Skip to main content

QCA Circuits for Robust Coplanar Crossing

  • Chapter
Book cover Emerging Nanotechnologies

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 37))

Quantum-dot cellular automata (QCA) [16] may overcome some of the limitations of current technologies, while meeting the density foreseen by Moore's Law and the International Technology Roadmap for Semiconductors (ITRS). For manufacturing, molecular QCA implementations have been proposed to allow for room temperature operation; the feature of wire crossing on the same plane (coplanar crossing) provides a significant advantage over CMOS. Coplanar crossing is very important for designing QCA circuits; multi-layer QCA has been proposed [4] as an alternative technique to route signals, however it still lacks a physical implementation. At design level, algorithms have been proposed to reduce the number of coplanar wire crossings [9]. In QCA circuits, a reliable operation of coplanar crossing is dependent on the temperature of operation. Resilience to temperature variations due to thermal effects is also an important feature to consider for practical applications. A reduction in the probability of generating an erroneous signal is also of concern, hence, robustness must be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bhanja, M. Ottavi, S. Pontarelli, and F. Lombardi. Novel designs for thermally robust coplanar crossing in qca. IEEE Design and Testing in Europe, pp. 786-791, 2006.

    Google Scholar 

  2. S. Bhanja and S. Sarkar. Probabilistic modeling of qca circuits using bayesian networks. IEEE Transactions on Nanotechnology, 5(6):657-670, November 2006.

    Article  Google Scholar 

  3. A. Fijany, N. Toomarian, and K. Modarress. Block qca fault-tolerant logic gates. Technical report, Jet Propulsion Laboratory, California, 2003.

    Google Scholar 

  4. A. Gin, P. D. Tougaw, and S. Williams. An alternative geometry for quantumdot cellular automata. J. Appl. Phys., 85(12):8281-8286, June 1999.

    Article  Google Scholar 

  5. K. Hennessy and C. Lent. Clocking of molecular quantum-dot cellular automata. Journal of Vacuum Science and Technology, 19(B):1752-1755, 2001.

    Google Scholar 

  6. C. Lent. Molecular quantum-dot cellular automata. Seminar, May 2004.

    Google Scholar 

  7. C. Lent and P. Tougaw. Lines of interacting quantum-dot cells - a binary wire. Journal of Applied Physics, 74:6227-6233, 1993.

    Article  Google Scholar 

  8. C. Lent and P. Tougaw. A device architecture for computing with quantum dots. Proceedings of the IEEE, 85(4):541-557, April 1997.

    Article  Google Scholar 

  9. S. K. Lim, R. Ravichandran, and M. Niemier. Partitioning and placement for buildable qca circuits. J. Emerg. Technol. Comput. Syst., 1(1):50-72, 2005.

    Article  Google Scholar 

  10. G. Mahler and V. A. Weberruss. Quantum Networks: Dynamics of Open Nanostructures. Springer Verlag, 1998.

    Google Scholar 

  11. M. Momenzadeh, M. Ottavi, and F. Lombardi. Modeling qca defects at molecular-level in combinational circuits. IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems DFT 2005, pages 208-216, 2005.

    Google Scholar 

  12. P. M. Niemier, M. T. Kontz, M. J. Kogge. A design of and design tools for a novel quantum dot based microprocessor. In Design Automation Conference, pages 227-232, June 2000.

    Google Scholar 

  13. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference. Morgan Kaufmann Publishers, 1998.

    Google Scholar 

  14. G. Toth. Correlation and Coherence in Quantum-dot Cellular Automata. PhD thesis, University of Notre Dame, 2000.

    Google Scholar 

  15. P. D. Tougaw and C. S. Lent. Logical devices implemented using quantum cellular automata. Journal of Applied Physics, 75(3):1818-1825, Oct 1994.

    Article  Google Scholar 

  16. P. D. Tougaw and C. S. Lent. Dynamic behavior of quantum cellular automata. Journal of Applied Physics, 80(15):4722-4736, Oct 1996.

    Article  Google Scholar 

  17. K. Walus, T. Dysart, G. Jullien, and R. Budiman. QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. on Nanotechnology, 3(1):26-29, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bhanja, S., Ottavi, M., Pontarelli, S., Lombardi, F. (2008). QCA Circuits for Robust Coplanar Crossing. In: Tehranipoor, M. (eds) Emerging Nanotechnologies. Frontiers in Electronic Testing, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74747-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74747-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74746-0

  • Online ISBN: 978-0-387-74747-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics