Skip to main content

Protein Kinases and Phosphatases

  • Chapter
  • 1082 Accesses

Abstract

Reversible protein phosphorylation is the most prominent posttranslational regulatory mechanism in eukaryotes. Protein kinases catalyze the addition of a phosphoester group to proteins while protein phosphatases oppose kinase activity by removing phosphates. The recent sequencing of numerous genomes has allowed for the identification and classification of most if not all kinases and phosphatases. Kinases represent a large group of enzymes (>500 in humans) and are classified by sequence similarity, with most kinases containing a conserved catalytic domain. Phosphatases are a smaller group (∼140 in humans) and are classified by their catalytic mechanisms, as well as sequence similarity. Most kinases and phosphatases contain domains involved in intramolecular regulation of the catalytic domain. In contrast, some of the abundant Ser/Thr phosphatases form holoenzymes with a variety of regulatory subunits, which affect both localization and substrate binding.

Precise regulation of cellular responses requires the formation of large signaling complexes containing both kinases and phosphatases. In neurons, regulatory complexes containing ion channels and neurotransmitter receptors are important for basal neurotransmission and synaptic plasticity. Such microcompart-mentalization of kinases and phosphatases allows for synapse-specific adjustments of synaptic strength. Recent advances in proteomics techniques have led to the identification of synaptic protein-protein interaction and phosphorylation networks, which provide a first global picture of the molecular machinery that underlies neuronal communication.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Citations

  • Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, et al. 2004. Protein tyrosine phosphatases in the human genome. Cell, 117:699–711.

    Article  PubMed  CAS  Google Scholar 

  • Biondi RM, Nebreda AR. 2003. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J, 372:1–13.

    Article  Google Scholar 

  • Blum R, Konnerth A. 2005. Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda), 20:70–78.

    CAS  Google Scholar 

  • Colbran RJ. 2004. Protein phosphatases and calcium/calmodulin-dependent protein kinase H-dependent synaptic plasticity. J Neurosci, 24:8404–8409.

    Article  PubMed  CAS  Google Scholar 

  • Gallego M, Virshup DM. 2005. Protein serine/threonine phosphatases: life, death, and sleeping. Curr Opin Cell Biol, 17:197–202.

    Article  PubMed  CAS  Google Scholar 

  • Huse M, Kuriyan J. 2002. The conformational plasticity of protein kinases. Cell, 109:275–282.

    Article  PubMed  CAS  Google Scholar 

  • Klein R. 2004. Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol, 16:580–589.

    Article  PubMed  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. 2002. The protein kinase complement of the human genome. Science, 298:1912–1934.

    Article  PubMed  CAS  Google Scholar 

  • Munton RP, Vizi S, Mansuy IM. 2004. The role of protein phosphatase-1 in the modulation of synaptic and structural plasticity. FEBS Lett, 567:121–128.

    Article  PubMed  CAS  Google Scholar 

  • Salter MW, Kalia LV. 2004. Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci, 5:317–328.

    Article  PubMed  CAS  Google Scholar 

Discovery Citations

  • Battaglia AA, Sehayek K, Grist J, McMahon SB, Gavazzi I. 2003. EphB receptors and ephrin-B ligands regulate spinal sensory connectivity and modulate pain processing. Nat Neurosci, 6:339–340.

    Article  PubMed  CAS  Google Scholar 

  • Blum R, Kafitz KW, Konnerth A. 2002. Neurotrophin-evoked depolarization requires the sodium channel Na(V)1.9. Nature, 419:687–693.

    Article  PubMed  CAS  Google Scholar 

  • Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G. 2004. The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci USA, 101:11707–11712.

    Article  PubMed  CAS  Google Scholar 

  • Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP, et al. 2005. Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem, 280:5972–5982.

    Article  PubMed  CAS  Google Scholar 

  • Davare MA, Home MC, Hell JW. 2000. Protein phosphatase 2A is associated with class C L-type calcium channels (Cav1.2) and antagonizes channel phosphorylation by cAMP-dependent protein kinase. J Biol Chem, 275:39710–39717.

    Article  PubMed  CAS  Google Scholar 

  • Davare MA, Avdonin V, Hall DD, Peden EM, Burette A, Weinberg RJ, et al. 2001. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science, 293:98–101.

    Article  PubMed  CAS  Google Scholar 

  • Frame S, Cohen P, Biondi RM. 2001. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell, 7:1321–1327.

    Article  PubMed  CAS  Google Scholar 

  • Genoux D, Haditsch U, Knobloch M, Michalon A, Storm D, Mansuy IM. 2002. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature, 418:970–975.

    Article  PubMed  CAS  Google Scholar 

  • Gomez LL, Alam S, Smith KE, Horne E, Dell’Acqua ML. 2002. Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin. J Neurosci, 22:7027–7044.

    PubMed  CAS  Google Scholar 

  • Henkemeyer M, Itkis OS, Ngo M, Hickmott PW, Ethell IM. 2003. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol, 163:1313–1326.

    Article  PubMed  CAS  Google Scholar 

  • Kafitz KW, Rose CR, Thoenen H, Konnerth A. 1999. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature, 401:918–921.

    Article  PubMed  CAS  Google Scholar 

  • Lei G, Xue S, Chery N, Liu Q, Xu J, Kwan CL, et al. 2002. Gain control of N-methyl-D-aspartate receptor activity by receptor-like protein tyrosine phosphatase alpha. Embo J, 21:2977–2989.

    Article  PubMed  CAS  Google Scholar 

  • Li HS, Xu XZ, Montell C. 1999. Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron, 24:261–273.

    Article  PubMed  CAS  Google Scholar 

  • Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB. 2003. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci, 6:153–160.

    Article  PubMed  CAS  Google Scholar 

  • Oliveria SF, Gomez LL, Dell’Acqua ML. 2003. Imaging kinase—AKAP79—phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. J Cell Biol, 160:101–112.

    Article  PubMed  CAS  Google Scholar 

  • Sontag E, Hladik C, Montgomery L, Luangpirom A, Mudrak I, Ogris E, et al. 2004. Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J Neuropathol Exp Neurol, 63: 1080–1091.

    PubMed  CAS  Google Scholar 

  • Svenningsson P, Tzavara ET, Carruthers R, Rachleff I, Wattler S, Nehls M, et al. 2003. Diverse psychotomimetics act through a common signaling pathway. Science, 302:1412–1415.

    Article  PubMed  CAS  Google Scholar 

  • Tavalin SJ, Colledge M, Hell JW, Langeberg LK, Huganir RL, Scott JD. 2002. Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J Neurosci, 22:3044–3051.

    PubMed  CAS  Google Scholar 

  • Terrak M, Kerff F, Langsetmo K, Tao T, Dominguez R. 2004. Structural basis of protein phosphatase 1 regulation. Nature, 429:780–784.

    Article  PubMed  CAS  Google Scholar 

  • Tomita S, Stein V, Stocker TJ, Nicoll RA, Bredt DS. 2005. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron, 45:269–277.

    Article  PubMed  CAS  Google Scholar 

  • Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, et al. 2003. The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature, 426:299–302.

    Article  PubMed  CAS  Google Scholar 

  • Vafai SB, Stock JB. 2002. Protein phosphatase 2A methylation: a link between elevated plasma homocysteine and Alzheimer’s Disease. FEBS Lett, 518:1–4.

    Article  PubMed  CAS  Google Scholar 

  • Valjent E, Pascoli V, Svenningsson P, Paul S, Enslen H, Corvol JC, et al. 2005. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci USA, 102:491–496.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Higher Education Press

About this chapter

Cite this chapter

Merrill, R.A., Strack, S. (2007). Protein Kinases and Phosphatases. In: Zhuo, M. (eds) Molecular Pain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75269-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75269-3_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75268-6

  • Online ISBN: 978-0-387-75269-3

Publish with us

Policies and ethics