Skip to main content

Fluorescence Correlation Spectroscopy in Living Cells

  • Chapter
  • First Online:

Abstract

In fluorescence correlation spectroscopy (FCS), information about molecular dynamics is extracted by recording the fluctuating signal of a pico- to micromolar concentration of fluorescent molecules in solution. As primary parameters, FCS provides time constants of the fluorescence emission, as well as numbers and dwell times of the observed particles diffusing through the open volume. A biochemical reaction or macromolecular rearrangement causing changes in these parameters, when linked to fluorescence readout, can be quantified by FCS. Since the measurements are now routinely performed in a laser-illuminated confocal spot, making measurements in living cells is straightforward. Different cellular compartments, such as the nucleus, the cytoplasm, or the plasma membrane, can be easily distinguished and addressed. In addition to biochemical reactions, the local environment of macromolecules, for example, ion concentrations, pH, or viscosity, can be probed. Thus, FCS is a versatile and attractive technique for researchers striving for a quantitative understanding of interactions and dynamics of biological and in particular cellular systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The acronym ACF can denote both the measured autocorrelated data and the model function that is used for fitting. We try to specify these according to the context.

  2. 2.

    The issue of calibrating diffusion times has been recently overcome by scanning FCS (S-FCS).

  3. 3.

    Relations that are important for the application-oriented user are indicated by an asterisk.

  4. 4.

    Vectors are written in boldface type.

  5. 5.

    M. Hintersteiner personal communication.

  6. 6.

    This avoids accumulation of large amounts of data and allows on-line inspection of the measured curves. However, with the constant advances in computer performance, software-based correlators also have come into use.

References

  1. Bacia, K., Kim, S. A., & Schwille, P. (2006). Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3, 83–9.

    Article  Google Scholar 

  2. Kim, S. A., Heinze, K. G., & Schwille, P. (2007). Fluorescence correlation spectroscopy in living cells. Nat Methods 4, 963–73.

    Article  Google Scholar 

  3. Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. 3rd ed. New York: Springer.

    Book  Google Scholar 

  4. Bacia, K., & Schwille, P. (2007). Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2, 2842–56.

    Article  Google Scholar 

  5. Haustein, E., & Schwille, P. (2003). Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29, 153–66.

    Article  Google Scholar 

  6. Hess, S. T., Huang, S., Heikal, A. A., & Webb, W. W. (2002). Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41, 697–705.

    Article  Google Scholar 

  7. Weidemann, T., Wachsmuth, M., Tewes, M., Rippe, K., & Langowski, J. (2002). Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy. Single Mol 3, 49–61.

    Article  ADS  Google Scholar 

  8. Widengren, J., & Rigler, R. (1998). Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces. Cell Mol Biol (Noisy-le-grand) 44, 857–79.

    Google Scholar 

  9. Enderlein, J., Gregor, I., Patra, D., Dertinger, T., & Kaupp, U. B. (2005). Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. Chemphyschem 6, 2324–36.

    Article  Google Scholar 

  10. Hess, S. T., & Webb, W. W. (2002). Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83, 2300–17.

    Google Scholar 

  11. Dertinger, T., Pacheco, V., von der Hocht, I., Hartmann, R., Gregor, I., & Enderlein, J. (2007). Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chemphyschem 8, 433–43.

    Article  Google Scholar 

  12. Magde, D., Elson, E. L., & Webb, W. W. (1972). Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlations spectroscopy. Phys Rev Let 29, 705–708.

    Article  ADS  Google Scholar 

  13. Magde, D., Elson, E. L., & Webb, W. W. (1974). Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61.

    Article  Google Scholar 

  14. Magde, D., Webb, W. W., & Elson, E. L. (1978). Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow. Biopolymers 17, 361–76.

    Article  Google Scholar 

  15. Meseth, U., Wohland, T., Rigler, R., & Vogel, H. (1999). Resolution of fluorescence correlation measurements. Biophys J 76, 1619–31.

    Article  Google Scholar 

  16. Widengren, J., Mets, Ü., & Rigler, R. (1995). Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Phys Chem 99, 13368–79.

    Article  Google Scholar 

  17. Bosisio, C., Quercioli, V., Collini, M., D’Alfonso, L., Baldini, G., Bettati, S., Campanini, B., Raboni, S., & Chirico, G. (2008). Protonation and conformational dynamics of GFP mutants by two-photon excitation fluorescence correlation spectroscopy. J Phys Chem B 112, 8806–14.

    Article  Google Scholar 

  18. Haupts, U., Maiti, S., Schwille, P., & Webb, W. W. (1998). Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA 95, 13573–8.

    Article  ADS  Google Scholar 

  19. Heikal, A. A., Hess, S. T., Baird, G. S., Tsien, R. Y., & Webb, W. W. (2000). Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proc Natl Acad Sci USA 97, 11996–2001.

    Article  ADS  Google Scholar 

  20. Hendrix, J., Flors, C., Dedecker, P., Hofkens, J., & Engelborghs, Y. (2008). Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J 94, 4103–13.

    Article  Google Scholar 

  21. Malvezzi-Campeggi, F., Jahnz, M., Heinze, K. G., Dittrich, P., & Schwille, P. (2001). Light-induced flickering of DsRed provides evidence for distinct and interconvertible fluorescent states. Biophys J 81, 1776–85.

    Article  Google Scholar 

  22. Schenk, A., Ivanchenko, S., Rocker, C., Wiedenmann, J., & Nienhaus, G. U. (2004). Photodynamics of red fluorescent proteins studied by fluorescence correlation spectroscopy. Biophys J 86, 384–94.

    Article  Google Scholar 

  23. Schwille, P., Kummer, S., Heikal, A. A., Moerner, W. E., & Webb, W. W. (2000). Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci USA 97, 151–6.

    Article  ADS  Google Scholar 

  24. Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., & Remington, S. J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–5.

    Article  ADS  Google Scholar 

  25. Heim, R., Prasher, D. C., & Tsien, R. Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91, 12501–4.

    Article  ADS  Google Scholar 

  26. Cormack, B. P., Valdivia, R. H., & Falkow, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–8.

    Article  Google Scholar 

  27. Liu, Y., Kim, H. R., & Heikal, A. A. (2006). Structural basis of fluorescence fluctuation dynamics of green fluorescent proteins in acidic environments. J Phys Chem B 110, 24138–46.

    Article  Google Scholar 

  28. Wong, F. H., Banks, D. S., Abu-Arish, A., & Fradin, C. (2007). A molecular thermometer based on fluorescent protein blinking. J Am Chem Soc 129, 10302–3.

    Article  Google Scholar 

  29. Thompson, N. L. (1991). Fluorescence correlation spectroscopy. In Topics in Fluorescence Spectroscopy. Vol. 1: Techniques (Lankowicz, J. R., ed.), pp. 337–378. New York: Plenum Press.

    Google Scholar 

  30. Koppel, D. (1974). Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10, 1938–45.

    Article  ADS  Google Scholar 

  31. Eigen, M., & Rigler, R. (1994). Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA 91, 5740–7.

    Article  ADS  Google Scholar 

  32. Schwille, P., Meyer-Almes, F. J., & Rigler, R. (1997). Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72, 1878–86.

    Article  Google Scholar 

  33. Kim, S. A., Heinze, K. G., Bacia, K., Waxham, M. N., & Schwille, P. (2005). Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys J 88, 4319–36.

    Article  Google Scholar 

  34. Stoevesandt, O., & Brock, R. (2006). One-step analysis of protein complexes in microliters of cell lysate using indirect immunolabeling & fluorescence cross-correlation spectroscopy. Nat Protoc 1, 223–9.

    Article  Google Scholar 

  35. Berland, K. M., So, P. T., & Gratton, E. (1995). Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J 68, 694–701.

    Article  Google Scholar 

  36. Brock, R., Hink, M. A., & Jovin, T. M. (1998). Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys J 75, 2547–57.

    Article  Google Scholar 

  37. Gennerich, A., & Schild, D. (2000). Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophys J 79, 3294–306.

    Article  Google Scholar 

  38. Wachsmuth, M., Weidemann, T., Muller, G., Hoffmann-Rohrer, U. W., Knoch, T. A., Waldeck, W., & Langowski, J. (2003). Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys J 84, 3353–63.

    Article  Google Scholar 

  39. Wachsmuth, M., Waldeck, W., & Langowski, J. (2000). Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298, 677–89.

    Article  Google Scholar 

  40. Weidemann, T., Wachsmuth, M., Knoch, T. A., Muller, G., Waldeck, W., & Langowski, J. (2003). Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. J Mol Biol 334, 229–40.

    Article  Google Scholar 

  41. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E., & Webb, W. W. (1976). Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16, 1055–69.

