Skip to main content

Many food emulsions are more complex than a simple colloidal dispersion of liquid droplets in another liquid phase. This is mainly because the dispersed phase is partially solidified or the continuous phase may contain crystalline material, as in ice cream. However, one characteristic that all emulsions have in common is that they are (thermodynamically) unstable. The four main mechanisms that can be identified in the process of breaking down an emulsion are creaming, flocculation, coalescence, and Ostwald ripening. There are two ways in which the process of breakdown of an emulsion can be influenced. First, use of mechanical devices to control the size of the dispersion droplets and second, the addition of stabilizing chemical additives like low molecular weight emulsifiers or polymers to keep it dispersed. The main purpose of the latter is to prevent the emulsion droplets flocculating and from fusing together (coalescence), often achieved by repulsive droplet/droplet interactions. These interparticle interactions are determined mainly by the droplet surface, which is coated with emulsifiers, often surface-active components of biological origin like proteins, mono- and diglycerides, fatty acids, or phospholipids. The forces most commonly observed are electrostatic double layer, van der Waals, hydration, hydrophobic, and steric forces. They are responsible for many emulsion properties including their stability.

The complex mechanisms involved in formation, stabilization, and destabilization of emulsions make fundamental studies on applied systems difficult. One approach has therefore been to clarify the basic physical and chemical properties of emulsions by the study of simpler model systems. The adsorption behavior of single-emulsion components like proteins, fatty acids, surfactants, or phospholipids at liquid/air or liquid/liquid interfaces have given information about surface activity, adsorbed amounts, kinetics, conformation, and surface rheology. The development of experimental techniques has made it possible to extend these studies to multicomponent systems. This has provided further information concerning competitive adsorption, displacement, and complex formation, which can be related to emulsion and foam stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlers, M., W. Müller, et al. (1990). Specific interactions of proteins with functional lipid monolayers—ways of simulating biomembrane process. Angew. Chem. Int. Ed. Engl., 29, 1269–1285.

    Article  Google Scholar 

  • Almgren, M. and S. Rangelov (2006). Polymorph dispersed particles from the bicontinuous cubic phase of glycerol monooleate stabilized by PEG-copolymers with lipid-mimetic hydrophobic anchors. J. Dispersion Sci. Technol., 27, 599–609.

    Article  CAS  Google Scholar 

  • Ananthapadmanabhan, K. P. (1993). Protein-Surfactant Interactions. Interactions of Surfactants with Polymers and Proteins. K. P. Ananthapadmanabhan and E. D. Goddard (Eds.) Boca Raton; Florida, CRC Press, pp. 319–366.

    Google Scholar 

  • Andersson, S., S. T. Hyde, et al. (1988). Minimal surfaces and structures: From inorganic and metal crystals to cell membranes and biopolymers. Chem. Rev., 88, 221–242.

    Article  CAS  Google Scholar 

  • Angelov, B., A. Angelova, et al. (2006). Detailed structure of diamond-type lipid cubic nanoparticles. J. Am. Chem. Soc., 128, 5813–5817.

    Article  CAS  Google Scholar 

  • Angelova, A., B. Angelov, et al. (2005). Proteocubosomes: Nanoporous vehicles with tertiary organized fluid interfaces. Langmuir, 21, 4138–4143.

    Article  CAS  Google Scholar 

  • Aynié, S., M. Le Meste, et al. (1992). Interactions between lipids and milk proteins in emulsion. J. Food Sci., 57, 883–887.

    Article  Google Scholar 

  • Backstrom, K., B. Lindman, et al. (1988). Removal of triglycerides from polymer surface in relation to surfactant packing—ellipsometer studies. Langmuir, 4, 872–878.

    Article  Google Scholar 

  • Barauskas, J., M. Johnsson, et al. (2005a). Cubic phase nanoparticles (cubosome): Principles for controlling size, structure, and stability. Langmuir, 21, 2569–2577.

    Article  CAS  Google Scholar 

  • Barauskas, J., M. Johnsson, et al. (2005b). Self-assembled lipid superstructures: Beyond vesicles and liposomes. Nano Lett., 5, 1615–1619.

    Article  CAS  Google Scholar 

  • Barauskas, J., M. Johnsson, et al. (2006a). Hexagonal liquid-crystalline nanoparticles in aqueous mixtures of glyceryl monooleyl ether and pluronic F127. Chem. Lett., 35, 830–831.

    Article  CAS  Google Scholar 

  • Barauskas, J., A. Misiunas, et al. (2006b). “Sponge” nanoparticle dispersions in aqueous mixtures of diglycerol monooleate, glycerol dioleate, and polysorbate 80. Langmuir, 22, 6328–6334.

    Article  CAS  Google Scholar 

  • Baruskas, J., V. Razumas, et al. (1999). Solubilization of ubiqinone-10 in the lamellar and bicontinous cubic phases of aqueous monoolein. Chem. Phys. Lipids, 97, 167–179.

    Article  Google Scholar 

  • Barauskas, J., V. Razumas, et al. (2000). Entrapment of glucose oxidase into the cubic Q230 and Q224 phases of aqueous monoolein. Prog. Colloid Polym. Sci., 116, 16–20.

    Article  CAS  Google Scholar 

  • Benichou, A., A. Aserin, et al. (2002). Protein-polysaccharide interactions for stabilization of food emulsions. J. Dispersion Sci. Technol., 23, 93–123.

    CAS  Google Scholar 

  • Biswas, S. C. and D. Marion (2006). Interaction between puroindolines and the major polar lipids of wheat seed endosperm at the air-water interface. Colloids Surf. B Biointerfaces, 53, 167–174.

    Article  CAS  Google Scholar 

  • Blomqvist, B. R., M. J. Ridout, et al. (2004). Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants. Langmuir, 20, 10150–10158.

    Article  CAS  Google Scholar 

  • Blomqvist, B. R., P. Wilde, et al. (2006). Competitive destabilization/stabilization of beta-lactoglobulin foam by PEO-PPO-PEO polymeric surfactants. J. Dispersion Sci. Technol., 27, 527–536.

    Article  CAS  Google Scholar 

  • Bohnert, J. L. and T. A. Horbett (1986). Changer in adsorbed fibrinogen and albumin interactions with polyers indicated by decrease in detergent elutability. J. Colloid Interface Sci., 111, 363–378.

    Article  CAS  Google Scholar 

  • Borné, J., T. Nylander, et al. (2001). Phase behavior and aggregate formation for the aqueous monoolein system mixed with sodium oeate and oleic acid. Langmuir, 17, 7742–7751.

    Article  CAS  Google Scholar 

  • Borné, J., T. Nylander, et al. (2002a). Effect of lipase on different lipid liquid crystalline phases formed by oleic acid based acyl glycerols in aqueous systems. Langmuir, 18, 8972–8981.

    Article  CAS  Google Scholar 

  • Borné, J., T. Nylander, et al. (2002b). Effect of lipase on monoolein-based cubic phase dispersion (cubosomes) and vesicles. J. Phys. Chem. B, 106, 10492–10500.

    Article  CAS  Google Scholar 

  • Bos, M. and T. Nylander (1996). The interaction between b-lactoglobulin and phospholipids at the air/water interface. Langmuir, 12, 2791–2797.

    Article  CAS  Google Scholar 

  • Bos, M., T. Nylander, et al. (1997). Protein/emulsifier interactions. Food emulsifiers and their applications. G. L. Hasenhuettl and R. W. Hartel. New York, Chapman and Hall, pp. 95–146.

    Google Scholar 

  • Bos, M. A. and T. van Vliet (2001a). Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv. Colloid Interface Sci., 91, 437–471.

    Article  CAS  Google Scholar 

  • Bos, M. A. and T. van Vliet (2001b). Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv. Colloid Interface Sci., 91, 437–471.

    Article  CAS  Google Scholar 

  • Boström, M., D. R. M. Williams, et al. (2002). Influence of Hofmeister effects on surface pH and binding of peptides to membranes. Langmuir, 18, 8609–8615.

    Article  CAS  Google Scholar 

  • Boström, M., D. R. M. Williams, et al. (2001). Specific ion effects: Why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett., 87, 168103.

    Article  CAS  Google Scholar 

  • Boyd, B. J., D. V. Whittaker, et al. (2006). Hexosomes formed from glycerate surfactants—Formulation as a colloidal carrier for irinotecan. Int. J. Pharm., 318, 154–162.

    Article  CAS  Google Scholar 

  • Brash, J. L. and P. Hove (1984). Effect of plasma dilution on adsorption of fibrinogen to solid surfaces. Thromb. Haemost., 51, 326–330.

    CAS  Google Scholar 

  • Briggs, J., H. Chung, et al. (1996). The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system. J. Phys. II France, 6, 723–751.

    Article  CAS  Google Scholar 

  • Brooksbank, D. V., J. Leaver, et al. (1993). Adsorption of milk proteins to phosphatidylglycerol and phosphatidylcholine liposomes. J. Colloid Interface Sci., 161, 38–42.

    Article  CAS  Google Scholar 

  • Brown, E. M. (1984). Interactions of b-lactoglobulin with lipids: A review. J. Dairy Sci., 67, 713–722.

    Article  CAS  Google Scholar 

  • Brown, E. M., R. J. Caroll, et al. (1983). Complex formation in sonicated mixtures of b-lactoglobulin and phosphatidylcholine. Lipids, 18, 111–118.

    Article  CAS  Google Scholar 

  • Buckingham, J. H., J. Lucassen, et al. (1978). Surface properties of mixed solutions of poly-L-lysine and sodium dodecyl sulfate. J. Colloid Interface Sci., 67, 423–431.

    Article  CAS  Google Scholar 

  • Bychokova, V. E., R. H. Pain, et al. (1988). The ‘molten globule’ state is involved in the translocation across membranes? FEBS Lett., 238, 231–234.

    Article  Google Scholar 

  • Bylaite, E., T. Nylander, et al. (2001). Emulsification of caraway essential oil in water by lecithin and b-lactoglobulin—emulsion stability and properties of the formed oil-aqueous interface. Collloids Surf. B Biointerfaces, 20, 327–340.

    Article  CAS  Google Scholar 

  • Caboi, F., G. S. Amico, et al. (2001). Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein: Water system. I. Phase behavior. Chem. Phys. Lipids, 109, 47–62.

    Article  CAS  Google Scholar 

  • Caboi, F., J. Borné, et al. (2002). Lipase action on a monoolein/sodium oleate aqueous cubic liquid crystalline phase - a NMR and X-ray diffraction study. Collloids Surf. B Biointerfaces, 26, 159–171.

    Article  CAS  Google Scholar 

  • Caboi, F., T. Nylander, et al. (1997). Structural effects, mobility and redox behavior of Vitamin K1 hosted in the monoolein-water liquid crystalline phases. Langmuir, 13, 5476–5483.

    Article  CAS  Google Scholar 

  • Carlsson, A., M. Bergqvist, et al. (1995). Digalactosyldiacylglycerol—a new excipient in drug formulation. Progress in Drug Delivery System IV, Biomedical Research Foundation, Tokyo 105–115.

    Google Scholar 

  • Castle, J., E. Dickinson, et al. (1987). Mixed-protein films adsorbed at the oil-water interface. ACS Symp. Ser., 343, 118–134.

    Article  CAS  Google Scholar 

  • Chen, J. and E. Dickinson (1993). Time-dependent competetive adsorption of milk proteins and surfactants in oil-in-water emulsions. J. Sci. Food Agric., 62, 283–289.

    Article  CAS  Google Scholar 

  • Chen, J. and E. Dickinson (1995a). Protein/surfactant interactions Part 1. Flocculation of emulsions containing mixed protein + surfactant. Colloids Surfaces A: Physicochem. Eng. Aspects, 100, 255–265.

    Article  CAS  Google Scholar 

  • Chen, J. and E. Dickinson (1995b). Protein/surfactant interactions Part 2. Electrophoretic mobility of mixed protein + surfactant systems. Colloids Surfaces A: Physicochem. Eng. Aspects, 100, 267–277.

    Article  CAS  Google Scholar 

  • Chen, J. and E. Dickinson (1995c). Protein/surfactant interfacial interactions. Part 3. Competitive adsorption of protein + surfactant in emulsions. Colloids Surfaces A: Physicochem. Eng. Aspects, 101, 77–85.

    Article  CAS  Google Scholar 

  • Chen, J., E. Dickinson, et al. (1993). Interfacial interactions, competitive adsorption and emulsion stability. Food Struct., 12, 135–146.

    CAS  Google Scholar 

  • Chupin, V., J. A. Killian, et al. (1987). 2H-Nuclear magnetic resononance investigations on phospholipid acyl chain order and dynamics in the gramicidin-induced hexagonal HII phase. Biophys. J., 51, 395–405.

    Article  CAS  Google Scholar 

  • Clark, D. C. (1995). Application of state-of-the-art fluorescence and interferometric technique to study coalescence in food dispersions. Characterisation of Food: Emerging Methods. A. Goankar. Amsterdam, Elsevier, pp. 23–57.

    Chapter  Google Scholar 

  • Clark, D. C., M. Coke, et al. (1990a). Molecular-diffusion and thickness measurements of protein-stabilized thin liquid-films. J. Colloid Interface Sci., 138, 207–219.

    Article  CAS  Google Scholar 

  • Clark, D. C., M. Coke, et al. (1991a). Molecular diffusion at interfaces and its relation to dispersed phase stability. Food, Polymers, Gels and Colloids. E. Dickinson. London, Royal Society of Chemistry, pp. 272–278.

    Google Scholar 

  • Clark, D. C., R. Dann, et al. (1990b). Surface-diffusion in sodium dodecyl sulfate-stabilized thin liquid-films. J. Colloid Interface Sci., 138, 195–206.

    Article  CAS  Google Scholar 

  • Clark, D. C., F. Husband, et al. (1995). Evidence of extraneous surfactant adsorption altering adsorbed layer properties of b-lactoglobulin. J. Chem. Soc. Faraday Trans., 91, 1991–1996.

    Article  CAS  Google Scholar 

  • Clark, D. C., A. R. Mackie, et al. (1994a). Differences in the structure and dynamics of the adsorbed layers in protein stabilized model foams and emulsions. Faraday Discuss., 98, 253–262.

    Article  CAS  Google Scholar 

  • Clark, D. C., P. J. Wilde, et al. (1991b). Destabilization of i-lactalbumin foams by competitive adsorption of the surfactant Tween 20. Colloids Surf., 59, 209–223.

    Article  CAS  Google Scholar 

  • Clark, D. C., P. J. Wilde, et al. (1992). The interaction of sucrose esters with b-lactoglobulin and b-casein from bovine milk. Food Hydrocolloids, 6, 173–186.

    Article  CAS  Google Scholar 

  • Clark, D. C., P. J. Wilde, et al. (1993). Differences in the structure and dynamics of the adsorbed layers in protein stabilised model foams and emulsions. Food Colloids and Polymers: Structure and Dynamics. E. Dickinson and P. Walstra. Cambridge, Royal Society of Chemistry Special Publication No. 113, pp. 354–364.

    Google Scholar 

  • Clark, D. C., P. J. Wilde, et al. (1994b). The protection of beer foam against lipid-induced destabilization. J. Inst. Brew., 100, 23–25.

    CAS  Google Scholar 

  • Coke, M., P. J. Wilde, et al. (1990). The influence of surface composition and molecular diffusion on the stability of foams formed from protein/surfactant mixtures. J. Colloid Interface Sci., 138, 489–504.

    Article  CAS  Google Scholar 

  • Cordoba, J., M. D. Reboiras, et al. (1988). Interaction of n-octyl-b-D-glucopyranoside with globular proteins in aqueous solution. Int. J. Biol. Macromol., 10, 270–276.

    Article  CAS  Google Scholar 

  • Corkery, R. W. (2002). The anti-parallel, extended or splayed-chain conformation of amphiphilic lipids. Collloids Surf. B Biointerfaces, 26, 3–20.

    Article  CAS  Google Scholar 

  • Cornell, D. G. (1982). Lipid-protein interactions in monolayers: Egg yolk phosphatidic acid and b-lactoglobulin. J. Colloid Interface Sci., 88, 536–545.

    Article  CAS  Google Scholar 

  • Cornell, D. G. and R. J. Caroll (1985). Miscibility in lipid-protein monolayers. J. Colloid Interface Sci., 108, 226–233.

    Article  CAS  Google Scholar 

  • Cornell, D. G. and D. L. Patterson (1989). Interaction of phospholipids in monolayers with b-lactoglobulin adsorbed from solution. J. Agric. Food Chem., 37, 1455–1459.

    Article  CAS  Google Scholar 

  • Cornell, D. G., D. L. Patterson, et al. (1990). The interaction of phospholipids in monolayers with bovine serum albumin and a-lactalbumin adsorbed from solution. J. Colloid Interface Sci., 140, 428–435.

    Article  CAS  Google Scholar 

  • Courthaudon, J. L., E. Dickinson, et al. (1991). Competitive adsorption of lecithin and b-casein in oil-in-water emulsions. J. Agric. Food Chem., 39, 1365–1368.

    Article  CAS  Google Scholar 

  • Cowley, A. C., N. L. Fuller, et al. (1978). Measurements of repulsive forces between charged phospholipid bilayers. Biochemistry, 17, 3163–3168.

    Article  CAS  Google Scholar 

  • Creighton, T. E. (1990). Protein folding. Biochem. J., 270, 1–16.

    CAS  Google Scholar 

  • Creighton, T. E. (1993). Proteins — Structure and Molecular Properties. New York, W. H. Freeman.

    Google Scholar 

  • Danthine, S., C. Blecker, et al. (2000). Progress in milk fat globule membrane research: a review. Lait, 80, 209–222.

    Article  CAS  Google Scholar 

  • De Kruijff, B. (1997). Lipid polymorphism and biomembrane function. Curr. Opin. Colloid Interface Sci., 1, 564–569.

    CAS  Google Scholar 

  • De Kruijff, B. and P. R. Cullis (1980). Cytochrome s specifically induces non-bilayer structures in cardiolipin containing model membranes. Biochim. Biophys. Acta, 602, 477–490.

    Article  CAS  Google Scholar 

  • de Wit, J. N. (1989). Functional properties of whey proteins. Developments in Dairy Chemistry - 4. P. F. Fox. London, Elsevier Applied Science, pp. 285–322.

    Google Scholar 

  • Dickinson, E. (1993). Proteins in solution and at interfaces. Interactions of Surfactants with Polymers and Proteins. K. P. Ananthapadmanabhan and E. D. Goddard (Eds.) Boca Raton; Florida, CRC Press, pp. 295–317.

    Google Scholar 

  • Dickinson, E. (1996). Biopolymer interactions in emulsion systems: Influences on creaming, flocculation, and rheology. Macromolecular Interactions in Food Technology. Washington DC, American Chemical Society. 650, pp. 197–207.

    Chapter  Google Scholar 

  • Dickinson, E. (1999). Adsorbed protein layers at fluid interfaces: Interactions, structure and surface rheology. Collloids Surf. B Biointerfaces, 15, 161–176.

    Article  CAS  Google Scholar 

  • Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17, 25–39.

    Article  CAS  Google Scholar 

  • Dickinson, E. and G. Iveson (1993). Adsorbed films of b-lactoglobulin + lecithin at the hydrocarbon-water and triglyceride–water interfaces. Food Hydrocoll., 6, 533–541.

    Article  CAS  Google Scholar 

  • Dickinson, E. and Y. Matsumura (1991). Time-dependent polymerization of b-lactoglobulin through disulphide bonds at the oil-water interface in emulsions. Int. J. Biol. Macromol., 13, 26–30.

    Article  CAS  Google Scholar 

  • Dickinson, E. and Y. Matsumura (1994). Proteins at liquid interfaces: role of the molten globule state. Colloids Surf. B Biointerfaces, 3, 1–17.

    Article  CAS  Google Scholar 

  • Dickinson, E. and G. Stainsby (1982). Colloids in Food. London, Applied Science Publishers.

    Google Scholar 

  • Dickinsson, E. D. and C. M. Woskett (1989). Competitive adsorption between proteins and small molecular surfactants in food emulsions. Food and Colloids. R. D. Bee, P. Richmond and J. Mingins (Eds.) London, Royal Society of Chemistry, pp. 74–96.

    Google Scholar 

  • Diederich, A., C. Sponer, et al. (1996). Reciprocal influence between the protein and lipid components of a lipid-protein membrane model. Colloids Surf. B Biointerfaces, 6, 335–346.

    Article  CAS  Google Scholar 

  • Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29, 7133–7155.

    Article  CAS  Google Scholar 

  • Dolgikh, D. A., L. V. Abaturov, et al. (1985). Compact state of a protein molecule with pronounced small-scale mobility: bovine a-lactalbumin. Eur. Biophys. J., 13, 109–121.

    Article  CAS  Google Scholar 

  • Dolgikh, D. A., R. I. Gilmanshin, et al. (1981). a-Lactalbumin: Compact state with fluctuating tertiary structure? FEBS Lett., 136, 311–315.

    Article  CAS  Google Scholar 

  • Du, Y.-K., J.-Y. An, et al. (1996). A study of the interaction between glucolipids of different hydrophobicities and glucos oxidase by a monolayer technique. Colloid Surf. B Biointerfaces, 7, 129–133.

    Article  CAS  Google Scholar 

  • Dubreil, L., J. P. Compoint, et al. (1997). Interaction of puroindolines with wheat flour polar lipids determines their foaming properties. J. Agric. Food Chem., 45, 108–116.

    Article  CAS  Google Scholar 

  • Elwing, H., A. Askendal, et al. (1989). Desorption of fibrinogen and E-globulin from solid surface induced by a nonionic detergent. J. Colloid Interface Sci., 128, 296–300.

    Article  CAS  Google Scholar 

  • Elwing, H. and C. G. Golander (1990). Protein and detergent interaction phenomena on solid surface with gradients in chemical composition. Adv. Colloid Interface Sci., 32, 317–339.

    Article  CAS  Google Scholar 

  • Engblom, J., Y. Miezis, et al. (2000). On the swelling of monoolein liquid-crystalline aqueous phases in the presence of distearoylphosphatidylglycerol. Prog. Colloid Polym. Sci., 116, 9–15.

    Article  CAS  Google Scholar 

  • Engel, M. F. M., C. P. M. van Mierlo, et al. (2002). Kinetic and Structural Characterization of Adsorption-induced Unfolding of Bovine alpha-Lactalbumin. J. Biol. Chem., 277, 10922–10930.

    Article  CAS  Google Scholar 

  • Ericsson, B. (1986). Interactions between globular proteins and lipids. Food Technology. Lund, Sweden, University of Lund: 65.

    Google Scholar 

  • Ericsson, B. and P.-O. Hegg (1985). Surface behaviour of adsorbed films from protein-amphiphile mixtures. Prog. Colloid Polym. Sci., 70, 92–95.

    Article  CAS  Google Scholar 

  • Ericsson, B., P.-O. Hegg, et al. (1983a). Protection of ovalbumin against irreversible heat denaturation by cationic amphiphile at high concentration. J. Food Technol., 18, 11–19.

    Article  CAS  Google Scholar 

  • Ericsson, B., P.-O. Hegg, et al. (1987a). Effect on cationic amphiphiles and temperature on lysozyme conformation. J. Dispersion Sci. Technol., 8, 271–287.

    Article  CAS  Google Scholar 

  • Ericsson, B., P.-O. Hegg, et al. (1987b). Effects of amphiphiles on trypsin activity and conformation. J. Dispersion Sci. Technol., 8, 289–301.

    Article  CAS  Google Scholar 

  • Ericsson, B., K. Larsson, et al. (1983b). A cubic protein-monoolein-water phase. Biochim. Biophys. Acta, 729, 23–27.

    Article  CAS  Google Scholar 

  • Esposito, E., R. Cortesi, et al. (2005). Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm. Res., 22, 2163–2173.

    Article  CAS  Google Scholar 

  • Evans, D. F., M. Allen, et al. (1984a). Critical micelle concentrations for alkyltrimethylammonium bromides in water from 25 to 160 °C. J. Sol. Chem., 13, 87–101.

    Article  CAS  Google Scholar 

  • Evans, D. F., D. J. Mitchell, et al. (1984b). Ion binding and dressed micelles. J. Phys. Chem., 88, 6344–6348.

    Article  CAS  Google Scholar 

  • Ewers, W. E. and K. L. Sutherland (1952). The role of surface transport in the stability and breakdown of foams. Aust. J. Sci. Res. Ser., A5, 697–710.

    CAS  Google Scholar 

  • Fainerman, V. B., E. H. Lucassen-Reynders, et al. (1998). Adsorption of surfactants and proteins at fluid interfaces. Colloids Surfaces A: Physicochem. Eng. Aspects, 143, 141–165.

    Article  CAS  Google Scholar 

  • Fang, Y. and D. G. Dalgleish, 73, 437–442 (1996). Comparison of the effects of three different phosphatidylcholines on casein-stabilized oil-in-water emulsions. J. Am. Oil Chem. Soc., 73, 437–442.

    Article  CAS  Google Scholar 

  • Flockhart, B. D. (1961). The effect of temperature on the critical micelle concentration of some paraffin-chain salts. J. Colloid Interface Sci., 16, 484–492.

    CAS  Google Scholar 

  • Fontell, K. (1990). Cubic phases in surfactant and surfactant-like lipid systems. Colloid Polym. Sci., 268, 264–285.

    Article  CAS  Google Scholar 

  • Fontell, K. (1992). Some aspects on the cubic phases in surfactant and surfactant-like lipid systems. Adv. Colloid Interface Sci., 41, 127–147.

    Article  CAS  Google Scholar 

  • Frapin, D., E. Dufour, et al. (1993). Probing fatty acid binding site of i-lactoglobulin. J. Protein Chem., 12, 443–448.

    Article  CAS  Google Scholar 

  • Fraser, P. E., R. P. Rand, et al. (1989). Bilayer-stabilising properties of myelin basic protein in dioleoylphosphatdiylethanolamine systems. Biochim. Biophys. Acta, 983, 23–29.

    Article  CAS  Google Scholar 

  • Friberg, S. (1971). Liquid crystalline phases in emulsions. J. Colloid Interface Sci., 37, 291–295.

    Article  CAS  Google Scholar 

  • Friberg, S., L. Mandell, et al. (1969). Mesomorphous phases a factor of importance for properties of emulsions. J. Colloid Interface Sci., 29, 155–161.

    Article  CAS  Google Scholar 

  • Froberg, J. C., E. Blomberg, et al. (1999). Desorption of lysozyme layers by sodium dodecyl sulfate studied with the surface force technique. Langmuir, 15, 1410–1417.

    Article  Google Scholar 

  • Fukushima, K., Y. Murata, et al. (1981). The binding of sodium dodecyl sulfate to lysozyme in aqueous solution. Bull. Chem. Soc. Jpn., 54, 3122–3127.

    Article  CAS  Google Scholar 

  • Fukushima, K., Y. Murata, et al. (1982). The binding of sodium dodecylsulfate to lysozyme in aqueous solution. II. The effect of added NaCl. Bull. Chem. Soc. Jpn., 55, 1376–1378.

    Article  CAS  Google Scholar 

  • Garcia Dominguez, J. J., R. Infante, et al. (1981). Interaction alkylsulphates-proteins and their adsorption at the water/air interphase. Tenside Detergents, 18, 310–313.

    Google Scholar 

  • Gargouri, Y., R. Julien, et al. (1984a). Studies on the inhibition of pancreatic and microbial lipases by soybean proteins. J. Lipid Res., 25, 1214–1221.

    CAS  Google Scholar 

  • Gargouri, Y., R. Julien, et al. (1984b). Inhibition of pancreatic and microbial lipases by proteins. Biochim. Biophys. Acta, 795, 326–331.

    CAS  Google Scholar 

  • Gargouri, Y., H. Moreau, et al. (1989). Role of sulphydryl group in gastric lipase. A binding study using the monomolecular film technique. Eur. J. Biochem., 180, 367–371.

    Article  CAS  Google Scholar 

  • Gargouri, Y., G. Pieroni, et al. (1987). Human gastric lipase - A kinetic study with dicaprin monolayers. Eur. J. Biochem., 169, 125–129.

    Article  CAS  Google Scholar 

  • Gargouri, Y., G. Pieroni, et al. (1986). Inhibition of lipases by proteins - a binding study using dicaprin monolayers. Biochemistry, 25, 1733–1738.

    Article  CAS  Google Scholar 

  • Gargouri, Y., G. Pieroni, et al. (1985). Enzyme reactions in model membranes. 8. Inhibition of lipases by proteins - a kinetic study with dicaprin monolayers. J. Biol. Chem., 260, 2268–2273.

    CAS  Google Scholar 

  • Gekko, K. and Y. Hasegawa (1986). Compressibility-structure relationship of globular proteins. Biochemistry, 25, 6563–6571.

    Article  CAS  Google Scholar 

  • Gericke, A., J. Simon-Kutscher, et al. (1993). Influence of the spreading solvent on the properties of monolayers at the air/water interface. Langmuir, 9, 2119–2127.

    Article  CAS  Google Scholar 

  • Green, F. A. (1971). Interactions of a nonionic detergent. II. With soluble proteins. J. Colloid Interface Sci., 35, 481–485.

    Article  CAS  Google Scholar 

  • Green, R. J., T. J. Su, et al. (2000). Interaction of lysozyme and sodium dodecyl sulfate at the air-liquid interface. Langmuir, 16, 5797–5805.

    Article  CAS  Google Scholar 

  • Green, R. J., T. J. Su, et al. (2001). The interaction between SDS and lysozyme at the hydrophilic solid-water interface. J. Phys. Chem. B, 105, 1594–1602.

    Article  CAS  Google Scholar 

  • Guillot, S., C. Moitzi, et al. (2006). Direct and indirect thermal transitions from hexosomes to emulsified micro-emulsions in oil-loaded monoglyceride-based particles. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 291, 78–84.

    Article  CAS  Google Scholar 

  • Gumpen, S., P.-O. Hegg, et al. (1979). Thermal stability of fatty acid-serum albumin complexes studied by differential scanning calorimetry. Biochim. Biophys. Acta, 574, 189–196.

    CAS  Google Scholar 

  • Gunning, P. A., A. R. Mackie, et al. (2004). Effect of surfactant type on surfactant-protein interactions at the air-water interface. Biomacromolecules, 5, 984–991.

    Article  CAS  Google Scholar 

  • Guo, X. H. and S. H. Chen (1990). The structure and thermodynamics of protein-SDS complexes in solution and the mechanism of their transports in gel electrophoresis process. Chem. Phys., 149, 129–139.

    Article  CAS  Google Scholar 

  • Guo, X. H., N. M. Zhao, et al. (1990). Small-angle neutron scattering study of the structure of protein/detergent complexes. Biopolymers, 29, 335–346.

    Article  CAS  Google Scholar 

  • Gustafsson, J., H. Ljusberg-Wahren, et al. (1996). Cubic Lipid-Water Phase Dispersed into Submicron Particles. Langmuir, 12, 4611–4613.

    Article  CAS  Google Scholar 

  • Gustafsson, J., H. Ljusberg-Wahren, et al. (1997). Submicron particles of reversed lipid phases in water stabilised by a nonionic amphiphilic polymer. Langmuir, 13, 6964–6971.

    Article  CAS  Google Scholar 

  • Gutman, H., G. Arvidson, et al. (1984). 31P and 2H NMR studies of phase equilibria in the three component system: monoolein-dioleoylphosphatidylcholine. Surfactants in Solution. K. L. Mittal and B. Lindman (Eds.) New York, Plenum. 1, pp. 143–152.

    Google Scholar 

  • Hambling, S. G., A. S. McAlpine, et al. (1992). b-Lactoglobulin. Advanced dairy chemistry: Vol. 1: Proteins. P. Fox (Eds.) London, Elsevier Applied Science Publishers Ltd., pp. 141–190.

    Google Scholar 

  • Hanssens, I. and F. H. Van Cauwelaert (1978). Shielding of phospholipid monolayers from phospholipase c hydrolysis by a-lactalbumin adsorption. Biochem. Biophys. Res. Commun., 84, 1088–1096.

    Article  CAS  Google Scholar 

  • Haynes, C. A. and W. Norde (1994). Globular proteins at solid/liquid interfaces. Colloids Surf. B: Biointerfaces, 2, 517–566.

    Article  CAS  Google Scholar 

  • Heckl, W. M., B. N. Zaba, et al. (1987). Interactions of cytochrome b5 and c with phospholipid monolayers. Biochim. Biophys. Acta, 903, 166–176.

    Article  CAS  Google Scholar 

  • Heertje, I., J. Nederlof, et al. (1990). The observation of the displacement of emulsifiers by confocal scanning laser microscopy. Food Struct., 9, 305–316.

    Google Scholar 

  • Hegg, P.-O. (1980). Thermal stability of b-lactoglobulin as a function of pH and the relative concentration of sodium dodecylsulphate. Acta Agric. Scand., 30, 401–404.

    Article  CAS  Google Scholar 

  • Heimburg, T., P. Hildebrandt, et al. (1991). Cytochrome c-lipid interactions studied by resonance Raman and 31P NMR spectroscopy. Correlation between the conformational changes of the protein and the lipid bilayer. Biochemistry, 30, 9084–9089.

    Article  CAS  Google Scholar 

  • Helfrich, W. (1989). Hats and Saddles in lipid membranes. Liq. Cryst., 5, 1647–1658.

    Article  CAS  Google Scholar 

  • Hill, A. V. (1910). A New mathematical treatment of changes in ionic concentration in muscle and nerve under action of electron currents with a theory as to their mode of excitation. J. Physiol., 40, 90–224.

    Google Scholar 

  • Horbett, T. A. (1984). Mass action effects on competitive adsorption of fibrinogen from hemoglobin solutions and from plasma. Thromb. Haemost. 174–181.

    Google Scholar 

  • Hønger, T., K. Jørgensen, et al. (1996). Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry, 35, 9003–9006.

    Article  Google Scholar 

  • Husband, F. A., P. J. Wilde, et al. (1995). A comparison of the foaming and interfacial properties of two related lipid binding proteins from wheat in the presence of a competing surfactant. Food Macromolecules and Colloids. E. Dickinson and D. Lorient (Eds.) London, Royal Society of Chemistry, 156, pp. 283–296.

    Google Scholar 

  • Hyde, S. T., S. Andersson, et al. (1984). A cubic structure consisting of a lipid bilayer forming an infinite periodic minimal surface of the gyroid type in the glycerolmonooleat-water system. Z. Kristallogr., 168, 213–219.

    CAS  Google Scholar 

  • Hyde, S. T., A. S., et al. (1997). The Language of Shape. The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology. Amsterdam, Elsevier.

    Google Scholar 

  • Ibdah, J. A. and M. C. Phillips (1988). Effects of lipid composition and packing on the adsorption of apolipoprotein A-I to lipid monolayers. Biochemistry, 27, 7155–7162.

    Article  CAS  Google Scholar 

  • Israelachvili, J. N. and G. E. Adams (1978). Measurements of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem Soc. Faraday Trans. 1, 74, 975–1001.

    Google Scholar 

  • Israelachvili, J. N., D. J. Mitchell, et al. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. II, 72, 1525–1568.

    Article  Google Scholar 

  • Jirgensons, B. (1976). Conformational transitions of non-helical proteins effected by dodecylsulfate—circular dichroism of alpha1-acid glycoprotein, Bence-Jones protein, carbonic anhydrase-B, deoxyribonuclease, pepsinogen, and plasminogen. Biochim. Biophys. Acta, 434, 58–68.

    CAS  Google Scholar 

  • Johnsson, M., J. Barauskas, et al. (2006). Physicochemical and drug delivery aspects of lipid-based liquid crystalline nanoparticles: A case study of intravenously administered propofol. J. Nanosci. Nanotechnol., 6, 3017–3024.

    Article  CAS  Google Scholar 

  • Jones, M. N. and A. Brass (1991). Interaction between small amphiphatic molecules and proteins. Food, Polymers, Gels, and Colloids. E. Dickinson (Ed.) Cambridge, Royal Society of Chemistry, 82, pp. 65–80.

    Google Scholar 

  • Jones, M. N. and P. Manley (1979). Binding of n-alkyl sulphates to lysozyme in Aqueous solution. J. Chem. Soc. Faraday Trans. 1, 75, 1736–1744.

    Google Scholar 

  • Jones, M. N. and P. Manley (1980). Interaction between lysozyme and n-alkyl sulphates in aqueous solution. J. Chem. Soc. Faraday Trans. 1, 76, 654–664.

    Google Scholar 

  • Jones, M. N., P. Manley, et al. (1984). Cooperativity and effects of ionic strength on the binding of sodium n-dodecyl sulphate to lysozyme. Int. J. Biol. Macromol., 6, 65–68.

    Article  CAS  Google Scholar 

  • Jones, M. N., P. Manley, et al. (1982). Dissociation of bovine and bacterial catalases by sodium n-dodecyl sulfate. Biopolymers, 21, 1435–1450.

    Article  CAS  Google Scholar 

  • Kaneshina, S., M. Tanaka, et al. (1973). Interaction of bovine serum albumin with detergent cations. Bull. Chem. Soc. Jpn., 46, 2735–2738.

    Article  CAS  Google Scholar 

  • Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv. Protein Chem., 14, 1–63.

    Article  CAS  Google Scholar 

  • Kim, J. and H. Kim (1986). Fusion of phospholipid vesicles induced by a-lactalbumin at acid pH. Biochemistry, 25, 7867–7874.

    Article  CAS  Google Scholar 

  • Kinnunen, P. K. J. (1996). On the molecular-level mechanisms of peripheral protein-membrane interactions induced by lipids forming inverted non-lamellar phases. Chem. Phys. Lipids, 81, 151–166.

    Article  CAS  Google Scholar 

  • Kinnunen, P. K. J. and J. M. Halopainen (2000). Mechanisms of initiation of membrane fusion: role of lipids. Biosci. Rep., 20, 465–482.

    Article  CAS  Google Scholar 

  • Komura, S. (1996). Shape fluctuations of vesicles. Vesicles. M. Rosoff. New York, Marcel Dekker, pp. 198–236.

    Google Scholar 

  • Krägel, J., R. Wüstneck, et al. (1995). Dynamic surface tension and surface shear rheology studies of mixed b-lactoglobulin/Tween 20 systems. Colloids Surfaces A: Physicochem. Eng. Aspects, 98, 127–135.

    Article  Google Scholar 

  • Kristensen, A., T. Nylander, et al. (1997). Interaction between b-lactoglobulin and phospholipids in solution. Int. Dairy J., 7, 82–92.

    Article  Google Scholar 

  • Kristensen, D., T. Nylander, et al. (1996). Bovine milk sphingomyelin at the air/water interface and its interaction with wanthine oxidase. Langmuir, 12, 5856–5862.

    Article  CAS  Google Scholar 

  • Kurihara, K. and Y. Katsuragi (1993). Specific inhibitor for bitter taste. Nature, 365, 213–214.

    Google Scholar 

  • Kuwajima, K. (1989). The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins: Struct. Funct. Genet., 6, 87–103.

    Article  CAS  Google Scholar 

  • Landau, E. M. and P. L. Luisi (1993). Lipidic cubic phases as transparent, rigid matrices for the direct spectroscopic study of immobilized membrane proteins. J. Am. Chem. Soc., 115, 2102–2106.

    Article  CAS  Google Scholar 

  • Landau, E. M. and J. P. Rosenbusch (1996). Lipidic cubic phases: A novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci., 93, 14532–14535.

    Article  CAS  Google Scholar 

  • Landh, T. (1994). Phase behavior in the system pine needle oil monoglycerides-poloxamer 407 - water 20 °C. J. Phys. Chem., 98, 8453–8467.

    Article  CAS  Google Scholar 

  • Landh, T. (1995). From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organisers. FEBS Lett., 369, 13–17.

    Article  CAS  Google Scholar 

  • Lapanje, S. (1978). Physicochemical aspects of protein denaturation. New York, Wiley.

    Google Scholar 

  • Larsson, K. (1983). Two cubic phases in monoolein-water system. Nature, 304, 664.

    Article  Google Scholar 

  • Larsson, K. (1989). Cubic lipid-water phases: Structure and biomembrane aspects. J. Phys. Chem., 93, 7304–7314.

    Article  CAS  Google Scholar 

  • Larsson, K. (1994). Lipids – Molecular Organization, Physical Functions and Technical Applications. Dundee, The Oily Press Ltd.

    Google Scholar 

  • Larsson, K. (2000). Aqueous dispersions of cubic lipid-water phases. Curr. Opin. Colloid Interface Sci., 5, 64–69.

    Article  CAS  Google Scholar 

  • Larsson, K. and G. Lindblom (1982). Molecular amphiphile bilayers forming a cubic phase in amphiphile-water systems. J. Disp. Sci. Technol., 3, 61–66.

    CAS  Google Scholar 

  • Larsson, M., K. Larsson, et al. (2002). The alveolar surface is lined by a coherent liquid-crystalline phase. Prog. Colloid Polym. Sci., 120, 28–34.

    Article  CAS  Google Scholar 

  • Lasic, D. D. (1993). Liposomes - from physics to applications. Amsterdam, Elsevier.

    Google Scholar 

  • Lasic, D. D., R. Joannic, et al. (2001). Spontaneous vesiculation. Adv. Colloid Interface Sci., 89–90, 337–349.

    Article  Google Scholar 

  • Leaver, J. and D. G. Dagleish (1992). Variations in the binding of b-casein to oil-water interfaces detected by trypsin-catalysed hydrolysis. J. Colloid Interface Sci., 149, 49–55.

    Article  CAS  Google Scholar 

  • LeNeveu, D. M., R. P. Rand, et al. (1977). Measurement and modification of forces between lecithin bilayers. Biophys. J., 18, 209–230.

    Article  CAS  Google Scholar 

  • Leslie, S. B., S. Puvvada, et al. (1996). Encapsulation of hemoglobin in a bicontinuous cubic phase lipid. Biochim. Biophys. Acta, 1285, 246–254.

    Article  CAS  Google Scholar 

  • Lindahl, L. and H. J. Vogel (1984). Metal-ion-dependent hydrophobic interaction chromatography of a-lactalbumins. Anal. Biochem., 140, 394.

    Article  CAS  Google Scholar 

  • Lindblom, G., K. Larsson, et al. (1979). The cubic phase of monoglyceride-water systems. Arguments for a structure based upon lamellar bilayer units. J. Am. Chem. Soc., 101, 5465–5470.

    Article  CAS  Google Scholar 

  • Lindblom, G. and L. Rilfors (1989). Cubic phases and isotropic structures formed by membrane lipids - possible biological relevance. Biochim. Biophys. Acta, 988, 221–256.

    CAS  Google Scholar 

  • Lindman, B. and H. Wennerström (1980). Micelles. Amphiphile aggregation in aqueous solution. Top. Curr. Chem., 87, 1–83.

    Article  CAS  Google Scholar 

  • Lindström, M., H. Ljusberg-Wahren, et al. (1981). Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids, 16, 749–754.

    Article  Google Scholar 

  • Lu, J. R., T. J. Su, et al. (1998). Binding of surfactants onto preadsorbed layers of bovine serum albumin at the silica-Water Interface. J. Phys. Chem. B, 102, 10307–10315.

    Article  CAS  Google Scholar 

  • Lucassen-Reynders, E. H., J. Lucassen, et al. (1981). Surface and bulk properties of mixed anionic/cationic surfactant systems. I. Equilibrium surface tensions. J. Colloid Interface Sci., 81, 150–157.

    Article  CAS  Google Scholar 

  • Lunkenheimer, K. and G. Czichocki (1993). On the stability of aqueous sodium dodecyl sulfate solutions. J. Colloid Interface Sci., 160, 509–510.

    Article  CAS  Google Scholar 

  • Lunkenheimer, K. and R. Miller (1987). A criterion for judging purity of adsorbed surfactant layers. J. Colloid Interface Sci., 120, 176–183.

    Article  CAS  Google Scholar 

  • Luzzati, V. (1968). X-ray diffraction studies of lipid-water systems. Biological Membranes. D. Chapman (Ed.) New York, Academic Press, pp. 77–123.

    Google Scholar 

  • Luzzati, V. (1997). Biological significance of lipid polymorphism: the cubic phases. Curr. Opin. Struct. Biol., 7, 661–668.

    Article  CAS  Google Scholar 

  • Luzzati, V., A. Tardieu, et al. (1968). Structure of the cubic phases of lipid-water systems. Nature, 220, 485–488.

    Article  CAS  Google Scholar 

  • Luzzati, V., R. Vargas, et al. (1992). Lipid polymorphism: A correction. The structure of the cubic phase of extinction symbol Fd− consists of two types of disjointed reverse micelles embedded in a three-dimensional matrix. Biochemistry, 31, 279–285.

    Article  CAS  Google Scholar 

  • Mackie, A. R., A. P. Gunning, et al. (2001a). Orogenic displacement in mixed b-lactoglobulin/b-casein films at the air/water interface. Langmuir, 17, 6593–6598.

    Article  CAS  Google Scholar 

  • Mackie, A. R., A. P. Gunning, et al. (2001b). In situ measurements of the displacement of protein films from the air/water interface by surfactant. Biomacromolecules, 2, 1001–1006.

    Article  CAS  Google Scholar 

  • Mackie, A. R., A. P. Gunning, et al. (1999). Orogenic displacement of protein from the air/water interface by competitive adsorption. J. Colloid Interface Sci., 210, 157–166.

    Article  CAS  Google Scholar 

  • Mackie, A. R. and P. J. Wilde (2005). The role of interactions in defining the structure of mixed protein–surfactant interfaces. Adv. Colloid Interface Sci., 117 3–13.

    Article  CAS  Google Scholar 

  • MacRitchie, F. (1990). Chemistry at Interfaces. San Diego, Academic Press.

    Google Scholar 

  • Makino, S. (1979). Interactions of proteins with amphiphatic substances. Adv. Biophys., 12, 131–184.

    CAS  Google Scholar 

  • Makino, S., J. A. Reynolds, et al. (1973). The binding of deoxycholate and Triton X-100 to proteins. J. Biol. Chem., 248, 4926–4932.

    CAS  Google Scholar 

  • Malmsten, M. (1995). Protein adsorption at phospholipid surfaces. J. Colloid Interface Sci., 172, 106–115.

    Article  CAS  Google Scholar 

  • Malmsten, M., P. Claesson, et al. (1994). Forces between proteoheparan sulfate layers adsorbed at hydrophobic surfaces. Langmuir, 10, 1274–1280.

    Article  CAS  Google Scholar 

  • Malmsten, M. and B. Lindman (1989). Ellipsometry studies of cleaning of hard surfaces—relation to the spontaneous curvature of the surfactant monolayer. Langmuir, 5, 1105–1111.

    Article  CAS  Google Scholar 

  • Manne, S., J. P. Cleveland, et al. (1994). Direct visualization of surfactant hemimicelles by force microscopy of the electrical double-layer. Langmuir, 10, 4409–4413.

    Article  CAS  Google Scholar 

  • Mariani, P., V. Luzzati, et al. (1988). Cubic phases of lipid-containing systems. Structure analysis and biological applications. J. Mol. Biol., 204, 165–189.

    Article  CAS  Google Scholar 

  • Mariani, P., E. Rivas, et al. (1990). Polymorphism of a lipid extract from Pseudomonas fluorescence: Structural analysis of a hexagonal phase and of a novel cubic phase of extinction symbol Fd—. Biochemistry, 29, 6799–6810.

    Article  CAS  Google Scholar 

  • Maste, M. C. L., W. Norde, et al. (1997). Adsorption-induced conformational changes in the serine proteinase savinase: A tryptophan fluorescence and circular dichroism study. J. Colloid Interface Sci., 196, 224–230.

    Article  CAS  Google Scholar 

  • Mather, I. H. (2000). A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J. Dairy Sci., 83, 203–247.

    Article  CAS  Google Scholar 

  • Matsumura, M., W. J. Becktel, et al. (1988). Hydrophobic stabilization of T4 Lysozyme determined directly by multiple substitution of Ile 3. Nature, 334, 406–410.

    Article  CAS  Google Scholar 

  • Mattice, W. L., J. M. Riser, et al. (1976). Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate. Biochemistry, 15, 4264–4272.

    Article  CAS  Google Scholar 

  • Mattisson, C., T. Nylander, et al. (1996). Diffusivity measurements by holographic laser interferometry in a cubic lipid-water phase. Chem. Phys. Lipids, 84, 1–12.

    Article  CAS  Google Scholar 

  • McCallum, C. D. and R. M. Epand (1995). Insulin receptor autophosphorylation and signaling is altered by modulation of membrane physical properties. Biochemistry, 34, 1815–1824.

    Article  CAS  Google Scholar 

  • McGuire, J., M. Wahlgren, et al. (1995a). The influence of net charge and charge location on the adsorption and dodecyltrimethylammonium bromide-mediated elutability of bacteriophage T4 lysozyme at silica surfaces. J. Colloid Interface Sci., 170, 193–202.

    Article  CAS  Google Scholar 

  • McGuire, J., M. C. Wahlgren, et al. (1995b). Structural stability effects on the adsorption and dodecyltrimethylammonium bromide-mediated elutability of bacteriophage T4 lysozyme at silica surfaces. J. Colloid Interface Sci., 170, 182–192.

    Article  CAS  Google Scholar 

  • Miller, R., V. B. Fainerman, et al. (2000a). Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface. Adv. Colloid Interface Sci., 86, 39–82.

    Article  CAS  Google Scholar 

  • Miller, R., V. B. Fainerman, et al. (2000b). Adsorption characteristics of mixed monolayers of a globular protein and a non-ionic surfactant. Colloids Surfaces A: Physicochem. Eng. Aspects, 161, 151–157.

    Article  CAS  Google Scholar 

  • Miller, R. and K. Lunkenheimer (1986). A criterion for judging the purity of surfactant solutions based on diffusion controlled adsorption kinetics. Colloid Polym. Sci., 264, 273–276.

    Article  CAS  Google Scholar 

  • Minami, H., T. Nylander, et al. (1996). Incorporation of proteins in the lipid-water gel state. Chem. Phys. Lipids, 79, 65–70.

    Article  CAS  Google Scholar 

  • Mitchell, D. J. and B. W. Ninham (1981). Micelles, vesicles and microemulsions. J. Chem. Soc. Faraday Trans. 2, 77, 601–629.

    Google Scholar 

  • Mitchell, D. J., G. J. T. Tiddy, et al. (1983). Phase-behavior of polyoxyethylene surfactants with water-mesophase structures and partial miscibility (cloud points). J. Chem. Soc. Faraday Trans. I, 79, 975–1000.

    Article  CAS  Google Scholar 

  • Morén, A. K. and A. Khan (1995). The phase equilibria of an anionic surfactant - sodium dodecyl sulphate and an oppositely charged protein lysozyme in water. Langmuir, 11, 3636–3643.

    Article  Google Scholar 

  • Morén, A. K. and A. Khan (1998). Surfactant hydrophobic effect on the phase behavior of oppositely charged protein and surfactant mixtures: lysozyme and sodium alkyl sulfates. Langmuir, 14, 6818–6826.

    Article  Google Scholar 

  • Nelson, C. A. (1971). The binding of detergents to proteins. 1. The maximum amount of dodecylsulfate bound to proteins and the resistance to binding of several proteins. J. Biol. Chem., 246, 3895–3901.

    CAS  Google Scholar 

  • Ninham, B. W. (2002). Physical chemistry: The loss of certainty. Prog. Colloid Polym. Sci., 120, 1–12.

    Article  CAS  Google Scholar 

  • Nishikido, N., T. Takahara, et al. (1982). Interaction between hydrophilic proteins and nonionic detergents studied by surface tension measurements. Bull. Chem. Soc. Jpn., 55, 3085–3088.

    Article  CAS  Google Scholar 

  • Norde, W. (1986). Adsorption of proteins from solution at the solid-liquid interface. Adv. Colloid Interface Sci., 25, 267–340.

    Article  CAS  Google Scholar 

  • Norde, W. (2000). Proteins at solid surfaces. Physical Chemistry of Biological Interfaces. A. Baszkin and W. Norde. New York, Marcel Dekker, Inc., pp. 115–135.

    Google Scholar 

  • Nozaki, Y., J. A. Reynolds, et al. (1974). The Interaction of a Cationic Detergent with Serum Albumin and Other Proteins. J. Biol. Chem., 249, 4452–4459.

    CAS  Google Scholar 

  • Nylander, T., C. Mattisson, et al. (1996). A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase. Colloids Surfaces A: Physicochem. Eng. Aspects, 114, 311–320.

    Article  CAS  Google Scholar 

  • Ohgushi, M. and A. Wada (1983). ‘Molten-globule state’: A compact form of globular proteins with mobile side-chains. FEBS Lett., 164, 21–24.

    Article  CAS  Google Scholar 

  • Pace, C. N., L. M. Fisher, et al. (1981). Globular protein stability: Aspects of interest in protein turnover. Acta Biol. Med. Germ., 40, 1385–1392.

    CAS  Google Scholar 

  • Panaiotov, I. and R. Verger (2000). Enzymatic reactions at interfaces: Interfacial and temporal organization of enzymatic lipolysis. Physical Chemistry of Biological Interfaces. A. Baszkin and W. Norde. New York, Marcel Dekker, Inc., pp. 359–400.

    Google Scholar 

  • Papiz, M. J., L. Sawyer, et al. (1986). The structure of b-lactoglobulin and its similarity to plasma retinol-binding protein. Nature, 324, 383–385.

    Article  CAS  Google Scholar 

  • Patton, J. S. and M. C. Carey (1979). Watching fat digestion. The formation of visible product phases by pancreatic lipase is described. Science, 204, 145–148.

    Article  CAS  Google Scholar 

  • Patton, J. S., R. D. Vetter, et al. (1985). The light microscopy of fat digestion. Food Microstruct., 4, 29–41.

    CAS  Google Scholar 

  • Piéroni, G., Y. Gargouri, et al. (1990). Interactions of lipases with lipid monolayers. Facts and questions. Adv. Colloid Interface Sci., 32, 341–378.

    Article  Google Scholar 

  • Ponnuswamy, P. K. (1993). Hydrophobic characteristics of folded proteins. Prog. Biophys. Mol. Biol., 59, 57–103.

    Article  CAS  Google Scholar 

  • Portmann, M., E. M. Landau, et al. (1991). Spectroscopic and rheological studies of enzymes in rigid lipidic matrices: The case of a-chymotrypsin in a lysolecithin/water cubic phase. J. Phys. Chem., 95, 8437–8440.

    Article  CAS  Google Scholar 

  • Price, M. E., R. M. Cornelius, et al. (2001). Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma. Biochim. Biophys. Acta, 1512, 191–205.

    Article  CAS  Google Scholar 

  • Prins, A. (1999). Stagnant surface behaviour and its effect on foam and film stability. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 149, 467–473.

    Article  CAS  Google Scholar 

  • Prins, A. and D. J. M. Bergink-Martens (1992). Dynamic surface properties in relation to dispersion stability. Food Colloids and Polymers: Stability and Mechanical Properties. E. Dickinson and P. Walstra (Eds.) Cambridge, The Royal Society of Chemistry, pp. 291–300.

    Google Scholar 

  • Privalov, P. L. (1979). Stability of proteins—small globular proteins. Adv. Protein Chem., 33, 167–241.

    Article  CAS  Google Scholar 

  • Privalov, P. L. (1982). Stability of proteins. Proteins which do not present a single cooperative system. Adv. Protein Chem., 35, 1–104.

    Article  CAS  Google Scholar 

  • Privalov, P. L. and S. J. Gill (1988). Stability of protein structure and hydrophobic interaction. Adv. Protein Chem., 39, 191–234.

    Article  CAS  Google Scholar 

  • Ptitsyn, O. B., R. H. Pain, et al. (1990). Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett., 262, 20–24.

