Skip to main content

Microfluidics-Based Lysis of Bacteria and Spores for Detection and Analysis

  • Chapter

Abstract

The disruption of the membrane/coat, or lysis, of bacteria and spores is often a critical step for analyzing the intracellular molecules such as proteins and nucleic acids. In this chapter, we review recent advances in the application of microfluidic devices for lysis of bacteria and spores. We divide existent devices and methods into five categories: mechanical, chemical, thermal, laser, and electrical. We also point out future directions in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abstract

  • Belgrader P, Hansford D, Kovacs GTA, Venkateswaran K, Mariella R, Milanovich F, Nasarabadi S, Okuzumi M, Pourahmadi F and Northrup MA (1999) A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Anal. Chem. 71:4232–4236

    Article  Google Scholar 

  • Bhunia AK (1997) Antibodies to Listeria monocytogenes. Crit. Rev. Microbiol. 23:77–107

    Article  Google Scholar 

  • Caprioli R and Rittenbe D (1969) Pentose Synthesis In Escherichia Coli. Biochemistry 8:3375–&

    Article  Google Scholar 

  • Cheng J, Sheldon EL, Wu L, Uribe A, Gerrue LO, Carrino J, Heller MJ and O’Connell JP (1998) Preparation and hybridization analysis of DNA/RNA from E-coli on microfabricated bioelectronic chips. Nature Biotechnol. 16:541–546

    Article  Google Scholar 

  • Di Carlo D, Jeong KH and Lee LP (2003) Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip 3:287–291

    Article  Google Scholar 

  • El-Ali J, Sorger PK and Jensen KF (2006) Cells on chips. Nature 442:403–411

    Article  Google Scholar 

  • Fratamico PM (2003) Comparison of culture, polymerase chain reaction (PCR), TaqMan Salmonella, and Transia Card Salmonella assays for detection of Salmonella spp. in naturally-contaminated ground chicken, ground turkey, and ground beef. Mol. Cell. Probes 17:215–221

    Article  Google Scholar 

  • Fratamico PM and Strobaugh TP (1998) Simultaneous detection of Salmonella spp. and Escherichia coli O157:H7 by multiplex PCR. J. Ind. Microbiol. Biotechnol. 21:92–98

    Article  Google Scholar 

  • Garen A and Echols H (1962) Properties Of 2 Regulating Genes For Alkaline Phosphatase. J. Bacteriol. 83:297–&

    Google Scholar 

  • Geciova J, Bury D and Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry - a review. Int. Dairy J. 12:541–553

    Article  Google Scholar 

  • Gehring AG, Patterson DL and Tu S (1998) Use of a light-addressable potentiometric sensor for the detection of Escherichia coli O157:H7. Anal. Biochem. 258:293–298

    Article  Google Scholar 

  • Gehring AG, Irwin PL, Reed SA, Tu S, Andreotti PE, Akhavan-Tafti H and Handley RS (2004) Enzyme-linked immunomagnetic chemiluminescent detection of Escherichia coli O157:H7. J. Immunol. Methods 293:97–106

    Article  Google Scholar 

  • Geveke DJ and Brunkhorst C (2004) Inactivation of Escherichia coli in apple juice by radio frequency electric fields. J. Food Sci. 69:E134–E138

    Google Scholar 

  • Ghuysen JM and Strominger JL (1963) Structure Of Cell Wall Of Staphylococcus Aureus, Strain Copenhagen.1. Preparation Of Fragments By Enzymatic Hydrolysis. Biochemistry 2:1110–&

    Article  Google Scholar 

  • Harrison STL (1991) Bacterial-Cell Disruption - A Key Unit Operation In The Recovery Of Intracellular Products. Biotechnol. Adv. 9:217–240

    Article  Google Scholar 

  • Heo J, Thomas KJ, Seong GH and Crooks RM (2003) A microfluidic bioreactor based on hydrogel-entrapped E. coli: Cell viability, lysis, and intracellular enzyme reactions. Anal. Chem. 75:22–26

    Article  Google Scholar 

  • Hofmann O, Murray K, Wilkinson AS, Cox T and Manz A (2005) Laser induced disruption of bacterial spores on a microchip. Lab Chip 5:374–377

    Article  Google Scholar 

  • Hong JW, Studer V, Hang G, Anderson WF and Quake SR (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnol. 20:435–439

    Article  Google Scholar 

  • Ivnitski D, Abdel-hamid I, Atanasov P and Wilkins E (1999). Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14:599–624

    Article  Google Scholar 

  • Kaspar CW and Tartera C (1990) Methods for detecting microbial pathogens in food and water. Methods Microbiol. 22:497–530

    Article  Google Scholar 

  • Kim J, Jang SH, Jia GY, Zoval JV, Da Silva NA and Madou MJ (2004) Cell lysis on a microfluidic CD (compact disc). Lab Chip 4:516–522

    Article  Google Scholar 

  • Kim KP, Jagadeesan B, Burkholder KM, Jaradat ZW, Wampler JL, Lathrop AA, Morgan MT and Bhunia AK (2006) Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol. Lett. 256:324–332

    Article  Google Scholar 

  • Lee JG, Cheong KH, Huh N, Kim S, Choi JW and Ko C (2006) Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab Chip 6:886–895

    Article  Google Scholar 

  • Lee SW and Tai YC (1999) A micro cell lysis device. Sens. Actuators A. 73:74–79

    Article  Google Scholar 

  • Liu BF, Ozaki M, Hisamoto H, Luo QM, Utsumi Y, Hattori T and Terabe S (2005) Microfluidic chip toward cellular ATP and ATP-conjugated metabolic analysis with bioluminescence detection. Anal. Chem. 77:573–578

    Article  Google Scholar 

  • Liu RH, Yang JN, Lenigk R, Bonanno J and Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 76:1824–1831

    Article  Google Scholar 

  • Malamy MH and Horecker BL (1964) Purification And Crystallization Of Alkaline Phosphatase Of Escherichia Coli. Biochemistry 3:1893–&

    Article  Google Scholar 

  • Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H and Widmer HM (1992) Planar Chips Technology For Miniaturization And Integration Of Separation Techniques Into Monitoring Systems - Capillary Electrophoresis On A Chip. J. Chromatogr. 593:253–258

    Article  Google Scholar 

  • Marentis TC, Kusler B, Yaralioglu GG, Liu SJ, Haeggstrom EO and Khuri-Yakub BT (2005) Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis. Ultrasound Med. Biol. 31:1265–1277

    Article  Google Scholar 

  • Miller HK, Valanju N and Balis ME (1965) Magnesium Requirement For Incorporation Of Cytidylic Acid Into Deoxyribonucleic Acid In Chick Embryo Extracts. Biochemistry 4:1295–&

    Article  Google Scholar 

  • Penman S, Darnell JE, Scherrer K and Becker Y (1963). Polyribosomes In Normal And Poliovirus-Infected Hela Cells And Their Relationship To Messenger-Rna. Proceedings of the National Academy of Sciences, USA 49:654–&

    Article  Google Scholar 

  • Peterson KA, Patel KD, Ho CK, Rohde SB, Nordquist CD, Walker CA, Wroblewski BD and Okandan M (2005) Novel microsystem applications with new techniques in low-temperature co-fired ceramics. Int. J. Appl. Ceram. Technol. 2:345–363

    Article  Google Scholar 

  • Prinz C, Tegenfeldt JO, Austin RH, Cox EC and Sturm JC (2002) Bacterial chromosome extraction and isolation. Lab Chip 2:207–212

    Article  Google Scholar 

  • Sanders GHW and Manz A (2000) Chip-based microsystems for genomic and proteomic analysis. Trac-Trend Anal. qChem. 19:364–378

    Google Scholar 

  • Scandell CJ and Kornberg A (1971) Membrane-Bound Phospholipase-A1 Purified From Escherichia-Coli. Biochemistry 10:4447–4456

    Article  Google Scholar 

  • Schilling EA, Kamholz AE and Yager P (2002) Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 74:1798–1804

    Article  Google Scholar 

  • Sherman MR, Tuazon FB, Diaz SC and Miller LK (1976) Multiple Forms Of Oviduct Progesterone Receptors Analyzed By Ion-Exchange Filtration And Gel-Electrophoresis. Biochemistry 15:980–989

    Article  Google Scholar 

  • Swaminathan B and Feng P (1994) Rapid detection of food-borne pathogenic bacteria. Annu. Rev. Microbiol. 48:401–426

    Article  Google Scholar 

  • Taylor MT, Belgrader P, Furman BJ, Pourahmadi F, Kovacs GTA and Northrup MA (2001) Lysing bacterial spores by sonication through a flexible interface in a microfluidic system. Anal. Chem. 73:492–496

    Article  Google Scholar 

  • Tietjen M and Fung DYC (1995) Salmonellae And Food Safety. Crit. Rev. Microbiol. 21:53–83

    Article  Google Scholar 

  • Tonshoff HK and Raschke HD (1977) Investigations Into Practical Reduction Of Noise-Levels In Manual Grinding Operations. WT-Z Ind. Fertigung 67:671–676

    Google Scholar 

  • Verpoorte E (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23:677–712

    Article  Google Scholar 

  • Wang HY, Bhunia AK and Lu C (2006) A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosens. Bioelectron. 22:582–588

    Article  Google Scholar 

  • Waters LC, Jacobson SC, Kroutchinina N, Khandurina J, Foote RS and Ramsey JM (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal. Chem. 70:158–162

    Article  Google Scholar 

  • Zhou F, Rouse BT and Huang L (1991) An Improved Method Of Loading Ph-Sensitive Liposomes With Soluble-Proteins For Class-I Restricted Antigen Presentation. J. Immunol. Methods 145:143–152

    Article  Google Scholar 

  • Zimmermann U, Scheurich P, Pilwat G and Benz R (1981) Cells With Manipulated Functions - New Perspectives For Cell Biology, Medicine, And Technology. Angew. Chem. Int. Ed. Engl. 20:325–344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bao, N., Lu, C. (2008). Microfluidics-Based Lysis of Bacteria and Spores for Detection and Analysis. In: Zourob, M., Elwary, S., Turner, A. (eds) Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75113-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75113-9_30

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75112-2

  • Online ISBN: 978-0-387-75113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics