Skip to main content

Optoelectronics

  • Chapter
  • First Online:
More than Moore

Abstract

Optoelectronics covers the design, manufacture, and characterization of hardware devices that convert electrical signals into photon signals and vice-versa. The interaction between light and matter lies at the heart of optoelectronics, and progress in this area impacts all fields of application, including light sources, detectors, and optical communication systems. A brief review of the performance and development of up-to-date light-emitting diodes (LEDs) and photodetectors applicable in information technology is presented. After a short introduction into the physics and technology of semiconductor optoelectronic devices, their potential importance for future optoelectronics and photonics applications are discussed. Examples, where III–V compound semiconductors are used in LEDs, resonant cavity enhanced and avalanche photodetector structures, as well as new materials and structures for efficient visible light emitting diodes based on organic semiconductors are discussed. Key problems that are still to be addressed with regard to the need for interdisciplinary integration consistent with More than Moore domain in ENIAC strategy research agenda are also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suhir, E.: Microelectronics and photonics – the future. Microelectronics Journal 31, 839–851 (2000)

    Article  Google Scholar 

  2. Hecht, G.: Long-haul DWDM systems go to the distance. Laser Focus World, October, 125–132 (2000)

    Google Scholar 

  3. Mills, A.: Strategies in Light 2006: record LED sales but price erosion. III-V Review 29 (3), 35–39 (2006)

    Google Scholar 

  4. Türk, V., Bimberg, D.: Nanotechnology in optoelectronics - trends and prospects. Mstnews 3, 17–19 (1999)

    Google Scholar 

  5. Diff. authors: Things to watch in 2001, “High Brightness LEDs for Lightning”, “Convergence of Optics and Electronics”, “Explosive Market Growth for VCSELs”, “Indium Phosphide Planar integrated Optics Comes of Age”. Compound Semiconductor 7, 45–84 (2001)

    Google Scholar 

  6. Nakamura, S.: III-V Nitride based light emitting devices. Solid State Communications 102 (2–3), 237–242 (1997)

    Article  Google Scholar 

  7. Forrest, S.R.: The road to high efficiency organic light emitting devices. Organic Electronics 4, 45–4 (2003)

    Article  Google Scholar 

  8. Kasap, S.O.: Optoelectronics and photonics, principles and practices. Prentice-Hall, Upper Saddle River, New Jersey (2001)

    Google Scholar 

  9. Suematsu, Y., Adams, A.R.: Semiconductor lasers and photonic integrated circuits. Chapman & Hall, London (1994)

    Google Scholar 

  10. Herman, M.A., Sitter, H.: Molecular beam epitaxy; Fundamentals and current status. Springer-Verlag, Berlin (1989)

    Google Scholar 

  11. Moon, R.L.: MOVPE: is there any other technology for optoelectronics? Journal of Crystal Growth 170, 1–10 (1997)

    Article  Google Scholar 

  12. Davies, J.H.: The physics of low-dimensional semiconductors: an introduction. Cambridge University Press, Cambridge, UK (1998)

    Google Scholar 

  13. Cingolani, R.: Semiconductor superlattices and interfaces. In: Proceedings of the International School of Physics “Enrico Fermi”, Course CXVII, North-Holland (1993)

    Google Scholar 

  14. Kalt, H.: Optical properties of III-V semiconductors, Springer-Verlag, Berlin (1996)

    Google Scholar 

  15. Sullivan, S.C.: The anatomy of a quantum dot. Photonics Spectra 63 (2007)

    Google Scholar 

  16. Bergh, A.A., Dean, P.J.: Light-emitting diodes. Oxford University Press, Ely House, London (1976)

    Google Scholar 

  17. Wilkson, J., Hawkes, J.: Optoelectronics an introduction. Prentice Hall, London (1998)

    Google Scholar 

  18. Shaw, M.J., Seidler, P.F.: Organic electronics: introduction. IBM Journal of Research and Development 45(1), 3–9 (2001)

    Article  Google Scholar 

  19. Sheats, J.R., Antoniadis, H., Heuschen, M., Leonard, W., Miller, J., Moon, R., Roitman, D., Stocking, A.: Organic electroluminiscent devices. Science 273, 913 (1996)

    Article  Google Scholar 

  20. Dodapalabur, A., Torsi, L., Katz, H.E.: Organic transistors: two-dimensional transport and improved electrical characteristics. Science 268, 270 (1996)

    Article  Google Scholar 

  21. Kováč, J., Peternai L., Lengyel, O.: Advanced light emitting diodes structures for optoelectronic applications. Thin Solid Films 433, 22–26 (2003)

    Article  Google Scholar 

  22. Kováč, J., Wong, T.C., Fung, M.K., Liu, M.W., Kremnican, V., Bello, I., Lee, S.T.: Transient electroluminescence of single and multilayer organic light emitting devices. Materials Science and Engineering B85, 172–176 (2001)

    Google Scholar 

  23. Gardner, N.F., Chui, H.C., Chen, E.I., Kramers, M.R., Huang, J.-W., Kish, F.A., Stockman, S.A., Kocot, C.P., Tan, T.S., Moll, N.: 1Δ4§ efficiency improvement in transparent- substrate (AlGa)InP light -emitting diodes with thin active regions. Applied Physics Letters 74 (15), 2230–2232 (1999)

    Article  Google Scholar 

  24. Wallart, X., Deresmes, D., Mollot, F.: Growth of strained Ga1-xInxP layers on GaP (100) by gas source molecular beam epitaxy: similarities and differences with the growth of strained arsenides. Journal of Grystal Growth 227–228, 255–259 (2001)

    Article  Google Scholar 

  25. Peternai, L., Kováč, J., Jakabovič, J., Gottschalch V.: Numerical simulation and analysis of GaP/GaNP/GaP double heterostructure light emitting diode. In: WOCSDICE 2004 Proceedings, Smolenice Castle, Slovak Republic, 101–102 (2004)

    Google Scholar 

  26. Hasenöhrl, S., Novák, J., Vávra, I., Šatka, A.: Material properties of graded composition InxGa1-xP buffer layers grown on GaP by OMVPE. Journal of Crystal Growth 272, 633–641 (2004)

    Article  Google Scholar 

  27. Novák, J, Hasenöhrl, S., Kúdela, R., Kučera, M.: Growth and characterisation of InxGa1-xP layers with composition close to crossover from direct to indirect band gap. Journal of Crystal Growth 275, e1287–e1292 (2005)

    Article  Google Scholar 

  28. Kováč, J., Peternai, L., Jakabovič, J., Šatka, A., Hasenöhrl, S., Novák, J., Gottschalch, V., Rheinläender, B.: New development of LED structures directly grown on GaP substrate. In: Proceedings “Electroluminiscence 2004”, Toronto, Canada (2004)

    Google Scholar 

  29. Vincze, A., Šatka, A., Peternai, L., Kováč, J., Hasenöhrl, S., Veselý, M.: SIMS and SEM analysis of In1-x-yAlxGayP LED structure grown on InxGa1-xP graded buffer. Applied Surface Science 252, 7279–7282 (2006)

    Article  Google Scholar 

  30. Mills, A.: High-brightness LEDs lightning up the future. III-Vs Review 14 (2), 32–37 (2001)

    MathSciNet  Google Scholar 

  31. Streubel, K., Linder, N., Wirth, R., Jaeger, A.: High brightness AlGaInP light-emitting diodes. IEE Journal of Selected Topics in Quantum Electronics 8 (2), 321–331 (2002)

    Article  Google Scholar 

  32. Kramers, M.R., Ochai-Holcomb, M., Hofler, G.E., Carter-Coman, C., Chen, E.I., Tan, I.H., Grillot, P., Gardner, N.F., Chui, H.C., Huang, J.W., Stockman, S.A., Kish, F.A., Tan, T.S., Kocot, C.P., Hueschen, M., Posselt, J., Loh, B., Sasser, G., Collins, D.: High-power truncatedinverted-pyramid (AlxGa1-x)0:5In0:5P)/GaP light-emitting diodes exhibiting >50% external quantum efficiency. Applied Physics Letters 75 (16), 2365–2367 (1999)

    Article  Google Scholar 

  33. Cook, M.: Excitonic prospects for UV. III-V Review 29 (5), 22–26 (2006)

    Google Scholar 

  34. Akasaki, I.: Nitride semiconductors-impact on the future world. Journal of Crystal Growth 237–239, 905–911 (2002)

    Article  Google Scholar 

  35. Whitaker, T.: Innovations push white LEDs towards new applications. Compound Semiconductor 75 (2003)

    Google Scholar 

  36. Tang, C.W., Van Slyke, S.A.: Organic Electroluminescent Diodes. Applied Physics Letters 51, 913 (1988)

    Article  Google Scholar 

  37. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., Holmes, A.B.: Light-emitting diodes based on conjugated polymers. Nature 347, 539 (1990)

    Article  Google Scholar 

  38. Rentberger, S.: Doped OLEDs overcome limitations of traditional devices. Laser Focus World May, 79–84 (2007)

    Google Scholar 

  39. Bergh, A.: Commercial applications of optoelectronics. Photonics Spectra February, 54–61

    Google Scholar 

  40. Segler, D.J.: LEDs in high-definition television. Photonics Spectra, October, 62–65 (2007)

    Google Scholar 

  41. Ünlü, M.S., Strite, S.: Resonant cavity enhanced photonic devices. Journal of Applied Physics 78 (2), 607–639 (1995)

    Article  Google Scholar 

  42. Kishino, K., Ünlü, M. S., Chyi, J.-I., Reed, J., Arsenault, L., Morkoc, H.: Resonant cavity enhanced (RCE) photodetectors. IEEE Journal of Quantum Electron 27 (8), 2025–2034 (1991)

    Article  Google Scholar 

  43. Borgulová, J., Uherek, F., Kováč, J., Šatka, A.: Design of Multilayer Optoelectronic Devices. IEEE, SPIE Proc. Ser., 3820 (0277–786X/99), 239–247 (1999)

    Article  Google Scholar 

  44. Waclawek, J.: Resonant cavity enhanced photodetectors. PhD thesis, Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Bratislava, Slovakia (1997)

    Google Scholar 

  45. Lai, K., Campbell, J.C.: Design of a tunable GaAs/AlGaAs multiple-quantum-well resonant-cavity photodetector. IEEE Journal of Quantum Electron 30 (1), 108–114 (1994)

    Article  Google Scholar 

  46. Waclawek, J., Kováč, J., Rheinländer, B., Gottschalch, V., Škriniarová, J.: Electrically tunable GaAs/AlGaAs MQW RCE Photodetector. Electronics Letters 33 (1), 71–72 (1997)

    Article  Google Scholar 

  47. Haško, D.: Lavínová fotodióda s oddelenou absorpčnou, nábojovou, a násobiacou vrstvou na báze InGaAs/InP (in Slovak language), PhD thesis, Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Bratislava, Slovakia (2005)

    Google Scholar 

  48. Haško, D., Kováč, J., Uherek, F., Škriniarová, J., Jakabovič, J., Peternai, L.: Avalanche photodiode with sectional InGaAsP/InP charge layer. Journal of Electrical Engineering 57 (6), 369–372 (2006)

    Google Scholar 

  49. Harris, J.S. Jr: GaInNAs long-wavelength lasers: progress and challenges. Semiconductor Science and Technology 17, 880–891 (2002)

    Article  Google Scholar 

  50. Brennan, K.F., Haralson, J., Parks, J.W. jr., Salem, A.: Review of reliability issues of metalsemiconductor-metal and avalanche photodiode photonic detectors. Microelectronics Reliability 39 (12), 1873–1883 (1999)

    Article  Google Scholar 

  51. Budianu, E., Purica, M., Rusu, E.: Heterostructures on InP substrate for high-speed detection devices over a large spectral range (0:8–1:6mm). Microelectronics Engineering 51–52 (5), 393–400 (2000)

