Skip to main content

Hypoxic Inhibition of Alveolar Fluid Reabsorption

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 618))

Abstract

Alveolar hypoxia occurs during ascent to high altitude and is also observed in patients with ARDS and acute hypoxemic respiratory failure, in which alveolar flooding is associated with a decrease in edema fluid clearance and increased mortality. The mechanisms that lead to the impairment of alveolar fluid clearance are not completely understood. Alveolar fluid reabsorption is accomplished mostly by active Na+ transport across the alveolar epithelium which creates an osmotic gradient responsible for the clearance of lung edema from the alveolar spaces. In vivo and in vitro hypoxia inhibits both the epithelial sodium channels, responsible for the apical sodium entry, and the basolateral Na,K-ATPase, responsible for Na+ extrusion. We have shown that acute hypoxia inhibits Na,K-ATPase function by promoting its endocytosis from the plasma membrane to intracellular compartments. This process is mediated by the generation of mitochondrial reactive oxygen species (ROS) as shown by pharmacological and genetic approaches. Hypoxia and ROS promote the PKC-zeta dependent phosphorylation of the Na,K-ATPase alpha subunit triggering its endocytosis in a clathrin–AP2 dependent process. The phosphorylation occurs at the Ser-18 in the alpha subunit N-terminus, and mutation of this serine prevents both the decrease in function and the endocytosis. More prolonged hypoxia causes the ubiquitination and degradation of Na,K-ATPase. Thus, methods that counterbalance the inhibition of edema clearance during hypoxia and improve the lung’s ability to clear pulmonary edema are needed. As such, a better understanding of the mechanisms that increase Na,K-ATPase function, (i.e., activation of dopaminergic or adrenergic receptors, gene transfer) may lead to the development of therapeutic approaches to upregulate the Na-K-ATPase function and increase edema clearance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertorello AM, Ridge KM, Chibalin AV, Katz AI, and Sznajder JI. Isoproterenol increases Na+-K+-ATPase activity by membrane insertion of alpha-subunits in lung alveolar cells. Am J Physiol276: L20-27, 1999.

    Google Scholar 

  2. Bland RD. Lung epithelial ion transport and fluid movement during the perinatal period. Am J Physiol259: L30-37, 1990.

    Google Scholar 

  3. Borok Z, Liebler JM, Lubman RL, Foster MJ, Zhou B, Li X, Zabski SM, Kim K, and Crandall ED. Alveolar Epithelial Ion and Fluid Transport: Na transport proteins are expressed by rat alveolar epithelial type I cells. Am J Physiol Lung Cell Mol Physiol 282: L599-608, 2002.

    Google Scholar 

  4. Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, and Chandel NS. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metabolism1: 409-414, 2005.

    Article  CAS  PubMed  Google Scholar 

  5. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, and Rossier BC. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature367: 463-467, 1994.

    Article  CAS  PubMed  Google Scholar 

  6. Chandel NS and Budinger GRS. The cellular basis for diverse responses to oxygen. Free Radical Biology and Medicine42: 165-174, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, and Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A95: 11715-11720, 1998.

    Article  CAS  PubMed  Google Scholar 

  8. Chandel NS and Schumacker PT. Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol88: 1880-1889, 2000.

    Article  CAS  PubMed  Google Scholar 

  9. Chen Z, Krmar RT, Dada L, Efendiev R, Leibiger IB, Pedemonte CH, Katz AI, Sznajder JI, and Bertorello AM. GPCR- as well as ROS-dependent Phosphorylation of AP2 μ 2 is Essential for Na+,K+-ATPase Endocytosis. Am J Respir Cell Mol Biol 35: 127-132, 2006.

    Article  PubMed  Google Scholar 

  10. Chibalin AV, Ogimoto G, Pedemonte CH, Pressley TA, Katz AI, Feraille E, Berggren PO, and Bertorello AM. Dopamine-induced endocytosis of Na+,K+-ATPase is initiated by phosphorylation of Ser-18 in the rat alpha subunit and Is responsible for the decreased activity in epithelial cells. J Biol Chem274: 1920-1927, 1999.

    Article  CAS  PubMed  Google Scholar 

  11. Clerici C and Matthay MA. Hypoxia regulates gene expression of alveolar epithelial transport proteins. J Appl Physiol88: 1890-1896, 2000.

    CAS  PubMed  Google Scholar 

  12. Comellas A, Dada LA, Lecuona E, Pesce L, Chandel N, Quesada N, Budinger RGS, Strous GJ, Ciechanover A, and Sznajder JI. Hypoxia-mediated degradation of Na,KATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system. Circ Res98: 1314-1322, 2006.

    Article  CAS  PubMed  Google Scholar 

  13. Cotta-Done S, Leibiger IB, Efendiev R, Katz AI, Leibiger B, Berggren PO, Pedemonte CH, and Bertorello AM. Tyrosine-537 within the Na+,K+-ATPase alpha -subunit is essential for AP-2 binding and clathrin-dependent endocytosis. J Biol Chem277: 17108-17111, 2002.

    Article  Google Scholar 

  14. Crandall ED and Matthay MA. Alveolar epithelial transport. Basic science to clinical medicine. Am J Respir Crit Care Med163: 1021-1029, 2001.

    CAS  PubMed  Google Scholar 

  15. Dada LA, Chandel NS, Ridge KM, Pedemonte C, Bertorello AM, and Sznajder JI. Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-ζ . J Clin Invest111: 1057-1064, 2003.

    CAS  PubMed  Google Scholar 

  16. Dada LA and Sznajder JI. Mechanisms of pulmonary edema clearance during acute hypoxemic respiratory failure: role of the Na,K-ATPase. Crit Care Med31: S248- 252, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. Duranteau J, Chandel NS, Kulisz A, Shao Z, and Schumacker PT. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273: 11619-11624, 1998.

    Article  CAS  PubMed  Google Scholar 

  18. Effros RM, Mason GR, Hukkanen J, and Silverman P. New evidence for active sodium transport from fluid-filled rat lungs. J Appl Physiol66: 906-919, 1989.

    CAS  PubMed  Google Scholar 

  19. Effros RM, Mason GR, Sietsema K, Silverman P, and Hukkanen J. Fluid reabsorption and glucose consumption in edematous rat lungs. Circ Res60: 708-719, 1987.

    CAS  PubMed  Google Scholar 

  20. Gorin AB and Stewart PA. Differential permeability of endothelial and epithelial barriers to albumin flux, 1979. p. 1315-1324.

    Google Scholar 

  21. Guzy RD and Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia, 2006. p. 807-819.

    Google Scholar 

  22. Johnson MD, Widdicombe JH, Allen L, Barbry P, and Dobbs LG. Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. Proc Natl Acad Sci USA,99: 1966-1971, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. Litvan J, Briva A, Wilson MS, Budinger GRS, Sznajder JI, and Ridge KM. beta - Adrenergic receptor stimulation and adenoviral overexpression of sod2 prevent the hypoxia-mediated decrease in Na,K-ATPase and alveolar fluid reabsorption. J Biol Chem281: 19892-19898, 2006.

    Article  CAS  PubMed  Google Scholar 

  24. Maggiorini M. High altitude-induced pulmonary oedema. Cardiovascular Research 72: 41-50, 2006.

    Article  CAS  PubMed  Google Scholar 

  25. Matalon S and O’Brodovich H. Sodium Channels in alveolar epithelial cells: Molecular Characterization, Biophysical Properties, and Physiological Significance, 1999, p. 627-661.

    Google Scholar 

  26. Matthay MA, Folkesson HG, and Verkman AS. Salt and water transport across alveolar and distal airway epithelia in the adult lung. Am J Physiol270: L487-503, 1996.

    Google Scholar 

  27. McDonough AA, Geering K, and Farley RA. The sodium pump needs its beta subunit. FASEB J4: 1598-1605, 1990.

    CAS  PubMed  Google Scholar 

  28. Planes C, Escoubet B, Blot-Chabaud M, Friedlander G, Farman N, and Clerici C. Hypoxia downregulates expression and activity of epithelial sodium channels in rat alveolar epithelial cells. Am J Respir Cell Mol Biol17: 508-518, 1997.

    CAS  PubMed  Google Scholar 

  29. Ridge KM, Olivera WG, Saldias F, Azzam Z, Horowitz S, Rutschman DH, Dumasius V, Factor P, and Sznajder JI. Alveolar Type 1 Cells Express the alpha 2 Na,KATPase, Which Contributes to Lung Liquid Clearance. Circ Res92: 453-460, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Ridge KM, Rutschman DH, Factor P, Katz AI, Bertorello AM, and Sznajder JL. Differential expression of Na-K-ATPase isoforms in rat alveolar epithelial cells, 1997, p. L246-255.

    Google Scholar 

  31. Sakuma T, Folkesson HG, Suzuki S, Okaniwa G, Fujimura S, and Matthay MA. Beta-adrenergic agonist stimulated alveolar fluid clearance in ex vivo human and rat lungs. Am J Respir Crit Care Med155: 506-512, 1997.

    CAS  PubMed  Google Scholar 

  32. Saldias F, Lecuona E, Friedman E, Barnard ML, Ridge KM, and Sznajder JI. Modulation of lung liquid clearance by isoproterenol in rat lungs. Am J Physiol Lung Cell Mol Physiol274: L694-701, 1998.

    Google Scholar 

  33. Saldias FJ, Comellas A, Ridge KM, Lecuona E, and Sznajder JI. Isoproterenol improves ability of lung to clear edema in rats exposed to hyperoxia. J Appl Physiol 87: 30-35, 1999.

    CAS  PubMed  Google Scholar 

  34. Sartori C, Allemann Y, Duplain H, Lepori M, Egli M, Lipp E, Hutter D, Turini P, Hugli O, Cook S, Nicod P, and Scherrer U. Salmeterol for the Prevention of High- Altitude Pulmonary Edema, NEJM,2002, p. 1631-1636.

    Google Scholar 

  35. Skou JC. Nobel Lecture. The identification of the sodium pump. Biosci Rep18: 155- 169, 1998.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki S, Zuege D, and Berthiaume Y. Sodium-independent modulation of Na(+)- K(+)-ATPase activity by beta-adrenergic agonist in alveolar type II cells, 1995, p. L983-990.

    Google Scholar 

  37. Sznajder JI. Alveolar Edema Must Be Cleared for the Acute Respiratory Distress Syndrome Patient to Survive. Am J Respir Crit Care Med163: 1293-1294, 2001.

    CAS  PubMed  Google Scholar 

  38. Ware LB and Matthay MA. The acute respiratory distress syndrome. N Engl J Med 342: 1334-1349, 2000.

    Article  CAS  PubMed  Google Scholar 

  39. Ware LB and Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med163: 1376-1383, 2001.

    CAS  PubMed  Google Scholar 

  40. Wodopia R, Ko HS, Billian J, Wiesner R, Bartsch P, and Mairbaurl H. Hypoxia decreases proteins involved in epithelial electrolyte transport in A549 cells and rat lung. Am J Physiol Lung Cell Mol Physiol279: L1110-1119, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Dada, L.A., Sznajder, J.I. (2007). Hypoxic Inhibition of Alveolar Fluid Reabsorption. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, vol 618. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_12

Download citation

Publish with us

Policies and ethics