Skip to main content

Positive Electrodes in Lithium Systems

  • Chapter
Advanced Batteries
  • 8303 Accesses

Several types of lithium batteries are used in a variety of commercial products, and are produced in very large numbers. According to various reports, the sales volume in 2008 is approximately 10 billion dollars per year, and it is growing rapidly. Most of these products are now used in relatively small electronic devices, but there is also an extremely large potential market if lithium systems can be developed sufficiently to meet the requirements for hybrid, or even plug-in hybrid, vehicles.

As might be expected, there is currently a great deal of interest in the possibility of the development of improved lithium batteries in both the scientific and technological communities. An important part of this activity is aimed at the improvement of the positive electrode component of lithium cells, where improvements can have large impacts upon the overall cell performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y.F.Y. Yao and J.T. Kummer, J. Inorg. Nucl. Chem. 29, 2453 (1967)

    Article  Google Scholar 

  2. N. Weber and J.T. Kummer, Proc. Annu. Power Sources Conf. 21, 37 (1967)

    CAS  Google Scholar 

  3. J. Coetzer, J. Power Sources 18, 377 (1986)

    Article  CAS  Google Scholar 

  4. R.C. Galloway, J. Electrochem. Soc. 134, 256 (1987)

    Article  CAS  Google Scholar 

  5. R.J. Bones, J. Coetzer, R.C. Galloway, D.A. Teagle, J. Electrochem. Soc. 134, 2379 (1987)

    Article  CAS  Google Scholar 

  6. R.A. Huggins, J. Power Sources 81–82, 13 (1999)

    Google Scholar 

  7. D.R. Vissers, Z. Tomczuk and R.K. Steunenberg, J. Electrochem. Soc. 121, 665 (1974)

    Article  CAS  Google Scholar 

  8. M.S. Whittingham, Science 192, 1126 (1976)

    Article  CAS  Google Scholar 

  9. M.S. Whittingham, J. Electrochem. Soc. 123, 315 (1976)

    Article  CAS  Google Scholar 

  10. M.S. Whittingham, Intercalation Compounds, inFast Ion Transport, ed. by B. Scrosati, A. Magistris, C.M. Mari and G. Mariotto, KluwerAcademic, Dordrecht, (1993), p. 69

    Google Scholar 

  11. P.G. Dickens, S.J. French, A.T. Hight and M.F. Pye, Mater. Res. Bull. 14, 1295 (1979)

    Article  CAS  Google Scholar 

  12. K. Mizushima, P.C. Jones, P.J. Wiseman and J.B. Goodenough, Mater. Res. Bull. 15, 783 (1980)

    Article  CAS  Google Scholar 

  13. J.B. Goodenough, K. Mizushima and T. Takada, Jpn. J. Appl. Phys. 19 (Suppl. 19-3), 305 (1980)

    Google Scholar 

  14. T. Nagaura and K. Tozawa, inProgress in Batteries and Solar Cells, Vol. 9, JEC Press, Brunswick, OH (1990), p. 209

    Google Scholar 

  15. T. Nagaura, inProgress in Batteries and Solar Cells, JEC Press, Vol. 10, Brunswick, OH (1991), p. 218

    Google Scholar 

  16. A. Yamada, M. Hosoya, S.C. Chung, Y. Kudo and K.Y. Liu,Concepts in Design of Olivine-Type Cathodes, Abstract No. 205, Electrochemical Society Meeting, San Francisco (2001)

    Google Scholar 

  17. K.S. Nanjundaswamy, A.K. Padhi, J.B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, and J. Yamaki, Solid State Ionics 92, 1 (1996) **[Nanjundaswamy, 1996 #42]

    Article  CAS  Google Scholar 

  18. A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier and J.B. Goodenough, J. Electrochem. Soc. 144, 2581 (1997) *[Padhi, 1997 #9]

    Article  CAS  Google Scholar 

  19. S. Okada, H. Ohtsuka, H. Arai and M. Ichimura, “Characteristics of New Low-Cost High-Voltage Cathode, Fe2(SO4)3,” ECS Proceedings, Hawaii (1993) *[Okada, #43]

    Google Scholar 

  20. S. Okada, T. Takada, M. Egashira, J. Yamaki, M. Tabuchi, H. Kageyama, T. Kodama and R. Kanno, “Characteristics of 3D Cathodes with Polyanions for Lithium Batteries,” presented atSecond Hawaii Battery Conference, Hawaii (1999) *[Okada, 1999 #44]

    Google Scholar 

  21. K. Mizushima, P.C. Jones, P.J. Wiseman and J.B. Goodenough, Mater. Res. Bull. 15, 783 (1980)

    Article  CAS  Google Scholar 

  22. I. Sadadone and C. Delmas, J. Mater. Chem. 6, 193 (1996)

    Article  Google Scholar 

  23. P.G. Bruce, A.R. Armstrong and R. Gitzendanner, J. Mater. Chem. 9, 193 (1999)

    Article  CAS  Google Scholar 

  24. Y. Grincourt, C. Storey and I.J. Davidson, J. Power Sources 97–98, 711 (2001)

    Article  Google Scholar 

  25. J.M. Paulson, R.A. Donaberger and J.R. Dahn, Chem. Mater. 12, 2257 (2000)

    Article  CAS  Google Scholar 

  26. M.E. Spahr, P. Novak, B. Schneider, O. Haas, R.J. Nesper, J. Electrochem. Soc. 145, 1113 (1998)

    Article  CAS  Google Scholar 

  27. T. Ohzuku and Y. Makimura, Chem. Lett. 744 (2001)

    Google Scholar 

  28. Z. Lu, D.D. MacNeil and J. R. Dahn, Electrochem. Solid State Lett. 4, A191 (2001)

    Article  CAS  Google Scholar 

  29. K. Kang, Y.S. Meng, J. Breger, C.P. Grey and G. Ceder, Science 311, 977 (2006)

    Article  CAS  Google Scholar 

  30. Z. Liu, A. Yu and J.Y. Lee, J. Power Sources 81–82, 416 (1999)

    Google Scholar 

  31. M. Yoshio, H. Noguchi, J.-I. Itoh, M. Okada and T. Mouri, J. Power Sources 90, 176 (2000)

    Article  CAS  Google Scholar 

  32. M.S. Whittingham, Chem. Rev. 104, 4271 (2004)

    Article  CAS  Google Scholar 

  33. M.M. Thackeray, W.I.F. David, P.G. Bruce and J.B. Goodenough, Mater. Res. Bull. 18, 461 (1983)

    Article  CAS  Google Scholar 

  34. M.M. Thackeray, P.J. Johnson, L.A. de Piciotto, P.G. Bruce, and J.B. Goodenough, Mater. Res. Bull. 19, 179 (1984)

    Article  CAS  Google Scholar 

  35. M.M. Thackeray, “The Structural Stability of Transition Metal Oxide Insertion Electrodes for Lithium Batteries,” inHandbook of Battery Materials, ed. by J.O. Besenhard, Wiley-VCH, New York (1999), p. 293

    Google Scholar 

  36. D. Guyomard and J.M. Tarascon, Solid State Ionics 69, 222 (1994)

    Article  CAS  Google Scholar 

  37. G. Amatucci and J.-M. Tarascon, J. Electrochem. Soc. 149, K31 (2002)

    Article  CAS  Google Scholar 

  38. R.J. Gummow, A. De Kock and M.M. Thackeray, Solid State Ionics 69, 59 (1994)

    Article  CAS  Google Scholar 

  39. D. Guyomard and J.-M. Tarascon, US Patent 5,192,629 (1993)

    Google Scholar 

  40. D. Guyomard and J.-M. Tarascon, Solid State Ionics 69, 293 (1994)

    Article  Google Scholar 

  41. C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard and M. Tournoux, Solid State Ionics 81, 167 (1995)

    Article  CAS  Google Scholar 

  42. Y. Ein-Eli and W.F. Howard, J. Electrochem. Soc. 144, L205 (1997)

    Article  CAS  Google Scholar 

  43. Y. Ein-Eli, W.F. Howard, S.H. Lu, S. Mukerjee, J. McBreen, J.T. Vaughey and M.M. Thackeray, J. Electrochem. Soc. 145, 1238 (1998)

    Article  CAS  Google Scholar 

  44. Y. Ein-Eli, S.H. Lu, M.A. Rzeznik, S. Mukerjee, X.Q. Yang and J. McBreen, J. Electrochem. Soc. 145, 3383 (1998)

    Article  CAS  Google Scholar 

  45. T. Ohzuku, S. Takeda and M. Iwanaga, J. Power Sources 81–82, 90 (1999)

    Google Scholar 

  46. K. Ariyoshi, Y. Iwakoshi, N. Nakayama and T. Ohzuku, J. Electrochem. Soc. 151, A296 (2004)

    Article  CAS  Google Scholar 

  47. K.M. Colbow, J.R. Dahn and R.R. Haering, J. Power Sources 26, 397 (1989)

    Article  CAS  Google Scholar 

  48. T. Ohzuku, A. Ueda and N. Yamamoto, J. Electrochem. Soc. 142, 1431 (1995)

    Article  CAS  Google Scholar 

  49. J.B. Goodenough, H.Y.P. Hong and J.A. Kafalas, Mater. Res. Bull. 11, 203 (1976)

    Article  CAS  Google Scholar 

  50. K.S. Nanjundaswamy, A.K. Padhi, J.B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, J. Yamaki, Solid State Ionics 92, 1 (1996)

    Article  CAS  Google Scholar 

  51. A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada and J.B. Goodenough, J. Electrochem. Soc. 144, 1609 (1997)

    Article  CAS  Google Scholar 

  52. J. Barker and M.Y. Saidi, US Patent 5,871,866 (1999)

    Google Scholar 

  53. M.Y. Saιdi, J. Barker, H. Huang, J.L. Swoyer and G. Adamson, Electrochem. Solid State Lett., 5, A149 (2002)

    Article  CAS  Google Scholar 

  54. A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997)

    Article  CAS  Google Scholar 

  55. N. Ravet, J.B. Goodenough, S. Besner, M. Simoneau, P. Hovington and M. Armand, Electrochem. Soc. Meeting Abstract 99-2, 127 (1999)

    Google Scholar 

  56. S.Y. Chung, J.T. Bloking and Y.-M. Chiang, Nat. Mater. 1, 123 (2002)

    Article  CAS  Google Scholar 

  57. R. Amin and J. Maier, Solid State Ionics 178, 1831 (2008)

    Article  CAS  Google Scholar 

  58. P.S. Herle, B. Ellis, N. Coombs and L.F. Nazar, Nat. Mater. 3, 147 (2004)

    Article  CAS  Google Scholar 

  59. S.P. Ong, L. Wang, B. Kang and G. Ceder, presented at the Materials Research Society Meeting in San Francisco (2007).

    Google Scholar 

  60. N. Meethong, H.-Y.S. Huang, S.A. Speakman, W.C. Carter and Y.-M. Chiang, Adv. Funct. Mater. 17, 1115 (2007)

    Article  CAS  Google Scholar 

  61. J. Barker, M.Y. Saidi and J.L. Swoyer, J. Electrochem. Soc. 151, A1670 (2004)

    Article  CAS  Google Scholar 

  62. J. Barker, R.K.B. Gover, P. Burns and A.J. Bryan, Electrochem. Solid State Lett. 10, A130 (2007)

    Article  CAS  Google Scholar 

  63. J. Barker, R.K.B. Gover, P. Burns and A.J. Bryan, Electrochem Solid State Lett. 9, A190 (2006)

    Article  CAS  Google Scholar 

  64. J. Barker, R.K.B. Gover, P. Burns and A.J. Bryan, J. Electrochem. Soc. 154, A882 (2007)

    Article  CAS  Google Scholar 

  65. J.R. Dahn, E.W. Fuller, M. Obrovac and U. von Sacken, Solid State Ionics 69, 265 (1994)

    Article  CAS  Google Scholar 

  66. N.A. Godshall, I.D. Raistrick and R.A. Huggins, J. Electrochem. Soc. 131, 543 (1984)

    Article  CAS  Google Scholar 

  67. S. Stotz and C. Wagner, Ber. Bunsenges. Phys. Chem. 70, 781 (1966)

    CAS  Google Scholar 

  68. C. Wagner, Ber. Bunsenges. Phys. Chem. 72, 778 (1968)

    CAS  Google Scholar 

  69. R.A. Huggins, Solid State Ionics 136–137, 1321 (2000)

    Google Scholar 

  70. I. Barin,Thermochemical Data of Pure Substances, VCH, Weinheim (1989)

    Google Scholar 

  71. W. Li, W.R. McKinnon and J.R. Dahn, J. Electrochem. Soc. 141, 2310 (1994)

    Article  CAS  Google Scholar 

  72. J.M. Tarascon and D. Guyomard, J. Electrochem. Soc. 138, 2864 (1993)

    Article  Google Scholar 

  73. W. Li and J.R. Dahn, J. Electrochem. Soc. 142, 1742 (1995)

    Article  CAS  Google Scholar 

  74. H. Kanoh, K. Ooi, Y. Miyai and S. Katoh, Sep. Sci. Technol. 28, 643 (1993)

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2009). Positive Electrodes in Lithium Systems. In: Advanced Batteries. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76424-5_9

Download citation

Publish with us

Policies and ethics