Skip to main content

Air Impingement Cooling of Cylindrical Objects Using Slot Jets

  • Conference paper
Food Engineering: Integrated Approaches

Part of the book series: Food Engineering series ((FSES))

Impingement cooling is well known for its application in obtaining high rates of heat transfer, when temperature of the impinging fluid is different than that of the impingement surface. It involves a high velocity air jet (10–100 m/s) striking against an object to be cooled or heated. Applications of air jet impingement have been reported by many researchers (Li and Walker, 1996; Ovadia and Walker, 1998; Wählby et al., 2000; Nitin et al., 2001; Sarkar et al., 2004; Scott and Bradley, 2005). When food products are treated with air impingement, the stagnant boundary layer surrounding a food product is disrupted, resulting in increased surface heat transfer coefficient. Surface heat transfer coefficient during impingement can even reach as high as that for food being fried in oil (Ovadia and Walker, 1998). It is used extensively in industrial cooling of electronics components, textiles, paper pulp and food applications. In the food industry, impingement is used to accelerate freezing, baking, drying (Bórquez et al., 1999), cooling and thawing. With strict legislations for food processing temperatures in many countries becoming increasingly popular, the heat transfer rate has become an important part of food processing and handling. Raw or processed food must be stored at low temperature (normally 0–5°C). A longer processing time may result in potential microbial growth or weight loss due to mass transfer. Air impingement offers the potential to reduce the risk of microbial growth and increased processing rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertson, M.L., Dai, Y.B., Jensen, R.A., and Rouse H., 1950, Diffusion of Submerged Jets, Trans. Am. Soc. Civil Eng. 115(2409):639–697.

    Google Scholar 

  • Ashforth, S.F, Jambunathan, K., and Whitney C.F., 1997, Velocity and Turbulence Characteristics of a Semiconfined Orthogonally Impinging Slot Jet, Exp Thermal Fluid Sci. 14:60–67.

    Article  Google Scholar 

  • Bórquez, R., Wolf, W., Koller, W.D., and Spieb W.E.L., 1999, Impinging Jet Drying of Pressed Fish Cake, J. Food Eng. 40(1–2):113–120.

    Article  Google Scholar 

  • Bouchez, J.P., and Goldstein J., 1975, Impingement Cooling From a Circular Jet In a Cross Flow, Int. J. Heat Mass Transfer 18:719–730.

    Article  Google Scholar 

  • Chan, T.L., Leung, C.W., Jambunathan, K., Ashforth-Frost, S., Zhou, Y., and Liu M.H., 2002, Heat Transfer Characteristics of a Slot Jet Impinging on a Semi-Circular Convex Surface, Int. J. Heat Mass Transfer 45:993–1006.

    Article  Google Scholar 

  • Cornaro, C., Fleischer, A.S., and Goldstein R.J., 1999, Flow Visualization of a Round Jet Impinging on Cylindrical Surfaces, Exp. Therm. Fluid Sci.20:66–78.

    Article  Google Scholar 

  • Cornaro, C., Fleischer, A.S., Rounds, M., and Goldstein R.J., 2001, Jet Impingement Cooling of a Convex Semi-Cylindrical Surface, Int. J. Therm. Sci. 40:890–898.

    Article  Google Scholar 

  • Downs, S.J., and James E.H., 1987, Jet Impingement Heat Transfer—A Literature Survey, ASME Paper No 87-HT-35.

    Google Scholar 

  • Gardon, R., and Akfirat J.C., 1965, The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets, Int. J. Heat Mass Transfer 8:1261–1272.

    Article  Google Scholar 

  • Gardon, R., and Akfirat J.C., 1966, Heat Transfer Characteristics of Impinging Two Dimensional Air Jets, J. Heat Transfer 88:101–108.

    CAS  Google Scholar 

  • Gau, C., and Chung C.M., 1991, Surface Curvature Effect on Slot Air Jet Impinging Cooling Flow and Heat Transfer Processes, ASME J. Heat Transfer 113:858–864.

    Article  CAS  Google Scholar 

  • Gauntner, J.W., Livingwood, J.N.B., and Hrycak P., 1970, Survey of Literature on Flow Characteristics of a Single Turbulent Jet Impinging on a Flat Plate, NASA TN D-5652.

    Google Scholar 

  • Gori, F., and Bossi L., 2003, Optimal Slot Height in the Jet Cooling Of Cylinder, Appl. Therm. Sci. 23:859–870.

    Article  Google Scholar 

  • Hofmann, H., Martin, H., and Matthias K., 2004, Numerical Simulation of Heat Transfer from an Impinging Jet on a Flat Plate. Chem. Eng. Technol. 27(1):27–30.

    Article  CAS  Google Scholar 

  • Jambunathan, K., Lai, E., Moss, M.A., and Button B.L., 1992, Review of Heat Transfer Data for Single Circular Jet Impingement, Int. J. Heat Fluid Flow 13(2):106–115.

    Article  CAS  Google Scholar 

  • Kornblum, Y., and Goldstein R.J., 1997, Impingement on Semicircular Concave and Convex Surfaces, Part Two: Heat Transfer, in: Proceedings. International Symposium on the Physics of Heat Transfer in Boiling Condensation, L. Bolshov publications, Moscow, pp. 603–608.

    Google Scholar 

  • Lee, D.H., Chung, Y.S., and Kim M.G., 1999, Technical Note: Turbulent Heat Transfer from a Convex Hemispherical Surface to a Round Impinging Jet, Int. J. Heat Mass Transfer 42:1147–1156.

    Article  CAS  Google Scholar 

  • Lee, D.H., Chung, Y.S., and Kim D.S., 1997, Turbulent Flow and Heat Transfer Measurements on a Curved Surface with a Fully Developed Round Impinging Jet, Int. J. Heat Fluid Flow 18(1):160–169.

    Article  CAS  Google Scholar 

  • Li, A., and Walker C.E., 1996, Cake Baking in Conventional, Impingement and Hybrid Ovens, J. Food Sci. 61(1):188–191, 197.

    Article  CAS  Google Scholar 

  • Lujan, J., Moreira, R.G., and Seyed Y.J., 1997, Air Impingement Drying of Tortilla Chips, Drying Technol. 15(3–4):881–897.

    Article  Google Scholar 

  • Marcroft, H., and Karwe M.V., 1999, Measurement of Flow Field in a Jet Impingement Oven, Part II: Multiple Jets, J. Food Process Preserv. 23:235–248.

    Article  Google Scholar 

  • McDaniel A.W., 2000, Slot Jet Impingement Heat Transfer from Circular Cylinders, J. Heat Mass Transfer43:1975–1985.

    Article  Google Scholar 

  • Moreira R.G., 2001, Impingement Drying of Foods Using Hot Air and Superheated Steam, J. Food Eng. 49(4):291–295.

    Article  Google Scholar 

  • Narayanan, V., Yagoobi, J.S., and Page R.H., 2004, An Experimental Study of Fluid Mechanics and Heat Transfer in an Impinging Jet Flow, Int. J. Heat Mass Transfer 47:1827–1845.

    Article  Google Scholar 

  • Nitin, N., and Karwe M.V., 2001, Heat Transfer Coefficient for Cookie Shaped Objects in a Hot Air Jet Impingement Oven, J. Food Process Eng. 24(1):51–69.

    Article  Google Scholar 

  • Olsson, E.E.M., Ahrne, L.M., and Tragrardh A.C., 2004, Heat Transfer from a Slot Air Jet Impinging on a Circular Cylinder, J. Food Eng. 63:393–401.

    Article  Google Scholar 

  • Ovadia, D.Z. and Walker, C.E., 1998, Impingement in Food Processing, Food Technol. 52(4):46–50.

    Google Scholar 

  • Polat, S., Huang, B., Majumdar, A.B., and Douglas W.J.M., 1989, Numerical Flow and Heat Transfer Under Impinging Jets, in: Annual Review of Numerical Fluid Mechanics and Heat Transfer, Hemisphere Pub. Corp, Washington, pp. 157–197.

    Google Scholar 

  • Sarkar A., 2004, Numerical Modeling and Experimental Studies on Air Impingement Freezing under Slot Jets, PhD thesis, Biological and Agricultural Engineering, University of California Davis, Davis.

    Google Scholar 

  • Sarkar, A., Nitin, N., Karwe, M.V., and Singh R.P., 2004, Fluid flow and Heat Transfer in Air Jet Impingement in Food Processing, J. Food Sci. 69(4):113–122.

    Google Scholar 

  • Schlichting H., 1979, Boundary Layer Theory. 7th ed., McGraw-Hill, New York.

    Google Scholar 

  • Scott, C M., and Bradley P.M., 2005, Condensing-Convective Boundary Conditions in Moist Air Impingement Ovens, J. Food Eng. 70(1):101–108.

    Article  Google Scholar 

  • Singh S.K., 2005, Air Impingement Cooling of Cylindrical Objects Using Slot Jets, M.S. Thesis, Biological Systems Engineering, University of California Davis, Davis.

    Google Scholar 

  • Smith N.R., 1975, United States Patent Number 3884213.

    Google Scholar 

  • Tennekes, H., and Lumley J.L., 1972. A First Course in Turbulence, 1st ed. MIT Press, Cambridge, p. 300.

    Google Scholar 

  • Versteeg, H.K., and Malalasekera W., 1995, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, McGraw-Hill, Loughborough University.

    Google Scholar 

  • Wählby, U., Skjoldebrand, C. and Junker E., 2000, Impact of Impingement on Cooking Time and Food Quality, J. Food Eng. 43(3):179–187.

    Article  Google Scholar 

  • Yang, G., Choi, M., and Lee J.S., 1999, An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effects of Nozzle Configuration and Curvature, Int. J. Heat Mass Transfer 42:2199–2209.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Singh, S.K., Singh, R.P. (2008). Air Impingement Cooling of Cylindrical Objects Using Slot Jets. In: Gutiérrez-López, G.F., Barbosa-Cánovas, G.V., Welti-Chanes, J., Parada-Arias, E. (eds) Food Engineering: Integrated Approaches. Food Engineering series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75430-7_5

Download citation

Publish with us

Policies and ethics