Skip to main content

Solving Polynomial Systems Equation by Equation

  • Chapter
Algorithms in Algebraic Geometry

Abstract

By a numerical continuation method called a diagonal homotopy, one can compute the intersection of two irreducible positive dimensional solution sets of polynomial systems. This paper proposes to use this diagonal homotopy as the key step in a procedure to intersect general solution sets that are not necessarily irreducible or even equidimensional. Of particular interest is the special case where one of the sets is defined by a single polynomial equation. This leads to an algorithm for finding a numerical representation of the solution set of a system of polynomial equations introducing the equations one by one. Preliminary computational experiments show this approach can exploit the special structure of a polynomial system, which improves the performance of the path following algorithms.

This material is based upon work supported by the National Science Foundation under Grant No. 0105653 and Grant No. 0410047; the Duncan Chair of the University of Notre Dame; the Land Baden-Württemberg (RiP-program at Oberwolfach); and the Institute for Mathematics and Its Applications (IMA), Minneapolis.

This material is based upon work supported by the National Science Foundation under Grant No. 0105739, Grant No. 0134611, and Grant No. 0410036; the Land Baden-Württemberg (RiP-program at Oberwolfach); and the Institute for Mathematics and Its Applications (IMA), Minneapolis

This material is based upon work supported by the National Science Foundation under Grant No. 0410047; General Motors Research and Development; the Land Baden-Württemberg (RiP-program at Oberwolfach); and the Institute for Mathematics and Its Applications (IMA), Minneapolis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. BELTRAMETTI AND A.J. SOMMESE. The adjunction theory of complex projective varieties. Expositions in Mathematics, 16, Walter De Gruyter, Berlin, 1995.

    Google Scholar 

  2. P. DIACONIS, D. EISENBUD, AND B. STURMFELS. Lattice Walks and Primary Decomposition. In Mathematical Essays in Honor of Gian-Carlo Rota, edited by B.E. Sagan, R.P. Stanley, Vol. 161 of Progress in Mathematics, pp. 173–193. Birkhäuser, 1998.

    Google Scholar 

  3. A.V. GERAMITA. The Curves Seminar at Queen’s. Vol. IX. Proceedings of the seminar held at Queen’s University, Kingston, Ontario, 1992–1993. Queen’s University Press, Ontario, Canada, 1993.

    Google Scholar 

  4. M. GIUSTI AND J. HEINTZ. La détermination de la dimension et des points isolées d’une variété algébrique peuvent s’effectuer en temps polynomial. In Computational Algebraic Geometry and Commutative Algebra, Cortona 1991, edited by D. Eisenbud and L. Robbiano, Symposia Mathematica XXXIV, pp. 216–256. Cambridge UP, 1993.

    Google Scholar 

  5. M. GIUSTI AND J. HEINTZ. Kronecker’s smart, little black boxes. In Foundations of Computational Mathematics edited by DeVore, R.A. and Iserles, A. and Süli, E., Vol. 284 of London Mathematical Society Lecture Note Series, pp. 69–104. Cambridge University Press, 2001.

    Google Scholar 

  6. M. GIUSTI, J. HEINTZ, J.E. MORAIS, AND L.M. PARDO. When polynomial equation systems can be “solved” fast? In G. Cohen, M. Giusti, and T. Mora, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. 11th International Symposium, AAECC-ll. Paris, France, July 1995, Vol. 948 of Lecture Notes in Computer Science, pp. 205–231. Springer-Verlag, 1995.

    Google Scholar 

  7. M. GIUSTI, G. LECERF, AND B. SALVY. A Gröbner free alternative for polynomial system solving. Journal of Complexity 17(1):154–211, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. GUAN AND J. VERSCHELDE. PHClab: A MATLAB/Octave interface to PHC-pack. Submitted for publication.

    Google Scholar 

  9. J. HARRIS. Curves in projective space, with the collaboration of D. Eisenbud. Université de Montreal Press, Montreal (Québec), Canada, 1982.

    MATH  Google Scholar 

  10. S. HOSTEN AND J. SHAPIRO. Primary Decomposition of Lattice Basis Ideals. J. of Symbolic Computation 29(4–5):625–639, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. HUBER, F. SOTTILE, AND B. STURMFELS. Numerical Schubert calculus. J. of Symbolic Computation 26(6):767–788, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. HUBER AND J. VERSCHELDE. Pieri homotopies for problems in enumerative geometry applied to pole placement in linear systems control. SIAM J. Control Optim. 38(4):1265–1287, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. KALKBRENNER. A generalized Euclidean algorithm for computing triangular representations of algebraic varieties. J. Symbolic Computation 15:143–167, 1993.

    Article  Google Scholar 

  14. D. LAZARD. A new method for solving algebraic systems of positive dimension. Discrete Appl. Math. 33:147–160, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. LECERF. Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers. Journal of Complexity 19(4):564–596, 2003.

    Article  MathSciNet  Google Scholar 

  16. T.Y. LI. Numerical solution of polynomial systems by homotopy continuation methods. In Handbook of Numerical Analysis. Vol. XI. Special Volume: Foundations of Computational Mathematics, edited by F. Cucker, pp. 209–304. North-Holland, 2003.

    Google Scholar 

  17. M.M. MAZA, G. REID, R. SCOTT, AND W. WU. On approximate triangular decompositions in dimension zero. J. of Symbolic Computation 42(7):693–716, 2007.

    Article  MATH  Google Scholar 

  18. M.M. MAZA, G. REID, R. SCOTT, AND W. WU. On approximate linearized triangular decompositions. In Symbolic-Numeric Computation, edited by D. Wang and L. Zhi, pp. 279–298. Trends in Mathematics, Birkhäuser, 2007.

    Google Scholar 

  19. A.J. SOMMESE AND J. VERSCHELDE. Numerical homotopies to compute generic points on positive dimensional algebraic sets. Journal of Complexity 16(3): 572–602, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  20. A.J. SOMMESE, J. VERSCHELDE AND C.W. WAMPLER. Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38(6):2022–2046, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  21. A.J. SOMMESE, J. VERSCHELDE, AND C.W. WAMPLER. Numerical irreducible decomposition using projections from points on the components. In Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, Vol. 286 of Contemporary Mathematics, edited by E.L. Green, S. Hosten, R.C. Laubenbacher, and V. Powers, pp. 37–51. AMS 2001.

    Google Scholar 

  22. A.J. SOMMESE, J. VERSCHELDE, AND C.W. WAMPLER. Using monodromy to decompose solution sets of polynomial systems into irreducible components. In Application of Algebraic Geometry to Coding Theory, Physics and Computation, edited by C. Ciliberto, F. Hirzebruch, R. Miranda, and M. Teicher. Proceedings of a NATO Conference, February 25–March 1, 2001, Eilat, Israel, pp. 297–315, Kluwer Academic Publishers.

    Google Scholar 

  23. A.J. SOMMESE, J. VERSCHELDE, AND C.W. WAMPLER. Symmetric functions applied to decomposing solution sets of polynomial systems. SIAM J. Numer. Anal. 40(6):2026–2046, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  24. A.J. SOMMESE, J. VERSCHELDE, AND C.W. WAMPLER. A method for tracking singular paths with application to the numerical irreducible decomposition. In Algebraic Geometry, a Volume in Memory of Paolo Francia, edited by M.C. Beltrametti, F. Catanese, C. Ciliberto, A. Lanteri, C. Pedrini, pp. 329–345, W. de Gruyter, 2002.

    Google Scholar 

  25. A.J. SOMMESE, J. VERSCHELDE, AND C.W. WAMPLER. Numerical irreducible decomposition using PHCpack. In Algebra, Geometry, and Software Systems, edited by M. Joswig and N. Takayama, pp. 109–130, Springer-Verlag 2003.

    Google Scholar 

  26. A.J. SOMMESE, J. VERSCHELDE, AND C.W. WAMPLER. Homotopies for Intersecting Solution Components of Polynomial Systems. SIAM J. Numer. Anal. 42(4):1552–1571, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  27. A.J. SOMMESE, J. VERSCHELDE, AND C.W. WAMPLER. An intrinsic homotopy for intersecting algebraic varieties. Journal of Complexity 21:593–608, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  28. A.J. SOMMESE AND C.W. WAMPLER. Numerical algebraic geometry. In The Mathematics of Numerical Analysis, edited by J. Renegar, M. Shub, and S. Smale, Vol. 32 of Lectures in Applied Mathematics, pp. 749–763, 1996. Proceedings of the AMS-SIAM Summer Seminar in Applied Mathematics, Park City, Utah, July 17–August 11, 1995, Park City, Utah.

    Google Scholar 

  29. A.J. SOMMESE AND C.W. WAMPLER. The Numerical solution of systems of polynomials arising in engineering and science. World Scientific Press, Singapore, 2005.

    Book  MATH  Google Scholar 

  30. J. VERSCHELDE. Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Transactions on Mathematical Software 25(2):251–276, 1999. Software available at http://www.math.uic.edu/~jan.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sommese, A.J., Verschelde, J., Wampler, C.W. (2008). Solving Polynomial Systems Equation by Equation. In: Dickenstein, A., Schreyer, FO., Sommese, A.J. (eds) Algorithms in Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol 146. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75155-9_8

Download citation

Publish with us

Policies and ethics