Skip to main content

Designing Nanoscale Logic Circuits Based on Principles of Markov Random Fields

  • Chapter

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 37))

As Si CMOS devices are scaled down into the nanoscale regime, current microarchitecture approaches are reaching their practical limits. Thus far, the semiconductor industry has successfully overcome many hurdles, including the current transition to silicon-on-insulator (SOI) technology [1]. Looking to the future, the next major challenges to Si CMOS include new materials (high-κ and low-κ dielectrics [2]), new device geometries (dual-gate or fin-FET devices [3]), and further downscaling of devices and supply voltages with attendant difficulties in manufacturing, power dissipation, and economics of commodity manufacturing [2]. The longer-term prospects of digital computation then diverge into two interrelated areas. On the system side, there are the computer architecture issues arising from the problem of integrating billions of transistors at the lowest possible supply voltage, with tremendous constraints on total power dissipation and device reliability. On the device integration front, there is hope that hybrid systems will emerge, combining CMOS FETbased digital logic with any number of alternative devices, ranging from analog circuits, to more exotic alternatives (optical sources and detectors, quantum or molecular transistors, carbon nanotube devices, etc.) all on the same chip [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. K. Celler and S. Cristoloveanu. Frontiers of silicon-on-insulator. Journal of Applied Physics, 93:4955-4978, 2003.

    Article  Google Scholar 

  2. S. Luryi, J. M. Xu, and A. Zaslavsky, eds. Future Trends in Microelectronics: The Nano, the Giga, and the Ultra. New York: Wiley, 2004.

    Google Scholar 

  3. H. S. P. Wong. Beyond the conventional transistor. IBM Journal of Research and Development, 46(2-3):133-168, 2002.

    Article  Google Scholar 

  4. H. Iwai. The future of CMOS downscaling, paper in: S. Luryi, J.M. Xu, and A. Zaslavsky, eds., Future Trends in Microelectronics: The Nano, the Giga, and the Ultra, pages 23-33. Wiley, New York, 2004.

    Google Scholar 

  5. International Technology Roadmap for Semiconductors. The latest update is at http://www.public.itrs.net.

  6. J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36(3):192-236, 1994.

    MathSciNet  Google Scholar 

  7. S. Z. Li. Markov Random Field Modeling in Computer Vision. Berlin Heidelberg Newyork: Springer, 1995.

    Google Scholar 

  8. R. Chellappa. Markov Random Fields: Theory and Applications. New York: Academic, 1993.

    Google Scholar 

  9. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. San Francisco, CA: Morgan Kaufmann Publishers, 1988.

    Google Scholar 

  10. J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations. In International Joint Conference on AI, 2001. Distinguished Lecture.

    Google Scholar 

  11. R. I. Bahar, J. Mundy, and J. Chen. A probabilistic-based design methodology for nanoscale computation. In Proceedings of International Conference on Computer Aided Design, November 2003.

    Google Scholar 

  12. K. K. Likharev. Single-electron devices and their applications. Proceedings of the IEEE, 87(4):606-632, April 1999.

    Article  Google Scholar 

  13. K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and A. Zaslavsky. Designing logic circuits for probabilistic computation in the presence of noise. In Proceed- ings of Design Automation Conference, June 2005.

    Google Scholar 

  14. Berkeley Predictive Technology Model. Available at http://www-device.eecs. berkeley.edu/∼ptm/.

  15. V. M. Polyakov and F. Schwierz. Excessive noise in nanoscaled double-gate mosfets: A monte carlo study. Journal of Semiconductor Science and Technology, 19(4):145-147, 2004.

    Article  Google Scholar 

  16. S. Narendra, V. De, S. Borkar, D. A. Antoniadis, and A. P. Chandrakasan. Full-chip subthreshold leakage power prediction and reduction techniques for sub-0.18 µm cmos. IEEE Journal Of Solid-State Circuits, 39:501-510, March 2004.

    Article  Google Scholar 

  17. R. Sarpeshkar, T. Delbrueck, and C. A. Mead. White noise in mos transistors and resistors. IEEE Circuits and Devices Magazine, 6:23-29, November 1993.

    Article  Google Scholar 

  18. H. Li, J. Mundy, W. R. Patterson, D. Kazazis, A. Zaslavsky, and R. I. Bahar. A model for soft errors in the subthreshold cmos inverter. In Proceedings of Workshop on System Effects of Logic Soft Errors, November 2006.

    Google Scholar 

  19. E. Suzuki, K. Ishii, S. Kanemaru, T. Maeda, T. Tsutsumi, T. Sekigawa, K. Nagai, and H. Hiroshima. Highly suppressed short-channel effects in ultrathin soi n-mosfets. IEEE Transactions on Electron Devices, 47(2):354-359, February 2000.

    Article  Google Scholar 

  20. T. Ernst, S. Cristoloveanu, G. Ghibaudo, T. Ouisse, S. Horiguchi, Y. Ono, Y. Takahashi, and K. Murase. Ultimately thin double-gate soi mosfets. IEEE Transactions on Electron Devices, 50:830-838, March 2003.

    Article  Google Scholar 

  21. K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference: an empirical study. In Proceedings of Uncertainty in AI, 1999.

    Google Scholar 

  22. K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, and A. Zaslavsky. MRF Reinforcer: A Probabilistic Element for Space Redundancy in Nanoscale Circuits. IEEE Micro, 26(5):9-27, September-October, 2006.

    Article  Google Scholar 

  23. S. Kullback. Information Theory and Statistics. New York: Dover, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nepal, K., Bahar, R.I., Mundy, J., Patterson, W.R., Zaslavsky, A. (2008). Designing Nanoscale Logic Circuits Based on Principles of Markov Random Fields. In: Tehranipoor, M. (eds) Emerging Nanotechnologies. Frontiers in Electronic Testing, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74747-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74747-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74746-0

  • Online ISBN: 978-0-387-74747-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics