol. 70, no. 3, pp. 419–435, 2002.

    Google Scholar 

  3. S. Rachev, Probability Metrics and the Stability of Stochastic Models. Chichester, England: J. Wiley & Sons, 1991.

    MATH  Google Scholar 

  4. R. H. Schumway and D. S. Stoffer, Time Series Analysis and its Applications. New York: Springer-Verlag, 2000.

    Google Scholar 

  5. G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions. New York: J. Wiley & Sons, 1997.

    MATH  Google Scholar 

  6. P. J. Huber, “A robust version of the probability ratio test,” Annals Math. Statistics, vol. 36, pp. 1753–1758, Dec. 1965.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. J. Huber, “Robust confidence limits,” Z. Wahrcheinlichkeitstheorie verw. Gebiete, vol. 10, pp. 269–278, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex Analsis and Optimization. Belmont, MA: Athena Scientific, 2003.

    Google Scholar 

  9. J.-P. Aubin and I. Ekland, Applied Nonlinear Analysis. New York: J. Wiley, 1984.

    MATH  Google Scholar 

  10. P. J. Huber and V. Strassen, “Minimax tests and the Neyman-Pearson lemma for capacities,” Annals Statistics, vol. 1, pp. 251–263, Mar. 1973.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. G. Dabak and D. H. Johnson, “Geometrically based robust detection," in Proc. Conf. Information Sciences and Systems, (Baltimore, MD), pp. 73–77, The Johns Hopkins Univ., Mar. 1993.

    Google Scholar 

  12. R. D. Martin and S. C. Schwartz, “Robust detection of a known signal in nearly Gaussian noise,” IEEE Trans. Informat. Theory, vol. 17, pp. 50–56, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. V. Moustakides and J. B. Thomas, “Robust detection of signals in dependent noise,” IEEE Trans. Informat. Theory, vol. 33, pp. 11–15, Jan. 1987.

    Article  MATH  Google Scholar 

  14. G. V. Moustakides, “Robust detection of signals: a large deviations approach,” IEEE Trans. Informat. Theory, vol. 31, pp. 822–825, Nov. 1985.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Meyn and V. V. Veeravalli, “Asymptotic robust hypothesis testing based on moment classes," in Proc. UCSD Information Theory and its Applications (ITA) Inaugural Workshop, (San Diego, CA), Feb. 2006.

    Google Scholar 

  16. A. H. El-Sawy and D. Vandelinde, “Robust detection of known signals,” IEEE Trans. Informat. Theory, vol. 23, pp. 722–727, Nov. 1977.

    Article  MATH  Google Scholar 

  17. S. A. Kassam and J. B. Thomas, “Asymptotically robust detection of a known signal in contaminated non-Gaussian noise,” IEEE Trans. Informat. Theory, vol. 22, pp. 22–26, Jan. 1976.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. A. Kassam and ,H. V. Poor, “Robust techniques for signal processing: a survey,” Proc. IEEE, vol. 73, pp. 433–480, Mar. 1985.

    Article  MATH  Google Scholar 

  19. B. C. Levy and R. Nikoukhah, “Robust least-squares estimation with a relative entropy constraint,” IEEE Trans. Informat. Theory, vol. 50, pp. 89–104, Jan. 2004.

    Article  MathSciNet  Google Scholar 

  20. B. Hassibi, A. H. Sayed, and T. Kailath, Indefinite-Quadratic Estimation and Control– A Unified Approach to H^2 and H^∞ Theories. Philadelphia: Soc. Indust. Applied Math., 1999.

    Google Scholar 

  21. Y. Eldar and N. Merhav, “A competitive minimax approach to robust estimation of random parameters,” IEEE Trans. Signal Proc., vol. 52, pp. 1931–1946, July 2004.

    Article  MathSciNet  Google Scholar 

  22. C. W. Helstrom, “Minimax detection of signals with unknown parameters,” Signal Processing, vol. 27, pp. 145–159, 1992.

    Article  MATH  Google Scholar 

  23. D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization. Belmont, MA: Athena Scientific, 1997.

    Google Scholar 

  24. B. C. Levy, “Robust hypothdesis testing with a relative entropy tolerance." preprint, available at http://arxiv.org/abs/cs/0707.2926, July 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Levy, B.C. (2008). Robust Detection. In: Principles of Signal Detection and Parameter Estimation. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76544-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76544-0_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76542-6

  • Online ISBN: 978-0-387-76544-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics