Skip to main content

Single-Molecule Imaging in Live Cells

  • Chapter
  • First Online:
Handbook of Single-Molecule Biophysics

Abstract

This chapter provides a comprehensive overview of how single-molecule imaging is achieved in live cells. The main focus is on fluorescent proteins, which are the most widely used fluorescent labels for live-cell imaging. The chromophore structures and the associated photochemical and photophysical properties of fluorescent proteins are discussed in detail, with a particular focus on how they influence single-molecule imaging in live cells. A few fluorescent proteins in the yellow-to-red spectral range, including newly discovered photoinducible ones, are selected for more detailed discussions due to their superior properties in single-molecule imaging. Special considerations for live-cell imaging and general instrumentations for single-molecule detection are also described. Finally, a few representative applications using single-molecule imaging in live cells are provided to illustrate how important biological knowledge can be obtained using this powerful technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and throughout, single-molecule imaging refers to single-fluorophore imaging. Alternatively, a single molecule can be imaged by labeling a single molecule using multiple fluorophores or detected by amplifying the fluorescent signal using a fluorogenic substrate [310]. These approaches are discussed briefly at the end of the chapter.

  2. 2.

    In the field of fluorescent proteins, the wavelength of each color is defined slightly differently from what is defined in physics. Following the convention of the field, in this chapter the wavelength of each color is as follows: violet: ∼400 nm; blue: ∼480 nm; green: ∼510 nm; yellow: ∼550 nm; orange: ∼580 nm; red: ∼620 nm.

  3. 3.

    It is unclear why Tyr66 is universally conserved in all GFP-like proteins in nature. In engineered FPs it was found that other two aromatic groups, Trp and Phe, or even His, can substitute Tyr66 and produce blue-shifted fluorescence as in CFPs and BFPs [47,62,63].

  4. 4.

    There is one recent study reporting the generation of the first red fluorescence-emitting derivative (excitation and emission maxima at 555 and 585 nm, respectively) of avGFP [106]. Purified proteins or cells expressing this mutant, however, showed both green (strong) and red (dim) emission. It is likely that only a small population of the mutant matures to the red chromophore. Nonetheless, this study indicates that the full mutagenesis potential of GFP has yet to be reached.

  5. 5.

    Here the term “photoinducible FPs” is introduced to characterize the common feature of this class of fluorescent proteins: They all undergo light-induced processes to change their fluorescence emission properties. In the literature, the terms photoactivation, photoswitching, and photoconversion are used, sometimes interchangeably. In the context of this chapter photoactivation refers specifically to the process of fluorescence turn-on from a dark state irreversibly (off → on); photoswitching to the process of reversible fluorescence turn-on and turn-off cycles (off ↔ on); and photoconversion to the process of light-induced change of excitation/emission spectra between two color regions (on1 on2).

References

  1. Moerner, W. E., and L. Kador (1989). Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett, 62(21): 2535–8.

    Article  ADS  Google Scholar 

  2. Orrit, M., and J. Bernard (1990). Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett, 65(21): 2716–19.

    Article  ADS  Google Scholar 

  3. Shav-Tal, Y., X. Darzacq, et al. (2004). Dynamics of single mRNPs in nuclei of living cells. Science, 304(5678): 1797–800.

    Article  ADS  Google Scholar 

  4. Golding, I., J. Paulsson, et al. (2005). Real-time kinetics of gene activity in individual bacteria. Cell, 123(6): 1025–36.

    Article  Google Scholar 

  5. Fusco, D., N. Accornero, et al. (2003). Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol, 13(2): 161–7.

    Article  Google Scholar 

  6. Bates, D., and N. Kleckner (2005). Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell, 121(6): 899–911.

    Article  Google Scholar 

  7. Lemon, K. P., and A. D. Grossman (2000). Movement of replicating DNA through a stationary replisome. Mol Cell, 6(6): 1321–30.

    Article  Google Scholar 

  8. Viollier, P. H., M. Thanbichler, et al. (2004). Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci USA, 101(25): 9257–62.

    Article  ADS  Google Scholar 

  9. Rotman, B. (1961). Measurement of activity of single molecules of beta-D-galactosidase. Proc Natl Acad Sci USA, 47: 1981–91.

    Article  ADS  Google Scholar 

  10. Cai, L., N. Friedman, and X. S. Xie (2006). Stochastic protein expression in individual cells at the single molecule level. Nature, 440(7082): 358–62.

    Article  ADS  Google Scholar 

  11. Ghaemmaghami, S., W. K. Huh, et al. (2003). Global analysis of protein expression in yeast. Nature, 425(6959): 737–41.

    Article  ADS  Google Scholar 

  12. Guptasarma, P. (1995). Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli? Bioessays, 17(11): 987–97.

    Article  Google Scholar 

  13. Freund, J. A., and T. Poschel (2005). Stochastic Processes in Physics, Chemistry, and Biology. Springer: Berlin.

    Google Scholar 

  14. Elowitz, M. B., A. J. Levine, et al. (2002). Stochastic gene expression in a single cell. Science, 297(5584): 1183–6.

    Article  ADS  Google Scholar 

  15. Ozbudak, E. M., M. Thattai, et al. (2002). Regulation of noise in the expression of a single gene. Nat Genet, 31(1): 69–73.

    Article  Google Scholar 

  16. Weinberger, L. S., J. C. Burnett, et al. (2005). Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell, 122(2): 169–82.

    Article  Google Scholar 

  17. Huang, C. Y., and J. E. Ferrell, Jr. (1996). Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA, 93(19): 10078–83.

    Article  ADS  Google Scholar 

  18. Braun, H. A., H. Wissing, et al. (1994). Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature, 367(6460): 270–3.

    Article  ADS  Google Scholar 

  19. Wang, W., and Z. D. Wang (1997). Internal-noise-enhanced signal transduction in neuronal systems. Phys Rev E, 55(6): 7379–84.

    Article  ADS  Google Scholar 

  20. Bezrukov, S. M., and I. Vodyanoy (1995). Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature, 378(6555): 362–4.

    Article  ADS  Google Scholar 

  21. Arkin, A., J. Ross, and H. H. McAdams (1998). Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 149(4): 1633–48.

    Google Scholar 

  22. Suel, G. M., J. Garcia-Ojalvo, et al. (2006). An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 440(7083): 545–50.

    Article  ADS  Google Scholar 

  23. Choi, P. J., L. Cai, et al. (2008). A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science, 322(5900): 442–6.

    Article  ADS  Google Scholar 

  24. Maamar, H., A. Raj, and D. Dubnau (2007). Noise in gene expression determines cell fate in Bacillus subtilis. Science, 317(5837): 526–9.

    Article  ADS  Google Scholar 

  25. Kussell, E., R. Kishony, et al. (2005). Bacterial persistence: a model of survival in changing environments. Genetics, 169(4): 1807–14.

    Article  Google Scholar 

  26. Berland, K. M., P. T. So, and E. Gratton (1995). Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J, 68(2): 694–701.

    Article  Google Scholar 

  27. Brock, R., M. A. Hink, and T. M. Jovin (1998). Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys J, 75(5): 2547–57.

    Article  Google Scholar 

  28. Schwille, P., U. Haupts, et al. (1999). Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J, 77(4): 2251–65.

    Article  Google Scholar 

  29. Komarova, Y., J. Peloquin, and G. Borisy (2005). Microinjection of fluorophore-labeled proteins. In Live Cell Imaging, a Laboratory Manual, R. D. Goldman and D. L. Spector, Editors. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, pp. 67–86.

    Google Scholar 

  30. O’Hare, H. M., K. Johnsson, and A. Gautier (2007). Chemical probes shed light on protein function. Curr Opin Struct Biol, 17(4): 488–94.

    Article  Google Scholar 

  31. Sako, Y., S. Minoghchi, and T. Yanagida (2000). Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol, 2(3): 168–72.

    Article  Google Scholar 

  32. Schütz, G. J., G. Kada, et al. (2000). Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19: 892–901.

    Article  Google Scholar 

  33. Murakoshi, H., R. Iino, et al. (2004). Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA, 101(19): 7317–22.

    Article  ADS  Google Scholar 

  34. Guignet, E. G., J. M. Segura, et al. (2007). Repetitive reversible labeling of proteins at polyhistidine sequences for single-molecule imaging in live cells. Chemphyschem, 8(8): 1221–7.

    Article  Google Scholar 

  35. Lord, S. J., N. R. Conley, et al. (2008). A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. J Am Chem Soc. (2008) Jul 23; 130(29): 9204–5.

    Google Scholar 

  36. Lord, S. J., Z. Lu, et al. (2007). Photophysical properties of acene DCDHF fluorophores: long-wavelength single-molecule emitters designed for cellular imaging. J Phys Chem A, 111(37): 8934–41.

    Article  Google Scholar 

  37. Michalet, X., F. F. Pinaud, et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709): 538–44.

    Article  ADS  Google Scholar 

  38. Zhou, M., and I. Ghosh (2007). Quantum dots and peptides: a bright future together. Biopolymers, 88(3): 325–39.

    Article  Google Scholar 

  39. Davenport, D., and J. A. C. Nicol (1955). Luminescence of Hydromedusae. Proc R Soc B, 144: 399–411.

    Article  ADS  Google Scholar 

  40. Shimomura, O., F. H. Johnson, and Y. Saiga (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol, 59: 223–39.

    Article  Google Scholar 

  41. Hastings, J. W., and J. G. Morin (1969). Comparative biochemistry of calcium photoproteins from the ctenophore, Mnemiopsis and the coelenterates Aequorea, Obelia, Pelagia and Renilla. Biol Bull, 137: 402.

    Google Scholar 

  42. Morin, J. G., and J. W. Hastings (1971). Energy transfer in a bioluminescent system. J Cell Physiol, 77(3): 313–8.

    Article  Google Scholar 

  43. Morise, H., O. Shimomura, et al. (1974). Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry, 13(12): 2656–62.

    Article  Google Scholar 

  44. Mills, C. E. (2001). Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia, 451: 55–68.

    Article  Google Scholar 

  45. Prasher, D. C., V. K. Eckenrode, et al. (1992). Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 111(2): 229–33.

    Article  Google Scholar 

  46. Chalfie, M., Y. Tu, et al. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148): 802–5.

    Article  ADS  Google Scholar 

  47. Heim, R., D. C. Prasher, and R. Y. Tsien (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA, 91(26): 12501–4.

    Article  ADS  Google Scholar 

  48. Inouye, S., and F. I. Tsuji (1994). Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett, 341(2–3): 277–80.

    Article  Google Scholar 

  49. Heim, R., A. B. Cubitt, and R. Y. Tsien (1995). Improved green fluorescence. Nature, 373(6516): 663–4.

    Article  ADS  Google Scholar 

  50. Yang, F., L. G. Moss, and G. N. Phillips, Jr. (1996). The molecular structure of green fluorescent protein. Nat Biotechnol, 14(10): 1246–51.

    Article  Google Scholar 

  51. Ormo, M., A. B. Cubitt, et al. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273(5280): 1392–5.

    Article  ADS  Google Scholar 

  52. Cubitt, A. B., F. Carrel, et al. (1992). Molecular genetic analysis of signal transduction pathways controlling multicellular development in Dictyostelium. Cold Spring Harb Symp Quant Biol, 57: 177–92.

    Article  Google Scholar 

  53. Reid, B. G., and G. C. Flynn (1997). Chromophore formation in green fluorescent protein. Biochemistry, 36(22): 6786–91.

    Article  Google Scholar 

  54. Rosenow, M. A., H. A. Huffman, et al. (2004). The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry, 43(15): 4464–72.

    Article  Google Scholar 

  55. Rosenow, M. A., H. N. Patel, and R. M. Wachter (2005). Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation. Biochemistry, 44(23): 8303–11.

    Article  Google Scholar 

  56. Zhang, L., H. N. Patel, et al. (2006). Reaction progress of chromophore biogenesis in green fluorescent protein. J Am Chem Soc, 128(14): 4766–72.

    Article  Google Scholar 

  57. Barondeau, D. P., C. J. Kassmann, et al. (2005). Understanding GFP chromophore biosynthesis: controlling backbone cyclization and modifying post-translational chemistry. Biochemistry, 44(6): 1960–70.

    Article  Google Scholar 

  58. Ward, W. W., H. J. Prentice, et al. (1982). Spectral perturbations of the Aequorea green fluorescent protein. Photochem Photobiol, 35: 803–8.

    Article  Google Scholar 

  59. Voityuk, A. A., A. D. Kummer, et al. (2001). Absorption spectra of the GFP chromophore in solution: comparison of theoretical and experimental results. Chem Phys, 269(1–3): 83–91.

    Article  Google Scholar 

  60. Chattoraj, M., B. A. King, et al. (1996). Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA, 93(16): 8362–7.

    Article  ADS  Google Scholar 

  61. van Thor, J. J., T. Gensch, et al. (2002). Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol, 9(1): 37–41.

    Article  Google Scholar 

  62. Cubitt, A. B., R. Heim, et al. (1995). Understanding, improving and using green fluorescent proteins. Trends Biochem Sci, 20(11): 448–55.

    Article  Google Scholar 

  63. Cubitt, A. B., L. A. Woollenweber, and R. Heim (1999). Understanding structure–function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol, 58: 19–30.

    Article  Google Scholar 

  64. Remington, S. J. (2006). Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol, 16(6): 714–21.

    Article  Google Scholar 

  65. McAnaney, T. B., W. Zeng, et al. (2005). Protonation, photobleaching, and photoactivation of yellow fluorescent protein (YFP 10C): a unifying mechanism. Biochemistry, 44(14): 5510–24.

    Article  Google Scholar 

  66. Shaner, N. C., M. Z. Lin, et al. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods, 5(6): 545–51.

    Article  Google Scholar 

  67. Swaminathan, R., C. P. Hoang, and A. S. Verkman (1997). Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J, 72(4): 1900–7.

    Article  Google Scholar 

  68. Peterman, E. J. G., S. Brasselet, and W. E. Moerner (1999). The fluorescence dynamics of single molecules of green fluorescent protein. J Phys Chem A, 103(49): 10553–60.

    Article  Google Scholar 

  69. Pierce, D. W., N. Hom-Booher, and R. D. Vale (1997). Imaging individual green fluorescent proteins. Nature, 388(6640): 338.

    Article  ADS  Google Scholar 

  70. Greenbaum, L., C. Rothmann, et al. (2000). Green fluorescent protein photobleaching: a model for protein damage by endogenous and exogenous singlet oxygen. Biol Chem, 381(12): 1251–58.

    Article  Google Scholar 

  71. Bulina, M. E., D. M. Chudakov, et al. (2006). A genetically encoded photosensitizer. Nat Biotechnol, 24(1): 95–9.

    Article  Google Scholar 

  72. Lakowicz, J. (2006). Principles of Fluorescence Spectroscopy, 3rd ed. Springer: New York.

    Book  Google Scholar 

  73. Heikal, A. A., S. T. Hess, et al. (2000). Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). Proc Natl Acad Sci USA, 97(22): 11996–2001.

    Article  ADS  Google Scholar 

  74. Garcia-Parajo, M. F., G.M. Segers-Nolten, et al. (2000). Real-time light-driven dynamics of the fluorescence emission in single green fluorescent protein molecules. Proc Natl Acad Sci USA, 97(13): 7237–42.