    Article  Google Scholar 

  42. Sprague, B. L., & McNally, J. G. (2005). FRAP analysis of binding: proper and fitting. Trends Cell Biol 15, 84–91.

    Article  Google Scholar 

  43. Chen, Y., Lagerholm, B. C., Yang, B., & Jacobson, K. (2006). Methods to measure the lateral diffusion of membrane lipids and proteins. Methods 39, 147–53.

    Article  Google Scholar 

  44. Guo, L., Har, J. Y., Sankaran, J., Hong, Y., Kannan, B., & Wohland, T. (2008). Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study. Chemphyschem 9, 721–8.

    Article  Google Scholar 

  45. Kolin, D. L., & Wiseman, P. W. (2007). Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem Biophys 49, 141–64.

    Article  Google Scholar 

  46. Petersen, N. O., Hoddelius, P. L., Wiseman, P. W., Seger, O., & Magnusson, K. E. (1993). Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys J 65, 1135–46.

    Article  Google Scholar 

  47. Weissman, M., Schindler, H., & Feher, G. (1976). Determination of molecular weights by fluctuation spectroscopy: application to DNA. Proc Natl Acad Sci USA 73, 2776–80.

    Article  ADS  Google Scholar 

  48. Petersen, N. O. (1986). Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys J 49, 809–15.

    Article  Google Scholar 

  49. Petersen, N. O., Johnson, D. C., & Schlesinger, M. J. (1986). Scanning fluorescence correlation spectroscopy. II. Application to virus glycoprotein aggregation. Biophys J 49, 817–20.

    Article  Google Scholar 

  50. Digman, M. A., Brown, C. M., Sengupta, P., Wiseman, P. W., Horwitz, A. R., & Gratton, E. (2005). Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89, 1317–27.

    Article  Google Scholar 

  51. Digman, M. A., Sengupta, P., Wiseman, P. W., Brown, C. M., Horwitz, A. R., & Gratton, E. (2005). Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys J 88, L33–6.

    Article  Google Scholar 

  52. Koppel, D. E., Morgan, F., Cowan, A. E., & Carson, J. H. (1994). Scanning concentration correlation spectroscopy using the confocal laser microscope. Biophys J 66, 502–7.

    Article  Google Scholar 

  53. Xiao, Y., Buschmann, V., & Weston, K. D. (2005). Scanning fluorescence correlation spectroscopy: a tool for probing microsecond dynamics of surface-bound fluorescent species. Anal Chem 77, 36–46.

    Article  Google Scholar 

  54. Berland, K. M., So, P. T., Chen, Y., Mantulin, W. W., & Gratton, E. (1996). Scanning two-photon fluctuation correlation spectroscopy: particle counting measurements for detection of molecular aggregation. Biophys J 71, 410–20.

    Article  Google Scholar 

  55. Meyer, T., & Schindler, H. (1988). Particle counting by fluorescence correlation spectroscopy. Simultaneous measurement of aggregation and diffusion of molecules in solutions and in membranes. Biophys J 54, 983–93.

    Article  Google Scholar 

  56. Petrasek, Z., & Schwille, P. (2008). Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94, 1437–48.

    Article  Google Scholar 

  57. Ruan, Q., Cheng, M. A., Levi, M., Gratton, E., & Mantulin, W. W. (2004). Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS). Biophys J 87, 1260–7.

    Article  Google Scholar 

  58. Skinner, J. P., Chen, Y., & Muller, J. D. (2005). Position-sensitive scanning fluorescence correlation spectroscopy. Biophys J 89, 1288–301.

    Article  Google Scholar 

  59. Amediek, A., Haustein, E., Scherfeld, D., & Schwille, P. (2002). Scanning dual-color cross-correlation analysis for dynamic co-localization studies of immobile molecules. Single Mol 3, 201–210.

    Article  ADS  Google Scholar 

  60. Ries, J., & Schwille, P. (2008). New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10, 3487–97.

    Article  Google Scholar 

  61. Ries, J., & Schwille, P. (2006). Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91, 1915–24.

    Article  Google Scholar 

  62. Denk, W., Strickler, J. H., & Webb, W. W. (1990). 2-photon laser scanning fluorescence microscopy. Science 248, 73–76.

    Article  ADS  Google Scholar 

  63. Xu, C., Zipfel, W., Shear, J. B., Williams, R. M., & Webb, W. W. (1996). Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93, 10763–68.

