Skip to main content

Nonconvex Optimization for Communication Networks

  • Chapter
  • First Online:

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 17))

Summary

Nonlinear convex optimization has provided both an insightful modeling language and a powerful solution tool to the analysis and design of communication systems over the last decade. A main challenge today is on nonconvex problems in these applications. This chapter presents an overview on some of the important nonconvex optimization problems in communication networks. Four typical applications are covered: Internet congestion control through nonconcave network utility maximization, wireless network power control through geometric and sigmoidal programming, DSL spectrum management through distributed nonconvex optimization, and Internet intradomain routing through nonconvex, nonsmooth optimization. A variety of nonconvex optimization techniques are showcased: sum-of-squares programming through successive SDP relaxation, signomial programming through successive GP relaxation, leveraging specific structures in these engineering problems for efficient and distributed heuristics, and changing the underlying protocol to enable a different problem formulation in the first place. Collectively, they illustrate three alternatives of tackling nonconvex optimization for communication networks: going “through” nonconvexity, “around” nonconvexity, and “above” nonconvexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Avriel, Ed., Advances in Geometric Programming, Plenum Press, New York, 1980

    MATH  Google Scholar 

  2. N. Bambos, “Toward power-sensitive network architectures in wireless communications: Concepts, issues, and design aspects,” IEEE Pers.Commun. Mag., vol. 5, no. 3, pp. 50–59, 1998.

    Article  Google Scholar 

  3. S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on geometric programming,” Optim. Eng., vol. 8, no. 1, pp. 67–127, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

    Google Scholar 

  5. L. Buriol, M. Resende, C. Ribeiro, and M. Thorup, “A memetic algorithm for OSPF routing,” Proc. 6th INFORMS Telecom, 2002, pp. 187–188.

    Google Scholar 

  6. R. Cendrillon, G. Ginis, and M. Moonen, “Improved linear crosstalk precompensation for downstream VDSL,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004.

    Google Scholar 

  7. R. Cendrillon, J. Huang, M. Chiang, and M. Moonen, “Autonomous Spectrum Balancing (ASB) for digital subscriber loop,” IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4241–4257, August 2007.

    Article  MathSciNet  Google Scholar 

  8. R. Cendrillon and M. Moonen, “Iterative spectrum balancing for digital subscriber lines,” in Proc. IEEE International Communications Conference, 2005.

    Google Scholar 

  9. R. Cendrillon, W. Yu, M.Moonen, J. Verlinden, and T. Bostoen, “Optimal multi-user spectrum management for digital subscriber lines,” IEEE Trans. Commun., July 2006.

    Google Scholar 

  10. M. Chiang, “Balancing transport and physical layers in wireless multihop networks: Jointly optimal congestion control and power control,” IEEE J. Selected Areas Commun., vol. 23, no. 1, pp. 104–116, January 2005.

    Article  Google Scholar 

  11. M. Chiang, “Geometric programming for communication systems,” Foundations Trends Commun. Inf. Theor., vol. 2, no. 1–2, pp. 1–156, August 2005.

    Google Scholar 

  12. M. Chiang, P. Hande, T. Lan, and C. W. Tan, “Power control in wireless cellular networks,” Foundations and Trends in Networking, vol. 2, no. 4, pp. 381–533, July 2008.

    Google Scholar 

  13. M. Chiang, S. H. Low, R. A. Calderbank, and J. C. Doyle, “Layering as optimization decomposition,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312, January 2007.

    Google Scholar 

  14. M. Chiang, C. W. Tan, D. Palomar, D. O’Neill, and D. Julian, “Power control by geometric programming,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2640– 2651, July 2007.

    Google Scholar 

  15. S. T. Chung, “Transmission schemes for frequency selective Gaussian interference channels,” Ph.D. dissertation, Stanford University, 2003.

    Google Scholar 

  16. ILOG CPLEX, http://www.ilog.com/products/cplex/.

  17. R. J. Duffin, E. L. Peterson, and C. Zener, Geometric Programming: Theory and Applications, Wiley, 1967.

    Google Scholar 

  18. M. Ericsson, M. Resende, and P. Pardalos, “A genetic algorithm for the weight setting problem in OSPF routing,” J. Combin. Optim., vol. 6, pp. 299–333, 2002.

    Google Scholar 

  19. M. Fazel and M. Chiang, “Nonconcave network utility maximization by sum of squares programming,” Proc. IEEE Conference on Decision and Control, December 2005.

    Google Scholar 

  20. A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True, “Deriving traffic demands for operational IP networks: Methodology and experience,” IEEE/ACM Trans. Netw., June 2001.

    Google Scholar 

  21. J. H. Fong, A. C. Gilbert, S. Kannan, and M. J. Strauss, “Better alternatives to OSPF routing,” Algorithmica, vol. 43, no. 1–2, pp. 113–131, 2005.

    MathSciNet  MATH  Google Scholar 

  22. B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional IP routing protocols,” IEEE Commun. Mag., October 2002.

    Google Scholar 

  23. B. Fortz and M. Thorup, “Increasing internet capacity using local search,” Comput. Optim. Appl., vol. 29, no. 1, pp. 13–48, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSPF weights,” Proc. IEEE INFOCOM, May 2000.

    Google Scholar 

  25. R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Thomson, Danvers, MA, 1993.

    Google Scholar 

  26. G. Foschini and Z. Miljanic, “A simple distributed autonomous power control algorithm and its convergence,” IEEE Trans. Vehicular Technol., vol. 42, no. 4, 1993.

    Google Scholar 

  27. G. Ginis and J. Cioffi, “Vectored transmission for digital subscriber line systems,” IEEE J. Selected Areas Commun., vol. 20, no. 5, pp. 1085–1104, 2002.

    Article  Google Scholar 

  28. P. Hande, S. Rangan, M. Chiang, and X. Wu, “Distributed uplink power control for optimal SIR assignment in cellular data networks,” To appear in IEEE/ACM Trans. Netw., 2008.

    Google Scholar 

  29. P. Hande, S. Zhang, and M. Chiang, “Distributed rate allocation for inelastic flows,” IEEE/ACM Trans. Netw., vol. 15, no. 6, pp. 1240–1253, December 2007.

    Article  Google Scholar 

  30. D. Handelman, “Representing polynomials by positive linear functions on compact convex polyhedra,” Pacific J. Math., vol. 132, pp. 35–62, 1988.

    MathSciNet  MATH  Google Scholar 

  31. D. Henrion and J. B. Lasserre, “Detecting global optimality and extracting solutions in GloptiPoly,” Research report, LAAS-CNRS, 2003.

    Google Scholar 

  32. J. Huang, R. Berry, andM. L. Honig, “A game theoretic analysis of distributed power control for spread spectrum ad hoc networks,” Proc. IEEE International Symposium of Information Theory, July 2005.

    Google Scholar 

  33. J. Huang, C. W. Tan, M. Chiang, and R. Cendrillon, “Statistical multiplexing over DSL networks,” Proc. IEEE INFOCOM, May 2007.

    Google Scholar 

  34. IPOPT, http://projects.coin-or.org/Ipopt.

  35. D. Julian, M. Chiang, D. ONeill, and S. Boyd, “QoS and fairness constrained convex optimization of resource allocation for wireless cellular and ad hoc networks,” Proc. IEEE INFOCOM, June 2002.

    Google Scholar 

  36. F. P. Kelly, “Models for a self-managed Internet,” Philosoph. Trans. Royal Soc., A358, 2335–2348, 2000.

    Google Scholar 

  37. F. P. Kelly, A. Maulloo, and D. Tan, “Rate control for communication networks: shadow prices, proportional fairness and stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp. 237–252, March 1998.

    MATH  Google Scholar 

  38. S. Kandukuri and S. Boyd, “Optimal power control in interference limited fading wireless channels with outage probability specifications,” IEEE Trans. Wireless Commun., vol. 1, no. 1, pp. 46–55, January 2002.

    Article  Google Scholar 

  39. J. B. Lasserre, “Global optimization with polynomials and the problem of moments,” SIAM J. Optim., vol. 11, no. 3, pp. 796–817, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. B. Lasserre, “Polynomial programming: LP-relaxations also converge,” SIAM J. Optim., vol. 15, no. 2, pp. 383–393, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. W. Lee, R. Mazumdar, and N. B. Shroff, “Non-convex optimization and rate control for multi-class services in the Internet,” IEEE/ACM Trans. Netw., vol. 13, no. 4, pp. 827–840, August 2005.

    Article  MATH  Google Scholar 

  42. J.W. Lee, R. Mazumdar, and N. B. Shroff, “Downlink power allocation for multi-class CDMA wireless networks,” IEEE/ACM Trans. Netw., vol. 13, no. 4, pp. 854–867, August 2005.

    Article  Google Scholar 

  43. J. W. Lee, R. Mazumdar, and N. B. Shroff, “Opportunistic power scheduling for multiserver wireless systems with minimum performance constraints,” IEEE Trans. Wireless Commun., vol. 5, no. 5, May 2006.

    Google Scholar 

  44. X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer optimization in wireless networks,” IEEE J. Selected Areas Commun., August 2006.

    Google Scholar 

  45. S. H. Low, “A duality model of TCP and queue management algorithms,” IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 525–536, August 2003.

    Article  MathSciNet  Google Scholar 

  46. B. R. Marks and G. P. Wright, “A general inner approximation algorithm for nonconvex mathematical program,” Oper. Res., 1978.

    Google Scholar 

  47. D. Mitra, “An asynchronous distributed algorithm for power control in cellular radio systems,” Proc. 4th WINLAB Workshop, Rutgers University, NJ, 1993.

    Google Scholar 

  48. Yu. Nesterov and A. Nemirovsky, Interior Point Polynomial Methods in Convex Programming, SIAM Press, 1994.

    Google Scholar 

  49. D. Palomar and M. Chiang, “Alternative distributed algorithms for network utility maximization: Framework and applications,” IEEE Trans. Autom. Control, vol. 52, no. 12, pp. 2254–2269, December 2007.

    Article  MathSciNet  Google Scholar 

  50. P. A. Parrilo, Structured semidefinite programs and semi-algebraic geometry methods in robustness and optimization,” PhD thesis, Caltech, May 2002.

    Google Scholar 

  51. P. A. Parrilo, “Semidefinite programming relaxations for semi-algebraic problems,” Math. Program., vol. 96, pp. 293–320, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  52. S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “SOSTOOLS: Sum of squares optimization toolbox for Matlab,” available from http://www.cds.caltech.edu/sostools, 2002–04.

  53. M. Putinar, “Positive polynomials on compact semi-algebraic sets,” Indiana Univ. Math. J., vol. 42, no. 3, pp. 969–984, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  54. R. T. Rockafellar, Network Flows and Monotropic Programming, Athena Scientific, 1998.

    Google Scholar 

  55. C. Saraydar, N. Mandayam, and D. Goodman, “Pricing and power control in a multicell wireless data network,” IEEE J. Selected Areas Commun., vol. 19, no. 10, pp. 1883–1892, October 2001.

    Article  Google Scholar 

  56. K. Schmüdgen, “The K-moment problem for compact semi-algebraic sets,” Math. Ann., vol. 289, no. 2, pp. 203–206, 1991.

    MathSciNet  MATH  Google Scholar 

  57. S. Shenker, “Fundamental design issues for the future Internet,” IEEE J. Selected Areas Commun., vol. 13, no. 7, pp. 1176–1188, September 1995.

    Article  Google Scholar 

  58. N. Z. Shor, “Quadratic optimization problems,” Soviet J. Computat. Syst. Sci., vol. 25, pp. 1–11, 1987.

    MathSciNet  MATH  Google Scholar 

  59. A. Sridharan, R. Guérin, and C. Diot, “Achieving near-optimal traffic engineering solutions for current OSPF/IS-IS networks,” IEEE/ACM Trans. Netw., vol. 13, no. 2, pp. 234–247, 2005.

    Article  Google Scholar 

  60. R. Srikant, The Mathematics of Internet Congestion Control, Birkhäuser 2004.

    Google Scholar 

  61. T. Starr, J. Cioffi, and P. Silverman, Understanding Digital Subscriber Line Technology, Prentice Hall, 1999.

    Google Scholar 

  62. G. Stengle, “A Nullstellensatz and a Positivstellensatz in semialgebraic geometry,” Math. Ann., vol. 207, no. 2, pp. 87–97, 1974.

    Article  MathSciNet  Google Scholar 

  63. C. Sung and W. Wong, “Power control and rate management for wireless multimedia CDMA systems,” IEEE Trans. Commun., vol. 49, no. 7, pp. 1215–1226, 2001.

    Article  MATH  Google Scholar 

  64. C. W. Tan, D. Palomar and M. Chiang, “Distributed Optimization of Coupled Systems with Applications to Network Utility Maximization,” Proc. IEEE International Conference of Acoustic, Speech, and Signal Processing, May 2006.

    Google Scholar 

  65. D. M. Topkis, Supermodularity and Complementarity, Princeton University Press, 1998.

    Google Scholar 

  66. TOTEM, http://totem.info.ucl.ac.be.

  67. P. Tsiaflakis, Y. Yi, M. Chiang, and M. Moonen, “Throughput and delay of DSL dynamic spectrum management,” Proc. IEEE GLOBECOM, December 2008.

    Google Scholar 

  68. A. Wächter and L. T. Biegler, “On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming,” Math. Program., vol. 106, no. 1, pp. 25–57, 2006.

    Google Scholar 

  69. M. Xiao, N. B. Shroff, and E. K. P. Chong, “Utility based power control in cellular wireless systems,” IEEE/ACM Trans. Netw., vol. 11, no. 10, pp. 210–221, March 2003.

    Article  Google Scholar 

  70. D. Xu, M. Chiang, and J. Rexford, “DEFT: Distributed exponentially-weighted flow splitting,” Proc. IEEE INFOCOM, May 2007.

    Google Scholar 

  71. D. Xu, M. Chiang, and J. Rexford, “Link state routing with hop by hop forwarding can achieve optimal traffic engineering,” Proc. IEEE INFOCOM, April 2008.

    Google Scholar 

  72. R. Yates, “A framework for uplink power control in cellular radio systems,” IEEE J. Selected Areas Commun., vol. 13, no. 7, pp. 1341–1347, 1995.

    Article  MathSciNet  Google Scholar 

  73. Y. Yi, A. Proutiere, and M. Chiang, “Complexity of wireless scheduling: Impact and tradeoffs,” Proc. ACM Mobihoc, May 2008.

    Google Scholar 

  74. W. Yu, G. Ginis, and J. Cioffi, “Distributed multiuser power control for digital subscriber lines,” IEEE J. Selected Areas Commun., vol. 20, no. 5, pp. 1105–1115, June 2002.

    Google Scholar 

  75. W. Yu, R. Lui, and R. Cendrillon, “Dual optimization methods for multiuser orthogonal frequency division multiplex systems,” Proc. IEEE GLOBECOM, November 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mung Chiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chiang, M. (2009). Nonconvex Optimization for Communication Networks. In: Gao, D., Sherali, H. (eds) Advances in Applied Mathematics and Global Optimization. Advances in Mechanics and Mathematics, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75714-8_5

Download citation

Publish with us

Policies and ethics