    Article  Google Scholar 

  52. Saleh, M.A., Hayat, M.M., Kwon, O-H., Holmes, A.L., Campbell, J.C., Saleh, B.E.A., Teich, M.C.: Breakdown voltage in thin III-V avalanche photodiodes. Applied Physics Letters 79 (24), 4037–4039 (2001)

    Article  Google Scholar 

  53. Cho, S.R., Yang, S.K., Ma, J.S., Lee, S.D., Yu, J.S., Choo, A.G., Kim, T.I., Burm, J.: Suppression of avalanche multiplication at the periphery of diffused junction by floating guard rings in a planar InGaAs-InP avalanche photodiode. IEEE Photonics Technology Letters 12, 534–536 (2000)

    Article  Google Scholar 

  54. Watanabe, I., Nakata, T., Tsuji, M., Makita, K., Torikai, T., Taguchi, K.: High-speed, highreliability planar-structure superlattice avalanche photodiodes for 10-Gb/s optical receivers. Journal of Lightwave Technology 18, 2200–2207 (2000)

    Article  Google Scholar 

  55. Hecht, J.: Development of silicon photonics focuses on high speed optical interconnects. Laser Focus World, April, 86–89 (2007)

    Google Scholar 

  56. Boyraz, O., Jalali, B.: Demonstration of a silicon Raman laser. Optics Express 12 (21), 5269 (2004)

    Google Scholar 

  57. Rong, H., et al: Low-threshold continuous-wave Raman silicon laser. Nature Photonics 1 (4), 232 (2007)

    Article  Google Scholar 

  58. Greene, K.: Intel speeds up silicon photonics. In: Technology Review, Infotech, January 22 (2007)

    Google Scholar 

  59. Jones, R., Cohen, O., Paniccia, M., Fang, A.W., Bowers, J.: The first electrically pumped, hybrid silicon laser overcomes one of the major hurdles to photonic chips. Photonics Spectra, January, 55–63 (2007)

    Google Scholar 

  60. Cheben, P.: Wavelength dispersive planar waveguide devices: Echelle gratings and arrayed waveguide gratings. In: Optical waveguides: from theory to applied technologies, M. L. Calvo and V. Laksminarayanan, Eds., Chapter 5, Taylor & Francis, London, 174–217 (2007)

    Google Scholar 

  61. Osinsky, A.V., Bellman, R.A., Akwani, I.A., Sachenik, P.A., Logunov, S.L., McCamy, J.W.: Optical loss mechanisms in GeSiON planar waveguides. Applied Physics Letters 81 (11), 2002–2004 (2002)

    Article  Google Scholar 

  62. Melle, S.: Network capacity growth demands new solutions. Laser Focus World, October, 113–115 (2006)

    Google Scholar 

  63. Salib, M., at al.: Silicon photonics. Intel Technology Journal 8 (2), 143–160 (2004)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Kouchi Zhang for stimulating and continuous encouragement of this work. This chapter is a review of the design and development of selected optoelectronics devices, and we are indebted to all of the researchers who have been contributing to this field. Only a few of these researchers are cited here, so we also thank those whose work has not been referenced. The authors are grateful to colleagues who have worked with them in this research since the early 1990s at the Microelectronics Department of the Slovak University of Technology in Bratislava in close collaboration with Slovak Academy of Science in Bratislava, University of Leipzig in Germany and City University of Hong Kong-COSDAF. The assistance of J. Breza and PhD students L. Peternai, J. Waclawek, and D. Hasko is greatly appreciated also.

This work was done in Center of Excellence CENAMOST (Slovak Research and Development Agency Contract. No. VVCE-0049–07) where support of European Commission projects, CP 93, No. 12 283, “DEMACOMINT” and IST-2001–32793-VGF GaP-LEDs as well as projects of the Slovak Research and Development Agency under the contracts APVV-20–055405 and APVV-0290–06 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Kováčč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kováčč, J., Uherek, F., Donoval, D., Kováčč, J., Šatka, A. (2009). Optoelectronics. In: Zhang, G., Roosmalen, A. (eds) More than Moore. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75593-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75593-9_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-75592-2

  • Online ISBN: 978-0-387-75593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics