Skip to main content

Single-Molecule Analysis of Biomembranes

  • Chapter
  • First Online:

Abstract

Biomembranes are more than just a cell’s envelope – as the interface to the surrounding of a cell they carry key signalling functions. Consequentially, membranes are highly complex organelles: they host about thousand different types of lipids and about half of the proteome, whose interaction has to be orchestrated appropriately for the various signalling purposes. In particular, knowledge on the nanoscopic organization of the plasma membrane appears critical for understanding the regulation of interactions between membrane proteins. The high localization precision of ∼20 nm combined with a high time resolution of ∼1 ms made single molecule tracking an excellent technology to obtain insights into membrane nanostructures, even in a live cell context. In this chapter, we will highlight concepts to achieve superresolution by single molecule imaging, summarize tools for data analysis, and review applications on artificial and live cell membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Singer, S. J., and G. L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–731.

    Article  ADS  Google Scholar 

  2. Lipowsky, R., and E. Sackmann, editors. 1995. Structure and dynamics of membranes. Amsterdam: Elsevier.

    Google Scholar 

  3. Vereb, G., J. Szollosi, J. Matko, P. Nagy, T. Farkas, L. Vigh, L. Matyus, T. A. Waldmann, and S. Damjanovich. 2003. Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci USA 100:8053–8058.

    Article  ADS  Google Scholar 

  4. Jacobson, K., O. G. Mouritsen, and R. G. Anderson. 2007. Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14.

    Article  Google Scholar 

  5. Kusumi, A., C. Nakada, K. Ritchie, K. Murase, K. Suzuki, H. Murakoshi, R. S. Kasai, J. Kondo, and T. Fujiwara. 2005. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378.

    Article  Google Scholar 

  6. Lenne, P. F., L. Wawrezinieck, F. Conchonaud, O. Wurtz, A. Boned, X. J. Guo, H. Rigneault, H. T. He, and D. Marguet. 2006. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245–3256.

    Article  Google Scholar 

  7. Anderson, R. G., and K. Jacobson. 2002. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296:1821–1825.

    Article  ADS  Google Scholar 

  8. Fujiwara, T., K. Ritchie, H. Murakoshi, K. Jacobson, and A. Kusumi. 2002. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1081.

    Article  Google Scholar 

  9. Chen, Y., W. R. Thelin, B. Yang, S. L. Milgram, and K. Jacobson. 2006. Transient anchorage of cross-linked glycosyl-phosphatidylinositol-anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides. J Cell Biol 175:169–178.

    Article  Google Scholar 

  10. Suzuki, K. G., T. K. Fujiwara, F. Sanematsu, R. Iino, M. Edidin, and A. Kusumi. 2007. GPI-anchored receptor clusters transiently recruit Lyn and G{alpha} for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J Cell Biol 177: 717–730.

    Article  Google Scholar 

  11. Demond, A. L., K. D. Mossman, T. Starr, M. L. Dustin, and J. T. Groves. 2008. T cell receptor microcluster transport through molecular mazes reveals mechanism of translocation. Biophys J 94:3286–3292.

    Google Scholar 

  12. Sako, Y., A. Nagafuchi, S. Tsukita, M. Takeichi, and A. Kusumi. 1998. Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J Cell Biol 140:1227–1240.

    Article  Google Scholar 

  13. Saxton, M. J. 1994. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J 66:394–401.

    Article  Google Scholar 

  14. Marguet, D., P. F. Lenne, H. Rigneault, and H. T. He. 2006. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J 25:3446–3457.

    Article  Google Scholar 

  15. Simons, K., and E. Ikonen. 1997. Functional rafts in cell membranes. Nature 387:569–572.

    Article  ADS  Google Scholar 

  16. Barak, L. S., and W. W. Webb. 1981. Fluorescent low density lipoprotein for observation of dynamics of individual receptor complexes on cultured human fibroblasts. J Cell Biol 90:595–604.

    Article  Google Scholar 

  17. Kusumi, A., Y. Sako, and M. Yamamoto. 1993. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021–2040.

    Article  Google Scholar 

  18. Saxton, M. J., and K. Jacobson. 1997. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399.

    Article  Google Scholar 

  19. Lee, G. M., A. Ishihara, and K. A. Jacobson. 1991. Direct observation of Brownian motion of lipids in a membrane. Proc Natl Acad Sci USA 88:6274–6278.

    Article  ADS  Google Scholar 

  20. Wilson, K. M., I. E. Morrison, P. R. Smith, N. Fernandez, and R. J. Cherry. 1996. Single particle tracking of cell-surface HLA-DR molecules using R-phycoerythrin labeled monoclonal antibodies and fluorescence digital imaging. J Cell Sci 109 (Pt 8):2101–2109.

    Google Scholar 

  21. Kao, H. P., and A. S. Verkman. 1994. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J 67:1291–1300.

    Article  Google Scholar 

  22. Felsenfeld, D. P., D. Choquet, and M. P. Sheetz. 1996. Ligand binding regulates the directed movement of beta1 integrins on fibroblasts. Nature 383:438–440.

    Article  ADS  Google Scholar 

  23. Anderson, C. M., G. N. Georgiou, I. E. Morrison, G. V. Stevenson, and R. J. Cherry. 1992. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. J Cell Sci 101(Pt 2): 415–425.

    Google Scholar 

  24. Fein, M., J. Unkeless, F. Y. Chuang, M. Sassaroli, R. da Costa, H. Vaananen, and J. Eisinger. 1993. Lateral mobility of lipid analogues and GPI-anchored proteins in supported bilayers determined by fluorescent bead tracking. J Membr Biol 135:83–92.

    Google Scholar 

  25. Geerts, H., M. De Brabander, R. Nuydens, S. Geuens, M. Moeremans, J. De Mey, and P. Hollenbeck. 1987. Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys J 52: 775–782.

    Article  Google Scholar 

  26. Thompson, R. E., D. R. Larson, and W. W. Webb. 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783.

    Article  Google Scholar 

  27. Kuno, M., D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt. 1999. Nonexponential “blinking” kinetics of single CdSe quantum dots: a universal power law behavior. J Chem Phys 112:3117–3120.

    Article  ADS  Google Scholar 

  28. Schmidt, T., G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler. 1995. Characterization of photophysics and mobility of single molecules in a fluid lipid membrane. J Phys Chem 99: 17662–17668.

    Article  Google Scholar 

  29. Schmidt, T., G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler. 1996. Imaging of single molecule diffusion. Proc Natl Acad Sci USA 93:2926–2929.

    Article  ADS  Google Scholar 

  30. Funatsu, T., Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida. 1995. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous-solution. Nature 374:555–559.

    Article  ADS  Google Scholar 

  31. Sase, I., H. Miyata, J. E. Corrie, J. S. Craik, and K. Kinosita, Jr. 1995. Real time imaging of single fluorophores on moving actin with an epifluorescence microscope. Biophys J 69: 323–328.

    Article  Google Scholar 

  32. Schütz, G. J., H. Schindler, and T. Schmidt. 1997. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080.

    Article  Google Scholar 

  33. Schütz, G. J., W. Trabesinger, and T. Schmidt. 1998. Direct observation of ligand colocalization on individual receptor molecules. Biophys J 74:2223–2226.

    Article  Google Scholar 

  34. Sonnleitner, A., G. J. Schutz, and T. Schmidt. 1999. Free Brownian motion of individual lipid molecules in biomembranes. Biophys J 77:2638–2642.

    Article  Google Scholar 

  35. Harms, G. S., M. Sonnleitner, G. J. Schütz, H. J. Gruber, and T. Schmidt. 1999. Single-molecule anisotropy imaging. Biophys J 77:2864–2870.

    Article  Google Scholar 

  36. Ke, P. C., and C. A. Naumann. 2001. Hindered diffusion in polymer-tethered phosopholipid monolayers at the air–water interface: a single molecule fluorescence imaging study. Langmuir 17:5076–5081.

    Article  Google Scholar 

  37. Ke, P. C., and C. A. Naumann. 2001. Single molecule fluorescence imaging of phospholipid monolayers at the air–water interface. Langmuir 17:3727–3733.

    Article  Google Scholar 

  38. Deverall, M. A., E. Gindl, E. K. Sinner, H. Besir, J. Ruehe, M. J. Saxton, and C. A. Naumann. 2005. Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophys J 88: 1875–1886.

    Article  Google Scholar 

  39. Kiessling, V., J. M. Crane, and L. K. Tamm. 2006. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophys J 91:3313–3326.

    Article  Google Scholar 

  40. Schütz, G. J., G. Kada, V. P. Pastushenko, and H. Schindler. 2000. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901.

    Article  Google Scholar 

  41. Schütz, G. J., V. P. Pastushenko, H. J. Gruber, H.-G. Knaus, B. Pragl, and H. Schindler. 2000. 3D Imaging of individual ion channels in live cells at 40 nm resolution. Single Mol. 1:25–31.

    Article  ADS  Google Scholar 

  42. Wieser, S., M. Moertelmaier, E. Fuertbauer, H. Stockinger, and G. J. Schutz. 2007. (Un)Confined diffusion of CD59 in the plasma membrane determined by high-resolution single molecule microscopy. Biophys J 92: 3719–3728.

    Article  Google Scholar 

  43. Drbal, K., M. Moertelmaier, C. Holzhauser, A. Muhammad, E. Fuertbauer, S. Howorka, M. Hinterberger, H. Stockinger, and G. J. Schutz. 2007. Single-molecule microscopy reveals heterogeneous dynamics of lipid raft components upon TCR engagement. Int Immunol 19:675–684.

    Article  Google Scholar 

  44. Wieser, S., G. J. Schutz, M. E. Cooper, and H. Stockinger. 2007. Single molecule diffusion analysis on cellular nanotubules: implications on plasma membrane structure below the diffraction limit. Appl Phys Lett 91:233901.

    Article  ADS  Google Scholar 

  45. Lommerse, P. H., K. Vastenhoud, N. J. Pirinen, A. I. Magee, H. P. Spaink, and T. Schmidt. 2006. Single-molecule diffusion reveals similar mobility for the Lck, H-ras, and K-ras membrane anchors. Biophys J 91:1090–1097.

    Article  Google Scholar 

  46. Lommerse, P. H., B. E. Snaar-Jagalska, H. P. Spaink, and T. Schmidt. 2005. Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. J Cell Sci 118:1799–1809.

    Article  Google Scholar 

  47. Lommerse, P. H., G. A. Blab, L. Cognet, G. S. Harms, B. E. Snaar-Jagalska, H. P. Spaink, and T. Schmidt. 2004. Single-molecule imaging of the H-Ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J 86:609–616.

    Article  Google Scholar 

  48. Harms, G. S., L. Cognet, P. H. Lommerse, G. A. Blab, H. Kahr, R. Gamsjager, H. P. Spaink, N. M. Soldatov, C. Romanin, and T. Schmidt. 2001. Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys J 81:2639–2646.

    Article  Google Scholar 

  49. Vrljic, M., S. Y. Nishimura, S. Brasselet, W. E. Moerner, and H. M. McConnell. 2002. Translational diffusion of individual class II MHC membrane proteins in cells. Biophys J 83:2681–2692.

    Article  Google Scholar 

  50. Vrljic, M., S. Y. Nishimura, W. E. Moerner, and H. M. McConnell. 2005. Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. Biophys J 88:334–347.

    Article  Google Scholar 

  51. Nishimura, S. Y., M. Vrljic, L. O. Klein, H. M. McConnell, and W. E. Moerner. 2006. Cholesterol depletion induces solid-like regions in the plasma membrane. Biophys J 90: 927–938.

    Article  Google Scholar 

  52. Umemura, Y. M., M. Vrljic, S. Y. Nishimura, T. K. Fujiwara, K. G. Suzuki, and A. Kusumi. 2008. Both MHC class II and its GPI-anchored form undergo hop diffusion as observed by single-molecule tracking. Biophys J 95:435–450.

    Google Scholar 

  53. Murase, K., T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi. 2004. Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys J 86:4075–4093.

    Article  Google Scholar 

  54. Douglass, A. D., and R. D. Vale. 2005. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121:937–950.

    Article  Google Scholar 

  55. Hess, S. T., T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg. 2007. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci USA 104:17370–17375.

    Article  ADS  Google Scholar 

  56. Manley, S., J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-Schwartz. 2008. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157.

    Article  Google Scholar 

  57. Jacquier, V., M. Prummer, J. M. Segura, H. Pick, and H. Vogel. 2006. Visualizing odorant receptor trafficking in living cells down to the single-molecule level. Proc Natl Acad Sci USA 103:14325–14330.

    Article  ADS  Google Scholar 

  58. James, J. R., S. S. White, R. W. Clarke, A. M. Johansen, P. D. Dunne, D. L. Sleep, W. J. Fitzgerald, S. J. Davis, and D. Klenerman. 2007. Single-molecule level analysis of the subunit composition of the T cell receptor on live T cells. Proc Natl Acad Sci USA 104:17662–17667.

    Article  ADS  Google Scholar 

  59. Morimatsu, M., H. Takagi, K. G. Ota, R. Iwamoto, T. Yanagida, and Y. Sako. 2007. Multiple-state reactions between the epidermal growth factor receptor and Grb2 as observed by using single-molecule analysis. Proc Natl Acad Sci USA 104:18013–18018.

    Article  ADS  Google Scholar 

  60. Sako, Y., S. Minoghchi, and T. Yanagida. 2000. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2:168–172.

    Article  Google Scholar 

  61. Ueda, M., Y. Sako, T. Tanaka, P. Devreotes, and T. Yanagida. 2001. Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294:864–867.

    Article  ADS  Google Scholar 

  62. Füreder-Kitzmüller, E., J. Hesse, A. Ebner, H. J. Gruber, and G. J. Schütz. 2005. Non-exponential bleaching of single bioconjugated Cy5 molecules. Chem Phys Lett 404:13–18.

    Article  ADS  Google Scholar 

  63. Hecht, E. 1987. Optics. Reading, MA: Addison-Wesley.

    Google Scholar 

  64. Enderlein, J., E. Toprak, and P. R. Selvin. 2006. Polarization effect on position accuracy of fluorophore localization. Opt Express 14:8111–8120.

    Article  ADS  Google Scholar 

  65. Pohl, D. W., W. Denk, and M. Lanz. 1984. Optical stethoscopy: image recording with resolution λ/20. Appl Phys Lett 44:651–653.

    Article  ADS  Google Scholar 

  66. Betzig, E., and J. K. Trautman. 1992. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189–195.

    Article  ADS  Google Scholar 

  67. Denk, W., J. H. Strickler, and W. W. Webb. 1990. Two-photon laser scanning fluorescence microscopy. Science 248:73–76.

    Article  ADS  Google Scholar 

  68. Klar, T. A., S. Jakobs, M. Dyba, A. Egner, and S. W. Hell. 2000. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210.

    Article  ADS  Google Scholar 

  69. Pawley, J. B., editor. 1995. Handbook of biological confocal microscopy. New York: Plenum Press.

    Google Scholar 

  70. Gustafsson, M. G. 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102:13081–13086.

    Article  ADS  Google Scholar 

  71. Heintzmann, R., T. M. Jovin, and C. Cremer. 2002. Saturated patterned excitation microscopy—a concept for optical resolution improvement. J Opt Soc Am A – Opt Image Sci Vis 19:1599–1609.

    Article  ADS  Google Scholar 

  72. Hell, S. W. 2007. Far-field optical nanoscopy. Science 316:1153–1158.

    Article  ADS  Google Scholar 

  73. Betzig, E. 1995. Proposed method for molecular optical imaging. Opt Lett 20:237–239.

    Article  ADS  Google Scholar 

  74. Bobroff, N. 1986. Position measurement with a resolution and noise-limited instrument. Rev Sci Instrum 57:1152–1157.

    Article  ADS  Google Scholar 

  75. Yildiz, A., J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin. 2003. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065.

    Article  ADS  Google Scholar 

  76. Ober, R. J., S. Ram, and E. S. Ward. 2004. Localization accuracy in single-molecule microscopy. Biophys J 86:1185–1200.

    Article  Google Scholar 

  77. Ha, T., T. Enderle, D. S. Chemla, and S. Weiss. 1996. Dual-molecule spectroscopy: molecular rulers for the study of biological macromolecules. IEEE J Sel Top Quant Electr 2: 1115–1128.

    Article  Google Scholar 

  78. van Oijen, A. M., J. Kohler, J. Schmidt, M. Muller, and G. J. Brakenhoff. 1999. Far-field fluorescence microscopy beyond the diffraction limit. J Opt Soc Am A 16:909–915.

    Article  ADS  Google Scholar 

  79. Trabesinger, W., G. J. Schütz, H. J. Gruber, H. Schindler, and T. Schmidt. 1999. Detection of individual oligonucleotide pairing by single-molecule microscopy. Anal Chem 71:279–283.

    Article  Google Scholar 

  80. Trabesinger, W., B. Hecht, U. P. Wild, G. J. Schütz, H. Schindler, and T. Schmidt. 2001. Statistical analysis of single-molecule colocalization assays. Anal Chem 73:1100–1105.

    Article  Google Scholar 

  81. Baumgartner, W., G. J. Schütz, J. Wiegand, N. Golenhofen, and D. Drenckhahn. 2003. Cadherin function probed by laser tweezer and single molecule fluorescence in vascular endothelial cells. J Cell Sci 116: 1001–1011.

    Article  Google Scholar 

  82. Yildiz, A., M. Tomishige, R. D. Vale, and P. R. Selvin. 2004. Kinesin walks hand-over-hand. Science 303: 676–678.

    Article  ADS  Google Scholar 

  83. Gordon, M. P., T. Ha, and P. R. Selvin. 2004. Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci USA 101:6462–6465.

    Google Scholar 

  84. Qu, X., D. Wu, L. Mets, and N. F. Scherer. 2004. Nanometer-localized multiple single-molecule fluorescence microscopy. Proc Natl Acad Sci USA 101:11298–11303.

    Article  ADS  Google Scholar 

  85. Patterson, G. H., and J. Lippincott-Schwartz. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877.

    Article  ADS  Google Scholar 

  86. Betzig, E., G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645.

    Article  ADS  Google Scholar 

  87. Hess, S. T., T. P. Girirajan, and M. D. Mason. 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272.

    Article  Google Scholar 

  88. Rust, M., M. Bates, and X. Zhuang. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795.

    Article  Google Scholar 

  89. Shroff, H., C. G. Galbraith, J. A. Galbraith, and E. Betzig. 2008. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5:417–423.

    Article  Google Scholar 

  90. Orrit, M., and J. Bernard. 1990. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett 65:2716–2719.

    Article  ADS  Google Scholar 

  91. Harms, G. S., L. Cognet, P. H. Lommerse, G. A. Blab, and T. Schmidt. 2001. Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys J 80:2396–2408.

    Article  Google Scholar 

  92. Holtzer, L., T. Meckel, and T. Schmidt. 2007. Nanometric three-dimensional tracking of individual quantum dots in cells. Appl Phys Lett 90:053902.

    Google Scholar 

  93. Prabhat, P., Z. Gan, J. Chao, S. Ram, C. Vaccaro, S. Gibbons, R. J. Ober, and E. S. Ward. 2007. Elucidation of intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using multifocal plane microscopy. Proc Natl Acad Sci USA 104:5889–5894.

    Article  ADS  Google Scholar 

  94. Ghosh, R. N., and W. W. Webb. 1994. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J 66:1301–1318.

    Article  Google Scholar 

  95. Semrau, S., and T. Schmidt. 2006. Particle image correlation spectroscopy (PICS) Retrieving nanometer-scale correlations from high-density single-molecule position data. Biophys J 92:613–621.

    Article  Google Scholar 

  96. Falck, E., T. Rog, M. Karttunen, and I. Vattulainen. 2008. Lateral diffusion in lipid membranes through collective flows. J Am Chem Soc 130:44–45.

    Article  Google Scholar 

  97. Almeida, P. F., W. L. Vaz, and T. E. Thompson. 2005. Lipid diffusion, free area, and molecular dynamics simulations. Biophys J 88:4434–4438.

    Article  Google Scholar 

  98. Falck, E., M. Patra, M. Karttunen, M. T. Hyvonen, and I. Vattulainen. 2005. Response to comment by Almeida et al.: free area theories for lipid bilayers—predictive or not? Biophys J 89:745–752.

    Article  Google Scholar 

  99. Berg, H. C. 1983. Random walks in biology. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  100. Saffman, P. G., and M. Delbruck. 1975. Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113.

    Article  ADS  Google Scholar 

  101. Hughes, B. D., B. A. Pailthorpe, and L. R. White. 1981. The translational and rotational drag on a cylinder moving in a membrane. J. Fluid. Mech. 110:349–372.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  102. Hughes, B. D., B. A. Pailthorpe, L. R. White, and W. H. Sawyer. 1982. Extraction of membrane microviscosity from translational and rotational diffusion coefficients. Biophys J 37:673–676.

    Google Scholar 

  103. Petrov, E. P., and P. Schwille. 2008. Translational diffusion in lipid membranes beyond the Saffman-Delbruck approximation. Biophys J 94:L41–43.

    Article  Google Scholar 

  104. Gambin, Y., R. Lopez-Esparza, M. Reffay, E. Sierecki, N. S. Gov, M. Genest, R. S. Hodges, and W. Urbach. 2006. Lateral mobility of proteins in liquid membranes revisited. Proc Natl Acad Sci USA 103: 2098–2102.

    Article  ADS  Google Scholar 

  105. Saxton, M. J. 1995. Single-particle tracking: effects of corrals. Biophys J 69:389–398.

    Article  ADS  Google Scholar 

  106. Simson, R., E. D. Sheets, and K. Jacobson. 1995. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys J 69:989–993.

    Article  Google Scholar 

  107. Wieser, S., and G. J. Schütz 2008. Tracking single molecules in the live cell plasma membrane—Do’s and Don’t’s. Methods 46:131–140.

    Google Scholar 

  108. Feder, T. J., I. Brust-Mascher, J. P. Slattery, B. Baird, and W. W. Webb. 1996. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J 70:2767–2773.

    Article  Google Scholar 

  109. Smith, P. R., I. E. Morrison, K. M. Wilson, N. Fernandez, and R. J. Cherry. 1999. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys J 76:3331–3344.

    Article  Google Scholar 

  110. Ritchie, K., X. Y. Shan, J. Kondo, K. Iwasawa, T. Fujiwara, and A. Kusumi. 2005. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys J 88:2266–2277.

    Article  Google Scholar 

  111. Guigas, G., and M. Weiss. 2007. Sampling the cell with anomalous diffusion—the discovery of slowness. Biophys J 94:90–94.

    Article  Google Scholar 

  112. Nicolau, D. V., Jr., J. F. Hancock, and K. Burrage. 2007. Sources of anomalous diffusion on cell membranes: a Monte Carlo study. Biophys J 92:1975–1987.

    Article  Google Scholar 

  113. Saxton, M. J. 1996. Anomalous diffusion due to binding: a Monte Carlo study. Biophys J 70:1250–1262.

    Article  Google Scholar 

  114. Saxton, M. J. 2007. A biological interpretation of transient anomalous subdiffusion. II. Reaction kinetics. Biophys J 94:760–771.

    Article  Google Scholar 

  115. Saxton, M. J. 2007. A biological interpretation of transient anomalous subdiffusion. I. Qualitative model. Biophys J 92:1178–1191.

    Article  Google Scholar 

  116. Saxton, M. J. 1993. Lateral diffusion in an archipelago. Single-particle diffusion. Biophys J 64:1766–1780.

    Article  Google Scholar 

  117. Martin, D. S., M. B. Forstner, and J. A. Kas. 2002. Apparent subdiffusion inherent to single particle tracking. Biophys J 83:2109–2117.

    Article  Google Scholar 

  118. Sako, Y., and A. Kusumi. 1995. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J Cell Biol 129: 1559–1574.

    Article  Google Scholar 

  119. Daumas, F., N. Destainville, C. Millot, A. Lopez, D. Dean, and L. Salome. 2003. Confined diffusion without fences of a g-protein–coupled receptor as revealed by single particle tracking. Biophys J 84:356–366.

    Article  Google Scholar 

  120. Lillemeier, B. F., J. R. Pfeiffer, Z. Surviladze, B. S. Wilson, and M. M. Davis. 2006. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103: 18992–18997.

    Article  ADS  Google Scholar 

  121. King, M. R. 2004. Apparent 2-D diffusivity in a ruffled cell membrane. J Theor Biol 227:323–326.

    Article  Google Scholar 

  122. Reister, E., and U. Seifert. 2005. Lateral diffusion of a protein on a fluctuating membrane. Europhys Lett 71:859–865.

    Article  ADS  Google Scholar 

  123. Aizenbud, B. M., and N. D. Gershon. 1982. Diffusion of molecules on biological membranes of nonplanar form. A theoretical study. Biophys J 38:287–293.

    Article  Google Scholar 

  124. Rustom, A., R. Saffrich, I. Markovic, P. Walther, and H. H. Gerdes. 2004. Nanotubular highways for intercellular organelle transport. Science 303:1007–1010.