    Article  ADS  Google Scholar 

  64. Heinze, K. G., Koltermann, A., & Schwille, P. (2000). Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis. Proc Natl Acad Sci USA 97, 10377–82.

    Article  ADS  Google Scholar 

  65. Thompson, N. L., & Axelrod, D. (1983). Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys J 43, 103–14.

    Article  Google Scholar 

  66. Thompson, N. L., & Steele, B. L. (2007). Total internal reflection with fluorescence correlation spectroscopy. Nat Protoc 2, 878–90.

    Article  Google Scholar 

  67. Lieto, A. M., & Thompson, N. L. (2004). Total internal reflection with fluorescence correlation spectroscopy: nonfluorescent competitors. Biophys J 87, 1268–78.

    Article  Google Scholar 

  68. Starr, T. E., & Thompson, N. L. (2001). Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion. Biophys J 80, 1575–84.

    Article  Google Scholar 

  69. Pero, J. K., Haas, E. M., & Thompson, N. L. (2006). Size dependence of protein diffusion very close to membrane surfaces: measurement by total internal reflection with fluorescence correlation spectroscopy. J Phys Chem B 110, 10910–18.

    Article  Google Scholar 

  70. Starr, T. E., & Thompson, N. L. (2002). Local diffusion and concentration of IgG near planar membranes: measurement by total internal reflection with fluorescence correlation spectroscopy. J Phys Chem B 106, 2365–71.

    Article  Google Scholar 

  71. Lieto, A. M., Cush, R. C., & Thompson, N. L. (2003). Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys J 85, 3294–302.

    Article  Google Scholar 

  72. Kastrup, L., Blom, H., Eggeling, C., & Hell, S. W. (2005). Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94(17): 178104.

    Google Scholar 

  73. Briddon, S. J., Middleton, R. J., Yates, A. S., George, M. W., Kellam, B., & Hill, S. J. (2004). Application of fluorescence correlation spectroscopy to the measurement of agonist binding to a G-protein coupled receptor at the single cell level. Faraday Discuss 126, 197–207; discussion 245–54.

    Article  ADS  Google Scholar 

  74. Schwartz, J. W., Novarino, G., Piston, D. W., & DeFelice, L. J. (2005). Substrate binding stoichiometry and kinetics of the norepinephrine transporter. J Biol Chem 280, 19177–84.

    Article  Google Scholar 

  75. Abouzied, M. M., El-Tahir, H. M., Prenner, L., Haberlein, H., Gieselmann, V., & Franken, S. (2005). Hepatoma-derived growth factor. Significance of amino acid residues 81–100 in cell surface interaction and proliferative activity. J Biol Chem 280, 10945–54.

    Article  Google Scholar 

  76. Larson, D. R., Gosse, J. A., Holowka, D. A., Baird, B. A., & Webb, W. W. (2005). Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J Cell Biol 171, 527–36.

    Article  Google Scholar 

  77. Pyenta, P. S., Schwille, P., Webb, W. W., Holowka, D., & Baird, B. (2003). Lateral diffusion of membrane lipid-anchored probes before and after aggregation of cell surface IgE-receptors. J Phys Chem A 107, 8310–18.

    Article  Google Scholar 

  78. Vamosi, G., Bodnar, A., Vereb, G., Jenei, A., Goldman, C. K., Langowski, J., Toth, K., Matyus, L., Szollosi, J., Waldmann, T. A., & Damjanovich, S. (2004). IL-2 and IL-15 receptor alpha-subunits are coexpressed in a supramolecular receptor cluster in lipid rafts of T cells. Proc Natl Acad Sci USA 101, 11082–87.

    Article  ADS  Google Scholar 

  79. Kretzschmar, A. K., Dinger, M. C., Henze, C., Brocke-Heidrich, K., & Horn, F. (2004). Analysis of Stat3 (signal transducer and activator of transcription 3) dimerization by fluorescence resonance energy transfer in living cells. Biochem J 377, 289–97.

    Article  Google Scholar 

  80. Watanabe, K., Saito, K., Kinjo, M., Matsuda, T., Tamura, M., Kon, S., Miyazaki, T., & Uede, T. (2004). Molecular dynamics of STAT3 on IL-6 signaling pathway in living cells. Biochem Biophys Res Commun 324, 1264–73.

    Article  Google Scholar 

  81. Schwille, P., Haupts, U., Maiti, S., & Webb, W. W. (1999). Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77, 2251–65.

    Article  Google Scholar 

  82. Weiss, M., Elsner, M., Kartberg, F., & Nilsson, T. (2004). Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J 87, 3518–24.

    Article  Google Scholar 

  83. Weiss, M., Hashimoto, H., & Nilsson, T. (2003). Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys J 84, 4043–52.

    Article  Google Scholar 

  84. Wawrezinieck, L., Rigneault, H., Marguet, D., & Lenne, P. F. (2005). Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89, 4029–42.

    Article  Google Scholar 

  85. Chakrabandhu, K., Herincs, Z., Huault, S., Dost, B., Peng, L., Conchonaud, F., Marguet, D., He, H. T., & Hueber, A. O. (2007). Palmitoylation is required for efficient Fas cell death signaling. EMBO J 26, 209–20.

    Article  Google Scholar 

  86. Cahuzac, N., Baum, W., Kirkin, V., Conchonaud, F., Wawrezinieck, L., Marguet, D., Janssen, O., Zornig, M., & Hueber, A. O. (2006). Fas ligand is localized to membrane rafts, where it displays increased cell death-inducing activity. Blood 107, 2384–91.

    Article  Google Scholar 

  87. Nagata, S. (1997). Apoptosis by death factor. Cell 88, 355–65.

    Article  Google Scholar 

  88. Krammer, P. H., Arnold, R., & Lavrik, I. N. (2007). Life and death in peripheral T cells. Nat Rev Immunol 7, 532–42.

    Article  Google Scholar 

  89. Kohl, T., Haustein, E., & Schwille, P. (2005). Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys J 89, 2770–82.

    Article  Google Scholar 

  90. Keese, M., Offterdinger, M., Tischer, C., Girod, A., Lommerse, P. H., Yagublu, V., Magdeburg, R., & Bastiaens, P. I. (2007). Quantitative imaging of apoptosis commitment in colorectal tumor cells. Differentiation 75, 809–18.

    Article  Google Scholar 

  91. Kim, S. A., Heinze, K. G., Waxham, M. N., & Schwille, P. (2004). Intracellular calmodulin availability accessed with two-photon cross-correlation. Proc Natl Acad Sci USA 101, 105–10.

    Article  ADS  Google Scholar 

  92. Philip, F., Sengupta, P., & Scarlata, S. (2007). Signaling through a G Protein-coupled receptor and its corresponding G protein follows a stoichiometrically limited model. J Biol Chem 282, 19203–16.

    Article  Google Scholar 

  93. Sengupta, P., Philip, F., & Scarlata, S. (2008). Caveolin-1 alters Ca(2+) signal duration through specific interaction with the G alpha q family of G proteins. J Cell Sci 121, 1363–72.

    Article  Google Scholar 

  94. Knol, J. C., Engel, R., Blaauw, M., Visser, A. J., & van Haastert, P. J. (2005). The phosducin-like protein PhLP1 is essential for G{beta}{gamma} dimer formation in Dictyostelium discoideum. Mol Cell Biol 25, 8393–400.

    Article  Google Scholar 

  95. Simons, K., & Vaz, W. L. (2004). Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33, 269–95.

    Article  Google Scholar 

  96. Maeder, C. I., Hink, M. A., Kinkhabwala, A., Mayr, R., Bastiaens, P. I., & Knop, M. (2007). Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9, 1319–26.

    Article  Google Scholar 

  97. Slaughter, B. D., Schwartz, J. W., & Li, R. (2007). Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proc Natl Acad Sci USA 104, 20320–5.

    Article  ADS  Google Scholar 

  98. Wang, Z., Shah, J. V., Berns, M. W., & Cleveland, D. W. (2006). In vivo quantitative studies of dynamic intracellular processes using fluorescence correlation spectroscopy. Biophys J 91, 343–51.

    Article  Google Scholar 

Download references

Acknowledgments

TW is indebted to Konstantin Klenin and Malte Wachsmuth for their contributions in deriving FCS theory. TW and PS thank Eugene Petrov for helpful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Weidemann, T., Schwille, P. (2009). Fluorescence Correlation Spectroscopy in Living Cells. In: Hinterdorfer, P., Oijen, A. (eds) Handbook of Single-Molecule Biophysics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76497-9_8

Download citation

Publish with us

Policies and ethics