    Article  ADS  Google Scholar 

  75. Shaner, N. C., P. A. Steinbach, and R. Y. Tsien (2005). A guide to choosing fluorescent proteins. Nat Methods, 2(12): 905–9.

    Article  Google Scholar 

  76. Harms, G. S., L. Cognet, et al. (2001). Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys J, 80(5): 2396–408.

    Article  Google Scholar 

  77. Dickson, R. M., A. B. Cubitt, et al. (1997). On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature, 388(6640): 355–8.

    Article  ADS  Google Scholar 

  78. Moerner, W. E., E. J. Peterman, et al. (1999). Optical methods for exploring dynamics of single copies of green fluorescent protein. Cytometry, 36(3): 232–8.

    Article  Google Scholar 

  79. Miyawaki, A., and R. Y. Tsien (2000). Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol, 327: 472–500.

    Article  Google Scholar 

  80. Nifosi, R., A. Ferrari, et al. (2003). Photoreversible dark state in a tristable green fluorescent protein variant. J Phys Chem B, 107(7): 1679–84.

    Article  Google Scholar 

  81. Haupts, U., S. Maiti, et al. (1998). Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci USA, 95(23): 13573.

    Article  ADS  Google Scholar 

  82. Evdokimov, A. G., M. E. Pokross, et al. (2006). Structural basis for the fast maturation of Arthropoda green fluorescent protein. EMBO Rep, 7(10): 1006–12.

    Article  Google Scholar 

  83. Nagai, T., K. Ibata, et al. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol, 20(1): 87–90.

    Article  Google Scholar 

  84. Yu, J., J. Xiao, et al. (2006). Probing gene expression in live cells, one protein molecule at a time. Science, 311(5767): 1600–3.

    Article  ADS  Google Scholar 

  85. Shaner, N. C., R. E. Campbell, et al. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol, 22(12): 1567–72.

    Article  Google Scholar 

  86. Tsien, R. Y. (1998). The green fluorescent protein. Annu Rev Biochem, 67: 509–44.

    Article  Google Scholar 

  87. Kennis, J. T., D. S. Larsen, et al. (2004). Uncovering the hidden ground state of green fluorescent protein. Proc Natl Acad Sci USA, 101(52): 17988–93.

    Article  ADS  Google Scholar 

  88. Cormack, B. P., G. Bertram, et al. (1997). Yeast-enhanced green fluorescent protein (yEGFP)a reporter of gene expression in Candida albicans. Microbiology, 143(Pt 2): 303–11.

    Article  Google Scholar 

  89. Brejc, K., T. K. Sixma, et al. (1997). Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci USA, 94(6): 2306–11.

    Article  ADS  Google Scholar 

  90. Wachter, R. M., D. Yarbrough, et al. (2000). Crystallographic and energetic analysis of binding of selected anions to the yellow variants of green fluorescent protein. J Mol Biol, 301(1): 157–71.

    Article  Google Scholar 

  91. Iino, R., I. Koyama, and A. Kusumi (2001). Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J, 80(6): 2667–77.

    Article  Google Scholar 

  92. Watanabe, N., and T. J. Mitchison (2002). Single-molecule speckle analysis of actin filament turnover in Lamellipodia. Science, 295(5557): 1083–6.

    Article  ADS  Google Scholar 

  93. Pedelacq, J. D., S. Cabantous, et al. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol, 24(1): 79–88.

    Article  Google Scholar 

  94. Deich, J., E. M. Judd, et al. (2004). Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc Natl Acad Sci USA, 101(45): 15921–6.

    Article  ADS  Google Scholar 

  95. Harms, G. S., L. Cognet, et al. (2001). Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys J, 81(5): 2639–46.

    Article  Google Scholar 

  96. Kim, S. Y., Z. Gitai, et al. (2006). Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc Natl Acad Sci USA, 103(29): 10929–34.

    Article  ADS  Google Scholar 

  97. Chesler, M., and K. Kaila (1992). Modulation of pH by neuronal activity. Trends Neurosci, 15(10): 396–402.

    Article  Google Scholar 

  98. Mansoura, M. K., J. Biwersi, et al. (1999). Fluorescent chloride indicators to assess the efficacy of CFTR cDNA delivery. Hum Gene Ther, 10(6): 861–75.

    Article  Google Scholar 

  99. Zacharias, D. A., J. D. Violin, et al. (2002). Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science, 296(5569): 913–6.

    Article  ADS  Google Scholar 

  100. Griesbeck, O., G. S. Baird, et al. (2001). Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem, 276(31): 29188–94.

    Google Scholar 

  101. Shaner, N. C., G. H. Patterson, and M. W. Davidson (2007). Advances in fluorescent protein technology. J Cell Sci, 120(Pt 24): 4247–60.

    Article  Google Scholar 

  102. Rekas, A., J. R. Alattia, et al. (2002). Crystal structure of Venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J Biol Chem, 277(52): 50573–8.

    Article  Google Scholar 

  103. Nguyen, A. W., and P. S. Daugherty (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol, 23(3): 355–60.

    Article  Google Scholar 

  104. Ohashi, T., S. D. Galiacy, et al. (2007). An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins. Protein Sci, 16(7): 1429–38.

    Article  Google Scholar 

  105. Vinkenborg, J. L., T. H. Evers, et al. (2007). Enhanced sensitivity of FRET-based protease sensors by redesign of the GFP dimerization interface. Chembiochem, 8(10): 1119–21.

    Article  Google Scholar 

  106. Mishin, A. S., F. V. Subach, et al. (2008). The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemistry, 47(16): 4666–73.

    Article  Google Scholar 

  107. Elowitz, M. B., M. G. Surette, et al. (1997). Photoactivation turns green fluorescent protein red. Curr Biol, 7(10): 809–12.

    Article  Google Scholar 

  108. Sawin, K. E., and P. Nurse (1997). Photoactivation of green fluorescent protein. Curr Biol, 7(10): R606–7.

    Article  Google Scholar 

  109. Matz, M. V., A. F. Fradkov, et al. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol, 17(10): 969–73.

    Article  Google Scholar 

  110. Baird, G. S., D. A. Zacharias, and R. Y. Tsien (2000). Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA, 97(22): 11984–9.

    Article  ADS  Google Scholar 

  111. Gross, L. A., G. S. Baird, et al. (2000). The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA, 97(22): 11990–5.

    Article  ADS  Google Scholar 

  112. Wall, M. A., M. Socolich, and R. Ranganathan (2000). The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol, 7(12): 1133–8.

    Article  Google Scholar 

  113. Yarbrough, D., R. M. Wachter, et al. (2001). Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc Natl Acad Sci USA, 98(2): 462–7.

    Article  ADS  Google Scholar 

  114. Tubbs, J. L., J. A. Tainer, and E. D. Getzoff (2005). Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation. Biochemistry, 44(29): 9833–40.

    Article  Google Scholar 

  115. Shu, X., K. Kallio, et al. (2007). Ultrafast excited-state dynamics in the green fluorescent protein variant S65T/H148D. 1. Mutagenesis and structural studies. Biochemistry, 46(43): 12005–13.

    Article  Google Scholar 

  116. Xie, X. S., P. J. Choi, et al. (2008). Single-molecule approach to molecular biology in living bacterial cells. Annu Rev Biophys, 37: 417–44.

    Article  Google Scholar 

  117. Karasawa, S., T. Araki, et al. (2004). Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J, 381(Pt 1): 307–12.

    Google Scholar 

  118. Shu, X., N. C. Shaner, et al. (2006). Novel chromophores and buried charges control color in mFruits. Biochemistry, 45(32): 9639–47.

    Article  Google Scholar 

  119. Vavylonis, D., J. Q. Wu, et al. (2008). Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science, 319(5859): 97–100.

    Article  ADS  Google Scholar 

  120. Merzlyak, E. M., J. Goedhart, et al. (2007). Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods, 4(7): 555–7.

    Article  Google Scholar 

  121. Petersen, J., P. G. Wilmann, et al. (2003). The 2.0-A crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J Biol Chem, 278(45): 44626–31.

    Article  Google Scholar 

  122. Shcherbo, D., E. M. Merzlyak, et al. (2007). Bright far-red fluorescent protein for whole-body imaging. Nat Methods, 4(9): 741–6.

    Article  Google Scholar 

  123. Manley, S., J. M. Gillette, et al. (2008). High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods. 2008 Feb; 5(2): 155–7.

    Google Scholar 

  124. Niu, L., and J. Yu (2008). Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J, 95(4): 2009–16.

    Article  Google Scholar 

  125. Verkhusha, V. V., and A. Sorkin (2005). Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol, 12(3): 279–85.

    Article  Google Scholar 

  126. Lukyanov, K. A., A. F. Fradkov, et al. (2000). Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem, 275(34): 25879–82.

    Article  Google Scholar 

  127. Ando, R., H. Mizuno, and A. Miyawaki (2004). Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science, 306(5700): 1370–3.

    Article  ADS  Google Scholar 

  128. Ando, R., H. Hama, et al. (2002). An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA, 99(20): 12651–6.

    Article  ADS  Google Scholar 

  129. Tsutsui, H., S. Karasawa, et al. (2005). Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep, 6(3): 233–8.

    Article  Google Scholar 

  130. Wiedenmann, J., S. Ivanchenko, et al. (2004). EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA, 101(45): 15905–10.

    Article  ADS  Google Scholar 

  131. Gurskaya, N. G., V. V. Verkhusha, et al. (2006). Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol, 24(4): 461–5.

    Article  Google Scholar 

  132. Chudakov, D. M., V. V. Verkhusha, et al. (2004). Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol, 22(11): 1435–9.

    Article  Google Scholar 

  133. Lukyanov, K. A., D. M. Chudakov, et al. (2005). Innovation: Photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol, 6(11): 885–91.

    Article  Google Scholar 

  134. Patterson, G. H. (2008). Photoactivation and imaging of photoactivatable fluorescent proteins. Curr Protoc Cell Biol, 2008(March): Chapter 21: Unit 21.6.

    Google Scholar 

  135. Lippincott-Schwartz, J., and G. H. Patterson (2008). Fluorescent proteins for photoactivation experiments. Methods Cell Biol, 85: 45–61.

    Article  Google Scholar 

  136. Cinelli, R. A., V. Tozzini, et al. (2001). Coherent dynamics of photoexcited green fluorescent proteins. Phys Rev Lett, 86(15): 3439–42.

    Article  ADS  Google Scholar 

  137. Biteen, J. S., M. A. Thompson, et al. (2008). Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods, 5(11): 947–9.

    Article  Google Scholar 

  138. Habuchi, S., R. Ando, et al. (2005). Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci USA, 102(27): 9511–6.

    Article  ADS  Google Scholar 

  139. Andresen, M., A. C. Stiel, et al. (2007). Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci USA, 104(32): 13005–9.

    Article  ADS  Google Scholar 

  140. Stiel, A. C., S. Trowitzsch, et al. (2007). 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J, 402(1): 35–42.

    Article  Google Scholar 

  141. Wilmann, P. G., K. Turcic, et al. (2006). The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein. J Mol Biol, 364(2): 213–24.

    Article  Google Scholar 

  142. Dedecker, P., J. Hotta, et al. (2006). Fast and reversible photoswitching of the fluorescent protein Dronpa as evidenced by fluorescence correlation spectroscopy. Biophys J, 91(5): L45–7.

    Article  Google Scholar 

  143. Fron, E., C. Flors, et al. (2007). Ultrafast excited-state dynamics of the photoswitchable protein Dronpa. J Am Chem Soc, 129(16): 4870–1.

    Article  Google Scholar 

  144. Mizuno, H., T. K. Mal, et al. (2008). Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proc Natl Acad Sci USA, 105(27): 9227–32.

    Article  ADS  Google Scholar 

  145. Habuchi, S., P. Dedecker, et al. (2006). Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochem Photobiol Sci, 5(6): 567–76.

    Article  Google Scholar 

  146. Chisari, M., D. K. Saini, et al. (2007). Shuttling of G protein subunits between the plasma membrane and intracellular membranes. J Biol Chem, 282(33): 24092–8.

    Article  Google Scholar 

  147. Wiegert, J. S., C. P. Bengtson, and H. Bading (2007). Diffusion and not active transport underlies and limits ERK1/2 synapse-to-nucleus signaling in hippocampal neurons. J Biol Chem, 282(40): 29621–33.

    Article  Google Scholar 

  148. Aramaki, S., and K. Hatta (2006). Visualizing neurons one-by-one in vivo: optical dissection and reconstruction of neural networks with reversible fluorescent proteins. Dev Dyn, 235(8): 2192–9.

    Article  Google Scholar 

  149. Dedecker, P., J. Hotta, et al. (2007). Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J Am Chem Soc, 129(51): 16132–41.

    Article  Google Scholar 

  150. Betzig, E., G. H. Patterson, et al. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793): 1642–5.

    Article  ADS  Google Scholar 

  151. Eggeling, C., M. Hilbert, et al. (2007). Reversible photoswitching enables single-molecule fluorescence fluctuation spectroscopy at high molecular concentration. Microsc Res Tech. 2007 DEC; 70(12): 1003–9.

    Google Scholar 

  152. Egner, A., C. Geisler, et al. (2007). Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J. NOV 1; 93(9): 3285–90.

    Google Scholar 

  153. Stiel, A. C., M. Andresen, et al. (2008). Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J. SEP 15; 95(6): 2989–97.

    Google Scholar 

  154. Campbell, R. E., O. Tour, et al. (2002). A monomeric red fluorescent protein. Proc Natl Acad Sci USA, 99(12): 7877–82.

    Article  ADS  Google Scholar 

  155. Nienhaus, G. U., K. Nienhaus, et al. (2006). Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol, 82(2): 351–8.

    Article  Google Scholar 

  156. Nienhaus, K., G. U. Nienhaus, et al. (2005). Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci USA, 102(26): 9156–9.

    Article  ADS  Google Scholar 

  157. Mizuno, H., T. K. Mal, et al. (2003). Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell, 12(4): 1051–8.

    Article  Google Scholar 

  158. Shroff, H., C. G. Galbraith, et al. (2007). Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA, 104(51): 20308–13.

    Article  ADS  Google Scholar 

  159. Niu, L., and J. Yu (2008). Investigating intracellular dynamics of FtsZ cytoskeleton with photo-activation single-molecule tracking. Biophys J, 95(4): 2009–16, 15 Aug 2008.

    Google Scholar 

  160. Aubin, J. E. (1979). Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem, 27(1): 36–43.

    Article  Google Scholar 

  161. Chance, B., and B. Thorell (1959). Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem, 234: 3044–50.

    Google Scholar 

  162. Benson, R. C., R. A. Meyer, et al. (1979). Cellular autofluorescence—is it due to flavins? J Histochem Cytochem, 27(1): 44–8.

    Article  Google Scholar 

  163. Xiao, J., J. Elf, et al. (2007). Imaging gene expression in living cells at the single-molecule level. In Single Molecules: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, pp. 149–69.

    Google Scholar 

  164. Lansford, R., G. Bearman, and S. E. Fraser (2001). Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. J Biomed Opt, 6: 311.

    Article  Google Scholar 

  165. Dickinson, M. E., G. Bearman, et al. (2001). Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques, 31(1272): 1274–6.

    Google Scholar 

  166. Connally, R., D. Veal, and J. Piper (2004). Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio. J Biomed Opt, 9(4): 725–34.

    Article  Google Scholar 

  167. Wilkerson, C. W., Jr., P. M. Goodwin, et al. (1993). Detection and lifetime measurement of single molecules in flowing sample streams by laser-induced fluorescence. Appl Phys Lett, 62(17): 2030–32.

    Article  ADS  Google Scholar 

  168. Qin, J., Y. Fung, et al. (2004). Native fluorescence detection of flavin derivatives by microchip capillary electrophoresis with laser-induced fluorescence intensified charge-coupled device detection. J Chromatogr A, 1027(1–2): 223–29.

    Article  Google Scholar 

  169. Yang, H., G. Luo, et al. (2003). Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer. American Association for the Advancement of Science: Washington, DC: pp. 262–6.

    Google Scholar 

  170. Xie, X. S., J. Yu, and W. Y. Yang (2006). Living cells as test tubes. Science, 312(5771): 228–30.

    Article  ADS  Google Scholar 

  171. Straight, A. F., A. S. Belmont, et al. (1996). GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol, 6(12): 1599–1608.

    Article  Google Scholar 

  172. Lau, I. F., S. R. Filipe, et al. (2003). Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol Microbiol, 49(3): 731–43.

    Article  Google Scholar 

  173. Bertrand, E., P. Chartrand, et al. (1998). Localization of ASH1 mRNA particles in living yeast. Mol Cell, 2(4): 437–45.

    Article  Google Scholar 

  174. Averbeck, D., and S. Averbeck (1998). DNA photodamage, repair, gene induction and genotoxicity following exposures to 254 nm UV and 8-methoxypsoralen plus UVA in a eukaryotic cell system. Photochem Photobiol, 68(3): 289–95.

    Article  Google Scholar 

  175. Pfeifer, G. P., R. Drouin, et al. (1992). Binding of transcription factors creates hot spots for UV photoproducts in vivo. Mol Cell Biol, 12(4): 1798.

    Google Scholar 

  176. Jones, C. A., E. Huberman, et al. (1987). Mutagenesis and cytotoxicity in human epithelial cells by far-and near-ultraviolet radiations: action spectra. Radiat Res, 110(2): 244–54.

    Article  Google Scholar 

  177. Mohanty, S. K., M. Sharma, and P. K. Gupta (2006). Generation of ROS in cells on exposure to CW and pulsed near-infrared laser tweezers. Photochem Photobiol Sci, 5(1): 134–9.

    Article  Google Scholar 

  178. Neuman, K. C., E. H. Chadd, et al. (1999). Characterization of photodamage to Escherichia coli in optical traps. Biophys J, 77(5): 2856–63.

    Article  Google Scholar 

  179. Liu, Y., G. J. Sonek, et al. (1996). Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys J, 71(4): 2158.

    Article  Google Scholar 

  180. Ashkin, A., and J. M. Dziedzic (1989). Internal cell manipulation using infrared laser traps. Proc Natl Acad Sci USA, 86(20): 7914–18.

    Article  ADS  Google Scholar 

  181. Moan, J., K. Berg, et al. (1989). Intracellular localization of photosensitizers. In Photosensitizing Compounds: Their Chemistry, Biology and Clinical Use, G. Bock and S. Harnett, Editors. John Wiley and Sons: New York, pp. 95–111.

    Google Scholar 

  182. Bensasson, R. V., E. J. Land, and T. G. Truscott (1993). Excited States and Free Radicals in Biology and Medicine. Oxford University Press: Oxford.

    Google Scholar 

  183. Dixit, R., and R. Cyr (2003). Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J, 36(2): 280–90.

    Article  Google Scholar 

  184. Halliwell, B., and J. M. C. Gutteridge (1989). Protection against oxidants in biological systems: the superoxide theory of oxygen toxicity. Free Rad Biol Med. Edited by Halliwell B, Gutteridge JMC, Oxford Clarendun Press pp 86–179.

    Google Scholar 

  185. Schafer, F. Q., and G. R. Buettner (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Rad Biol Med, 30(11): 1191–1212.

    Article  Google Scholar 

  186. de With, A., and K. O. Greulich (1995). Wavelength dependence of laser-induced DNA damage in lymphocytes observed by single-cell gel electrophoresis. J Photochem Photobiol B Biol, 30(1): 71–76.

    Article  Google Scholar 

  187. Tripathi, A., R. E. Jabbour, et al. (2008). Waterborne pathogen detection using Raman spectroscopy. Appl Spectrosc, 62: 1–9.

    Article  ADS  Google Scholar 

  188. Benson, D. M., J. Bryan, et al. (1985). Digital imaging fluorescence microscopy: spatial heterogeneity of photobleaching rate constants in individual cells. J Cell Biol, 100(4): 1309–23.

    Article  Google Scholar 

  189. Adachi, K., K. Kinosita, Jr., and T. Ando (1999). Single-fluorophore imaging with an unmodified epifluorescence microscope and conventional video camera. J Microsc, 195(2): 125–32.

    Article  Google Scholar 

  190. Gratton, E., and M. J. vandeVen (1995). Laser sources for confocal microscopy, in Handbook of Biological Confocal Microscopy, J. B. Pawley, Editor. Plenum Press: New York, pp. 65–98.

    Google Scholar 

  191. Murphy, D. B. (2002). Fundamentals of Light Microscopy and Electronic Imaging. Wiley-Liss: New York.

    Google Scholar 

  192. Nipkow, P. (1884). German Patent 30,105.

    Google Scholar 

  193. Inoue, S., and K. R. Spring (1997). Video Microscopy. Plenum Press: New York.

    Book  Google Scholar 

  194. Stuurman, N., and R. D. Vale (2006). Imaging single molecules using total internal reflection fluorescence microscopy. In Live Cell Imaging, A Laboratory Manual, R.D. Goldman and D.L. Spector, Editors. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, pp. 585–601.

    Google Scholar 

  195. Swedlow, J. R., P. D. Andrews, and M. Platani (2005). In vivo imaging of mammalian cells. In Live Cell Imaging: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, pp. 329–43.

    Google Scholar 

  196. Elf, J., G. W. Li, and X. S. Xie (2007). Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316(5828): 1191–4.

    Article  ADS  Google Scholar 

  197. Ueda, M., Y. Sako, et al. (2001). Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science, 294(5543): 864–7.

    Article  ADS  Google Scholar 

  198. Haggie, P. M., and A. S. Verkman (2008). Monomeric CFTR in plasma membranes in live cells revealed by single-molecule fluorescence imaging. J Biol Chem. AUG 2008; 283: 23510–23513.

    Google Scholar 

  199. Fu, G., C. Wang, et al. (2008). Heterodimerization of integrin Mac-1 subunits studied by single-molecule imaging. Biochem Biophys Res Commun, 368(4): 882–6.

    Article  MathSciNet  Google Scholar 

  200. Ulbrich, M. H., and E. Y. Isacoff (2007). Subunit counting in membrane-bound proteins. Nat Methods, 4(4): 319–21.

    Google Scholar 

  201. Groc, L., M. Heine, et al. (2004). Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci, 7(7): 695–6.

    Article  Google Scholar 

  202. Lommerse, P. H., G. A. Blab, et al. (2004). Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J, 86(1 Pt 1): 609–16.

    Article  Google Scholar 

  203. Lommerse, P. H., B. E. Snaar-Jagalska, et al. (2005). Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. J Cell Sci, 118(Pt 9): 1799–809.

    Article  Google Scholar 

  204. Sonnleitner, A., L. M. Mannuzzu, et al. (2002). Structural rearrangements in single ion channels detected optically in living cells. Proc Natl Acad Sci USA, 99(20): 12759.

    Article  ADS  Google Scholar 

  205. Cai, D., K. J. Verhey, and E. Meyhofer (2007). Tracking single Kinesin molecules in the cytoplasm of mammalian cells. Biophys J, 92(12): 4137–44.

    Article  Google Scholar 

  206. Holland, M. J. (2002). Transcript abundance in yeast varies over six orders of magnitude. J Biol Chem, 277(17): 14363–6.

    Article  Google Scholar 

  207. Velculescu, V. E., L. Zhang, et al. (1997). Characterization of the yeast transcriptome. Cell, 88(2): 243–51.

    Article  Google Scholar 

  208. Novick, A., and M. Weiner (1957). Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci USA, 43(7): 553–66.

    Article  ADS  Google Scholar 

  209. Blake, W. J., M. Kærn, et al. (2003). Noise in eukaryotic gene expression. Nature, 422(6932): 633–7.

    Article  ADS  Google Scholar 

  210. Raser, J.M., and E. K. O’Shea (2004). Control of stochasticity in eukaryotic gene expression. Science, 304(5678): 1811–4.

    Article  ADS  Google Scholar 

  211. Kohout, S. C., M. H. Ulbrich, et al. (2008). Subunit organization and functional transitions in Ci-VSP. Nat Struct Mol Biol, 15(1): 106–8.

    Article  Google Scholar 

  212. Joglekar, A. P., D. C. Bouck, et al. (2006). Molecular architecture of a kinetochore-microtubule attachment site. Nat Cell Biol, 8(6): 581–5.

    Article  Google Scholar 

  213. Hess, S. T., T. J. Gould, et al. (2007). Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci USA, 104(44): 17370–5.

    Article  ADS  Google Scholar 

  214. Patterson, G. H., et al. (1997). Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J, 73(5): 2782–90.

    Article  MathSciNet  Google Scholar 

  215. Iwane, A. H., et al. (1997). Single molecular assay of individual ATP turnover by a myosin-GFP fusion protein expressed in vitro. FEBS Lett, 407(2): 235–8.

    Article  Google Scholar 

  216. Cognet, L., et al. (2002). Fluorescence microscopy of single autofluorescent proteins for cellular biology. C R Physique, 3(5): 645–56.

    Article  ADS  Google Scholar 

  217. Kremers, G. J., et al. (2007). Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry, 46(12): 3775–83.

    Article  Google Scholar 

  218. Hendrix, J., et al. (2008). Dark states in monomeric red fluorescent proteins studied by fluorescence correlation and single molecule spectroscopy. Biophys J, 94(10): 4103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xiao, J. (2009). Single-Molecule Imaging in Live Cells. In: Hinterdorfer, P., Oijen, A. (eds) Handbook of Single-Molecule Biophysics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76497-9_3

Download citation

Publish with us

Policies and ethics