    Article  CAS  Google Scholar 

  • Pugnaloni, L. A., E. Dickinson, et al. (2004). Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging. Adv. Colloid Interface Sci., 107, 27–49.

    Article  CAS  Google Scholar 

  • Puyol, P., M. D. Perez, et al. (1994). Effect of binding of retinol and palmitic acid to bovine b-lactoglobulin on its resistance to thermal denaturation. J. Dairy Sci., 77, 1494–1502.

    CAS  Google Scholar 

  • Qui, H. and M. Caffrey (2000). The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials, 21, 223–234.

    Article  Google Scholar 

  • Quinn, P. J. and R. M. C. Dawson (1969a). Interactions of cytochrome c and [14C]carboxymethylated cytochrome c with monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin. Biochem. J., 115, 65–75.

    CAS  Google Scholar 

  • Quinn, P. J. and R. M. C. Dawson (1969b). The interaction of cytochrome c with monolayers of phosphatidylethanolamine. Biochem. J., 113, 791–803.

    CAS  Google Scholar 

  • Rand, R. P. (1971). Structural studies by X-ray diffraction of model lipid protein membranes of serum albumin-lecithin-cardiolipid. Biochim. Biophys. Acta, 241, 823–834.

    Article  CAS  Google Scholar 

  • Rapoza, R. J. and T. A. Horbett (1990a). Postadsorptive transitions in fibrinogen—Influence of polymer properties. J. Biomed. Mater. Res., 24, 1263–1287.

    Article  CAS  Google Scholar 

  • Rapoza, R. J. and T. A. Horbett (1990b). The effects of concentration and adsorption time on the elutability of adsorbed proteins in surfactant solutions of varying structures and concentrations. J. Colloid Interface Sci., 136, 480–493.

    Article  CAS  Google Scholar 

  • Raudino, A. (1995). Lateral inhomogeneous membranes: Theoretical aspects. Adv. Colloid Interface Sci., 57, 229–285.

    Article  CAS  Google Scholar 

  • Raudino, A. and F. Castelli (1992). A thermodynamic study of protein-induced lipid lateral phase separation. Effect of lysozyme on mixed lipid vesicles. Colloid Polym. Sci., 270, 1116–1123.

    Article  CAS  Google Scholar 

  • Razumas, V., J. Kanapieniené, et al. (1994). Electrochemical biosensors for glucose, lactate, urea, and creatinine based on enzymes entrapped in a cubic liquid crystalline phase. Anal. Chim. Acta, 289, 155–162.

    Article  CAS  Google Scholar 

  • Razumas, V., K. Larsson, et al. (1996a). A cubic monoolein-cytochrome c-water phase: X-ray diffraction, FT-IR, differential scanning calorimetry and electrochemical studies. J. Phys. Chem., 100, 11766–11774.

    Article  CAS  Google Scholar 

  • Razumas, V., Z. Talaikyté, et al. (1996b). Effects of distearoylphosphatidylglycerol and lysozyme on the structure of the monoolein-water cubic phase: X-ray diffraction and Raman scattering studies. Chem. Phys. Lipids, 84, 123–138.

    Article  CAS  Google Scholar 

  • Rendall, H. M. (1976). Use of surfactant selective electrode in the measurement of the binding of anionic surfactants to bovine serum albumin. J. Chem. Soc. Faraday Trans. 1, 72, 481–484.

    Google Scholar 

  • Reynolds, J., S. Herbert, et al. (1968). The binding of some long-chain fatty acid anions and alcohols by bovine serum albumin. Biochemistry, 7, 1357–1361.

    Article  CAS  Google Scholar 

  • Reynolds, J. A., J. P. Gallagher, et al. (1970). Effect of pH on the binding of n-alkyl sulfates to bovine serum albumin. Biochemistry, 9, 1232–1238.

    Article  CAS  Google Scholar 

  • Reynolds, J. A. and C. Tanford (1970). Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. Proc. Natl. Acad. Sci., 66, 1002–1007.

    Article  CAS  Google Scholar 

  • Richards, F. M. (1977). Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng., 6, 151–176.

    Article  CAS  Google Scholar 

  • Rytömaa, M., P. Mustonen, et al. (1992). Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes. J. Biol. Chem., 267, 22243–22248.

    Google Scholar 

  • Sagalowicz, L., M. E. Leser, et al. (2006a). Monoglyceride self-assembly structures as delivery vehicles. Trends Food Sci. Technol., 17, 204–214.

    Article  CAS  Google Scholar 

  • Sagalowicz, L., R. Mezzenga, et al. (2006b). Investigating reversed liquid crystalline mesophases. Curr. Opin. Colloid Interface Sci., 11, 224–229.

    Article  CAS  Google Scholar 

  • Sarker, D. K., P. J. Wilde, et al. (1995). Competitive adsorption of L-a-lysophosphatidylcholine/b-lactoglobulin mixtures at the interfaces of foams and foam lamellae. Colloids Surf. B Biointerfaces, 3, 349–356.

    Article  CAS  Google Scholar 

  • Scamehorn, J. F., R. S. Schechter, et al. (1982). Adsorption of surfactants on mineral oxide surfaces from aqueous solutions. 1. Isomerically pure anionic surfactants: 1. Isomerically pure anionic surfactants. J. Colloid Interface Sci., 85, 463–478.

    Article  CAS  Google Scholar 

  • Scatchard, G. (1949). The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci., 51, 660–672.

    Article  CAS  Google Scholar 

  • Schönhoff, M., M. Lösche, et al. (1992). Incorporation of membrane proteins into lipid surface monolayers: Characterisation by fluorescence and electron microscopies. Prog. Colloid Polym. Sci., 89, 243–248.

    Article  Google Scholar 

  • Seddon, J. M. (1990). Structure of the hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta, 1031, 1–69.

    CAS  Google Scholar 

  • Seddon, J. M., E. A. Bartle, et al. (1990). Inverse cubic liquid crystalline phases of phospholipids and related lyotropic system. J. Phys. Condens. Matter, 2, SA285–SA290.

    Article  CAS  Google Scholar 

  • Seifert, U., K. Berndl, et al. (1991). Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A, 44, 1182–1202.

    Article  CAS  Google Scholar 

  • Siminovitch, D. J. and K. R. Jeffrey (1981). Orientational order in the choline headgroup of sphingomyelin: A 14N-NMR study. Biochim. Biophys. Acta, 645, 270–278.

    Article  CAS  Google Scholar 

  • Slack, S. M. and T. A. Horbett (1988). Physicochemical and biochemical aspects of fibrogen adsorption from plasma and binary protein solutions onto polytheylene and glass, J. Colloid Interface Sci, 124, 535–551.

    Article  CAS  Google Scholar 

  • Spicer, P. (2005a). Cubosome processing - Industrial nanoparticle technology development. Chem. Eng. Res. Des., 83, 1283–1286.

    Article  CAS  Google Scholar 

  • Spicer, P. T. (2005b). Progress in liquid crystalline dispersions: Cubosomes. Curr. Opin. Colloid Interface Sci., 10, 274–279.

    Article  CAS  Google Scholar 

  • Spooner, P. J. R. and A. Watts (1991a). Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 1. Evidence from deuterium NMR measurements. Biochemistry, 30, 3871–3879.

    Article  CAS  Google Scholar 

  • Spooner, P. J. R. and A. Watts (1991b). Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 2. Evidence from phosphorus-31 NMR measurements. Biochemistry, 30, 3880–3885.

    Article  CAS  Google Scholar 

  • Steinhardt, J. and J. A. Reynolds (1969). Multiple equilibria in Proteins. New York, Academic Press.

    Google Scholar 

  • Stenstam, A., A. Khan, et al. (2001). The lysozyme-dodecyl sulfate system. An example of protein-surfactant aggregation. Langmuir, 17, 7513–7520.

    Article  CAS  Google Scholar 

  • Subramanian, M., B. S. Sheshadri, et al. (1984). Interaction of cationic detergents, cetyl- and dodecylatrimethylammonium bromides with lysozyme. J. Biochem. (Tokyo), 95, 413–421.

    CAS  Google Scholar 

  • Sukow, W. W., H. E. Sandberg, et al. (1980). Binding of the Triton X series of surfactants to bovine serum albumin. Biochemistry, 19, 912–917.

    Article  CAS  Google Scholar 

  • Svendsen, A. (2000). Lipase protein engineering. Biochim. Biophys. Acta, 1543, 223–238.

    CAS  Google Scholar 

  • Tamayo-Esquivel, D., A. Ganem-Quintanar, et al. (2006). Evaluation of the enhanced oral effect of omapatrilat-monolein nanoparticles prepared by the emulsification-diffusion method. J. Nanosci. Nanotechnol., 6, 3134–3138.

    Article  CAS  Google Scholar 

  • Tanford, C. (1967). Physical Chemistry of Macromolecules. New York, John Wiley & Sons.

    Google Scholar 

  • Tanford, C. (1980). The Hydrophobic Effect: Formation of Micelles and Biological Membranes. New York, John Wiley & Sons, Inc.

    Google Scholar 

  • Tanford, C. and Epstein (1954). The physical chemistry of insulin. I. Hydrogen ion titration curve of zinc-free insulin. J. Am. Chem. Soc., 76, 2163–2169.

    Article  CAS  Google Scholar 

  • Tanner, R. E., B. Herpigny, et al. (1982). Conformational change of protein sodium dodecylsulfate complexes in solution: A study of dynamic light scattering. J. Chem. Phys., 76, 3866–3872.

    Article  CAS  Google Scholar 

  • Templer, R. H. (1998). Thermodynamic and theoretical aspects of cubic mesophases in nature and biological amphiphiles. Curr. Opin. Colloid Interface Sci., 3, 255–263.

    Article  CAS  Google Scholar 

  • Tiberg, F. (1996). Physical characterization of non-ionic surfactant layers adsorbed at hydrophilic and hydrophobic solid surfaces by time-resolved ellipsometry. J. Chem. Soc. Faraday Trans., 92, 531–538.

    Article  CAS  Google Scholar 

  • Tilton, R. D., E. Blomberg, et al. (1993). Effect of anionic surfactant on interactions between lysozyme layers adsorbed on mica. Langmuir, 9, 2102–2108.

    Article  CAS  Google Scholar 

  • van der Goot, F. G., J. M. González-Mañas, et al. (1991). A ‘molten-globule’ membrane-insertion intermediate of the pore-forming domain of colicin A. Nature, 354, 408–410.

    Article  Google Scholar 

  • Vandoolaeghe, P., F. Tiberg, et al. (2006). Interfacial behavior of cubic liquid crystalline nanoparticles at hydrophilic and hydrophobic surfaces. Langmuir, 22, 9169–9174.

    Article  CAS  Google Scholar 

  • Verger, R. (1997). ‘Interfacial activation’ of lipases: facts and artifacts. Trends Biotechnol., 15, 32–38.

    Article  CAS  Google Scholar 

  • Vollhardt, D. (1993). Nucleation and growth in supersaturated monolayers. Adv. Colloid Interface Sci., 47, 1–23.

    Article  CAS  Google Scholar 

  • Vollhardt, D. and V. B. Fainerman (2000). Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers. Adv. Colloid Interface Sci., 86, 103–151.

    Article  CAS  Google Scholar 

  • Vollhardt, D., T. Kato, et al. (1996). Nucleation and growth of three-dimensional structures in supersaturated arachidic acid monolayers: an Atomic Force Microscopy Study. J. Phys. Chem., 100, 4141–4147.

    Article  CAS  Google Scholar 

  • Vroman, L., A. L. Adams, et al. (1980). Interaction of high molecular weight kininogen, factor XII and fibrinogen in plasma at interfaces. Blood, 55, 156–159.

    CAS  Google Scholar 

  • Wahlgren, M. and T. Arnebrant (1996). Removal of lysozyme from methylated silicon oxide surfaces by a non-ionic surfactant, pentaethylene glycol mono n-dodecyl ether (C(12) E(5)). Colloids Surf. B Biointerfaces, 6, 63–69.

    Article  CAS  Google Scholar 

  • Wahlgren, M., S. Welin-Klintström, et al. (1995). Competition between fibrinogen and a non-ionic surfactant in adsorption to a wettability gradient surface. Colloids Surf. B Biointerfaces, 4, 23–31.

    Article  CAS  Google Scholar 

  • Wahlgren, M. C. and T. Arnebrant (1991). Interaction between cetyltrimethylammonium bromide and sodium dodecyl sulfate wit b-lactoglobulin and lysozyme. J. Colloid Interface Sci., 142, 503–511.

    Article  CAS  Google Scholar 

  • Wahlgren, M. C. and T. Arnebrant (1992). The concentration dependence of adsorption from a mixture of b-lactoglobulin and sodium dodecyl sulfate onto methylated silica surfaces. J. Colloid Interface Sci., 148, 201–206.

    Article  CAS  Google Scholar 

  • Wahlgren, M. C., T. Arnebrant, et al. (1993a). The elutability of fibrinogen by sodium dodecyl sulphate and alkyltrimethylammonium bromides. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 70, 151–158.

    Article  CAS  Google Scholar 

  • Wahlgren, M. C., M. A. Paulsson, et al. (1993b). Adsorption of Globular Model Proteins to Silica and Methylated Silica Surfaces and their Elutability by Dodecyltrimethylammonium Bromide. Colloid Surfaces A, 70, 139–149.

    Article  CAS  Google Scholar 

  • Wallin, R. and T. Arnebrant (1994). The activity of lipase at the cubic liquid-crystalline phase/water interface. J. Colloid Interface Sci., 164, 16–20.

    Article  CAS  Google Scholar 

  • Wallin, R., S. Engström, et al. (1993). Stabilisation of glucose oxidase by entrapment in a cubic liquid crystalline phase. Biocatalysis, 8, 73–80.

    Article  CAS  Google Scholar 

  • Wallis, B. A. (1986). Structure of gramicidin A. Biophys. J., 49, 295–306.

    Article  Google Scholar 

  • Walstra, P. (2002). Physical Chemistry of Foods. New York, Marcel Dekker Inc.

    Google Scholar 

  • Waninge, R., T. Nylander, et al. (2003). Milk membrane lipid vesicle structures studied with Cryo-TEM. Colloids Surf. B Biointerfaces, 31, 257–264.

    Article  CAS  Google Scholar 

  • Waninge, R., M. Paulsson, et al. (1998). Binding of sodium dodecyl sulphate and dodecyl trimethyl ammonium chloride to b-lactoglobulin: a calorimetric study. Int. Dairy J., 8, 141–148.

    Article  CAS  Google Scholar 

  • Waninge, R., P. Walstra, et al. (2005). Competitive adsorption between beta-casein or beta-lactoglobulin and model milk membrane lipids at oil-water interfaces. J. Agric. Food Chem., 53, 716–724.

    Article  CAS  Google Scholar 

  • Wannerberger, K., M. Wahlgren, et al. (1996). Adsorption from lipase surfactant solutions onto methylated silica surfaces. Colloids Surf. B Biointerfaces, 6, 27–36.

    Article  CAS  Google Scholar 

  • Welin-Klintström, S., A. Askendal, et al. (1993). Surfactant and protein interactions on wettability gradient surfaces. J. Colloid Interface Sci., 158, 188–194.

    Article  Google Scholar 

  • Westesen, K. and T. Wehler (1993). Investigation of the particle-size distribution of a model intravenous emulsion. J. Pharm. Sci., 82, 1237–1244.

    Article  CAS  Google Scholar 

  • Wijmans, C. M. and E. Dickinson (1999). Brownian dynamics simulation of the displacement of a protein monolayer by competitive absorption. Langmuir, 15, 8344–8348.

    Article  CAS  Google Scholar 

  • Wilde, P. J. (2000). Interfaces: their role in foam and emulsion behaviour. Curr. Opin. Colloid Interface Sci., 5, 176–181.

    Article  CAS  Google Scholar 

  • Wilde, P. J. and D. C. Clark (1993). The competitive displacement of W-lactoglobulin by Tween 20 from oil-water and air-water interfaces. J. Colloid Interface Sci., 155, 48–54.

    Article  CAS  Google Scholar 

  • Wilde, P. J., D. C. Clark, et al. (1993). Influence of competitive adsorption of a lysopalmitoylphosphatidylcholine on the functional properties of puroindoline, a lipid-binding protein isolated from wheat flour. J. Agric. Food Chem., 41, 1570–1576.

    Article  CAS  Google Scholar 

  • Williams, R. J., J. N. Phillips, et al. (1955). The critical micelle concentration of sodium lauryl sulphate at 25 °C. Trans. Faraday Soc., 51, 728–737.

    Article  CAS  Google Scholar 

  • Worle, G., B. Siekmann, et al. (2006). Transformation of vesicular into cubic nanoparticles by autoclaving of aqueous monoolein/poloxamer dispersions. Eur. J. Pharm. Sci., 27, 44–53.

    Article  CAS  Google Scholar 

  • Yaghmur, A., L. de Campo, et al. (2006). Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m). Langmuir, 22, 517–521.

    Article  CAS  Google Scholar 

  • Yamamoto, Y. and M. Araki (1997). Effects of lecithin addition in oil or water phase on the stability of emulsions made with whey proteins. Biosci. Biotechnol. Biochem., 61, 1791–1795.

    Article  CAS  Google Scholar 

  • Yonath, A., A. Podjarny, et al. (1977a). Crystallographic studies of protein denaturation and renaturation. 2. Sodium dodecyl sulfate induced conformational changes in triclinic lysozyme. Biochemistry, 16, 1418–1424.

    Article  CAS  Google Scholar 

  • Yonath, A., A. Sielecki, et al. (1977b). Crystallographic studies of protein denaturation and renaturation. 1. Effects of denaturants on volume and x-ray pattern of cross-linked triclinic lysozyme crystals. Biochemistry, 16, 1413–1417.

    Article  CAS  Google Scholar 

  • Zhang, R. and P. Somasundaran (2006). Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Interface Sci., 123, 213–229.

    Article  CAS  Google Scholar 

  • Zhao, J., D. Vollhardt, et al. (2000). Effect of protein penetration into phospholipid monolayers: morphology and structure. Colloids Surfaces A: Physicochem. Eng. Aspects, 171, 175–184.

    Article  CAS  Google Scholar 

  • Zhmud, B. and F. Tiberg (2005). Interfacial dynamics and structure of surfactant layers. Adv. Colloid Interface Sci., 113, 21–42.

    Article  CAS  Google Scholar 

  • Zoungrana, T., G. H. Findenegg, et al. (1997). Structure, stability, and activity of adsorbed enzymes. J. Colloid Interface Sci., 1997, 437–448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nylander, T., Arnebrant, T., Bos, M., Wilde, P. (2008). Protein/Emulsifier Interactions. In: Hasenhuettl, G.L., Hartel, R.W. (eds) Food Emulsifiers and Their Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75284-6_5

Download citation

Publish with us

Policies and ethics