    Article  ADS  Google Scholar 

  125. Goulian, M., and S. M. Simon. 2000. Tracking single proteins within cells. Biophys J 79:2188–2198.

    Article  Google Scholar 

  126. Destainville, N., and L. Salome. 2006. Quantification and correction of systematic errors due to detector time-averaging in single-molecule tracking experiments. Biophys J 90:L17–19.

    Article  Google Scholar 

  127. Weiss, S. 1999. Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683.

    Article  ADS  Google Scholar 

  128. Baumgart, T., S. T. Hess, and W. W. Webb. 2003. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425:821–824.

    Article  ADS  Google Scholar 

  129. Cognet, L., G. S. Harms, G. A. Blab, P. H. M. Lommerse, and T. Schmidt. 2000. Simultaneous dual-color and dual-polarization imaging of single molecules. Appl Phys Lett 77:4052–4054.

    Article  ADS  Google Scholar 

  130. Jacobson, K., E. D. Sheets, and R. Simson. 1995. Revisiting the fluid mosaic model of membranes. Science 268:1441–1442.

    Article  ADS  Google Scholar 

  131. Hac, A. E., H. M. Seeger, M. Fidorra, and T. Heimburg. 2005. Diffusion in two-component lipid membranes—a fluorescence correlation spectroscopy and Monte Carlo simulation study. Biophys J 88: 317–333.

    Article  Google Scholar 

  132. Loose, M., E. Fischer-Friedrich, J. Ries, K. Kruse, and P. Schwille. 2008. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–792.

    Article  ADS  Google Scholar 

  133. Benson, R. C., R. A. Meyer, M. E. Zaruba, and G. M. McKhann. 1979. Cellular autofluorescence—is it due to flavins? J Histochem Cytochem 27:44–48.

    Article  Google Scholar 

  134. Konig, K., P. T. So, W. W. Mantulin, B. J. Tromberg, and E. Gratton. 1996. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress. J Microsc 183:197–204.

    Google Scholar 

  135. Andersson, H., T. Baechi, M. Hoechl, and C. Richter. 1998. Autofluorescence of living cells. J Microsc 191(Pt 1):1–7.

    Google Scholar 

  136. Schnell, S. A., W. A. Staines, and M. W. Wessendorf. 1999. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730.

    Article  Google Scholar 

  137. Moertelmaier, M. A., E. J. Kögler, J. Hesse, M. Sonnleitner, L. A. Huber, and G. J. Schütz. 2002. Single molecule microscopy in living cells: subtraction of autofluorescence based on two color recording. Single Mol. 3:225–231.

    Article  ADS  Google Scholar 

  138. Seisenberger, G., M. U. Ried, T. Endress, H. Buning, M. Hallek, and C. Brauchle. 2001. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294:1929–1932.

    Article  ADS  Google Scholar 

  139. van den Berg, C. W., T. Cinek, M. B. Hallett, V. Horejsi, and B. P. Morgan. 1995. Exogenous glycosyl phosphatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca(2+)-signaling competent. J Cell Biol 131:669–677.

    Article  Google Scholar 

  140. Shaner, N. C., P. A. Steinbach, and R. Y. Tsien. 2005. A guide to choosing fluorescent proteins. Nat Methods 2:905–909.

    Article  Google Scholar 

  141. Gronemeyer, T., G. Godin, and K. Johnsson. 2005. Adding value to fusion proteins through covalent labelling. Curr Opin Biotechnol 16:453–458.

    Article  Google Scholar 

  142. Freudenthaler, G., M. Axmann, H. Schindler, B. Pragl, H. G. Knaus, and G. J. Schütz. 2002. Ultrasensitive pharmacological characterisation of the voltage-gated potassium channel K(V)1.3 studied by single-molecule fluorescence microscopy. Histochem Cell Biol 117:197–202.

    Article  Google Scholar 

  143. Nechyporuk-Zloy, V., P. Dieterich, H. Oberleithner, C. Stock, and A. Schwab. 2008. Dynamics of single potassium channel proteins in the plasma membrane of migrating cells. Am J Physiol Cell Physiol 294: C1096–1102.

    Article  Google Scholar 

  144. Howarth, M., W. Liu, S. Puthenveetil, Y. Zheng, L. F. Marshall, M. M. Schmidt, K. D. Wittrup, M. G. Bawendi, and A. Y. Ting. 2008. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5:397–399.

    Article  Google Scholar 

  145. Morrisett, J. D., H. J. Pownall, R. T. Plumlee, L. C. Smith, and Z. E. Zehner. 1975. Multiple thermotropic phase transitions in Escherichia coli membranes and membrane lipids. A comparison of results obtained by nitroxyl stearate paramagnetic resonance, pyrene excimer fluorescence, and enzyme activity measurements. J Biol Chem 250:6969–6976.

    Google Scholar 

  146. Brown, D. A., and J. K. Rose. 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544.

    Article  Google Scholar 

  147. Melkonian, K. A., T. Chu, L. B. Tortorella, and D. A. Brown. 1995. Characterization of proteins in detergent-resistant membrane complexes from Madin-Darby canine kidney epithelial cells. Biochemistry 34: 16161–16170.

    Article  Google Scholar 

  148. Lisanti, M. P., P. E. Scherer, J. Vidugiriene, Z. Tang, A. Hermanowski-Vosatka, Y. H. Tu, R. F. Cook, and M. Sargiacomo. 1994. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol 126:111–126.

    Article  Google Scholar 

  149. Horejsi, V., K. Drbal, M. Cebecauer, J. Cerny, T. Brdicka, P. Angelisova, and H. Stockinger. 1999. GPI-microdomains: a role in signalling via immunoreceptors. Immunol Today 20:356–361.

    Article  Google Scholar 

  150. Brown, R. E. 1998. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 111(Pt 1):1–9.

    Google Scholar 

  151. Schroeder, R., E. London, and D. Brown. 1994. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 91:12130–12134.

    Article  ADS  Google Scholar 

  152. Brown, D. A., and E. London. 1998. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114.

    Article  Google Scholar 

  153. Brown, D. A., and E. London. 1998. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136.

    Article  Google Scholar 

  154. Resh, M. D. 1999. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451:1–16.

    Article  Google Scholar 

  155. Peirce, M., and H. Metzger. 2000. Detergent-resistant microdomains offer no refuge for proteins phosphorylated by the IgE receptor. J Biol Chem 275:34976–34982.

    Article  Google Scholar 

  156. Kurzchalia, T. V., E. Hartmann, and P. Dupree. 1995. Guilt by insolubility—does a protein’s detergent insolubility reflect a caveolar location? Trends Cell Biol 5:187–189.

    Article  Google Scholar 

  157. Heerklotz, H. 2002. Triton promotes domain formation in lipid raft mixtures. Biophys J 83:2693–2701.

    Article  Google Scholar 

  158. London, E., and D. A. Brown. 2000. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta 1508:182–195.

    Article  Google Scholar 

  159. Li, X. M., J. M. Smaby, M. M. Momsen, H. L. Brockman, and R. E. Brown. 2000. Sphingomyelin interfacial behavior: the impact of changing acyl chain composition. Biophys J 78:1921–1931.

    Article  Google Scholar 

  160. Edidin, M., S. C. Kuo, and M. P. Sheetz. 1991. Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. Science 254:1379–1382.

    Article  ADS  Google Scholar 

  161. Lee, G. M., F. Zhang, A. Ishihara, C. L. McNeil, and K. A. Jacobson. 1993. Unconfined lateral diffusion and an estimate of pericellular matrix viscosity revealed by measuring the mobility of gold-tagged lipids. J Cell Biol 120:25–35.

    Article  Google Scholar 

  162. Tomishige, M., Y. Sako, and A. Kusumi. 1998. Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol 142:989–1000.

    Article  Google Scholar 

  163. Simson, R., B. Yang, S. E. Moore, P. Doherty, F. S. Walsh, and K. A. Jacobson. 1998. Structural mosaicism on the submicron scale in the plasma membrane. Biophys J 74:297–308.

    Article  Google Scholar 

  164. Sako, Y., and A. Kusumi. 1994. Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. J Cell Biol 125:1251–1264.

    Article  Google Scholar 

  165. Suzuki, K. G., T. K. Fujiwara, M. Edidin, and A. Kusumi. 2007. Dynamic recruitment of phospholipase C{gamma} at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J Cell Biol 177:731–742.

    Article  Google Scholar 

  166. Pike, L. J. 2006. Rafts defined. J Lipid Res 47:1597–1598.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, T., Schütz, G.J. (2009). Single-Molecule Analysis of Biomembranes. In: Hinterdorfer, P., Oijen, A. (eds) Handbook of Single-Molecule Biophysics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76497-9_2

Download citation

Publish with us

Policies and ethics