Skip to main content

Metal Matrix Composites

  • Chapter
  • First Online:
Composite Materials

Abstract

Metal matrix composites consist of a metal or an alloy as the continuous matrix and a reinforcement that can be particle, short fiber or whisker, or continuous fiber. In this chapter, we first describe important techniques to process metal matrix composites, then we describe the interface region and its characteristics, properties of different metal matrix composites, and finally, we summarize different applications of metal matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajanian MK, Burke JT, White DR, Nagelberg AS (1989) SAMPE Quart 34:817–823

    Google Scholar 

  • Arsenault RJ, Fisher RM (1983) Scr Mater 17:67

    Google Scholar 

  • Arsenault RJ, Shi N (1986) Mater Sci Eng 81:175

    Article  Google Scholar 

  • Baker AA, Shipman C (1972) Fibre Sci Technol 5:282

    Google Scholar 

  • Balch DK, Fitzgerald TJ, Michaud VJ, Mortensen A, Shen Y-L, Suresh S (1996) Metall Mater Trans A 27A:3700

    Article  Google Scholar 

  • Barrera EV, Sims J, Callahan DL, Provenzano VJ, Milliken J, Holtz RL (1994) J Mater Res 9:2662

    Article  Google Scholar 

  • Beck Tan NC, Aikiri, Jr. RM, Briber RM (1994) Met Mater Trans 25A:2461

    Google Scholar 

  • Champion AR, Krueger WH, Hartman HS, Dhingra AK (1978). In: Proceedings of International Conference on Composite Materials (ICCM/2). TMS-AIME, New York, p 883

    Google Scholar 

  • Chawla KK (1973a) Metallography 6:155

    Article  Google Scholar 

  • Chawla KK (1973b) Philos Mag 28:401

    Article  Google Scholar 

  • Chawla KK (1974) In: Grain boundaries in engineering materials. Claitor’s, Baton Rouge, p 435

    Google Scholar 

  • Chawla KK (1975) Fibre Sci Technol 8:49

    Article  Google Scholar 

  • Chawla KK (Dec., 1985) J Metals 37:25

    Google Scholar 

  • Chawla KK (1989) In: Precious and rare metal technologies. Elsevier, Amsterdam, p 639

    Google Scholar 

  • Chawla KK, Collares CE (1978). In: Proceedings of the 1978 International Conference on Composite Materials (ICCM/2), TMS-AIME, New York, p 1237

    Google Scholar 

  • Chawla KK, Metzger M (1972) J Mater Sci 7:34

    Article  Google Scholar 

  • Chawla KK, Metzger M (1978) In: Fracture 1977. In: Proceedings of the 4th international conference on fracture, vol 3, Pergamon Press, p 1039

    Google Scholar 

  • Chawla KK, Esmaeili AH, Datye AK, Vasudevan AK (1991) Scr Mater et Mater 25:1315

    Article  Google Scholar 

  • Chawla N, Andres C, Jones JW, Allison JE (1998) Metall Mater Trans 29A:2843

    Article  Google Scholar 

  • Christman T, Suresh S (1988) Mater Sci Eng A102:211

    Article  Google Scholar 

  • Christodolou L, Parrish PA, Crowe CR (1988) In: Mater Res Soc Symp Proc 120:29–34

    Article  Google Scholar 

  • Cline HE, Walter JL, Koch EF, Osika LM (1971) Acta Mater 19:405

    Article  Google Scholar 

  • Cook AJ, Warner PS (1991) Mater Sci Eng A144:189

    Article  Google Scholar 

  • Cornie JA, Chiang Y-M, Uhlmann DR, Mortensen AS, Collins JM (1986) Ceram Bull 65:293

    Google Scholar 

  • Divecha AP, Fishman SG, Karmarkar SD (Sept., 1981) J Metals 9:12

    Google Scholar 

  • Donomoto T, Miura N, Funatani K, and Miyake N (1983). SAE Techical Paper No. 83052, Detroit, MI

    Google Scholar 

  • Dunand DC, Mortensen A (1991a) Acta Metall Mater 39:127

    Article  Google Scholar 

  • Dunand DC, Mortensen A (1991b) Acta Metall Mater 39:1405

    Article  Google Scholar 

  • Dutta I, Bourell DL (1988) Mater Sci Eng A112:67

    Google Scholar 

  • Dutta I, Bourell DL (1990) Acta Metall 38:2041

    Article  Google Scholar 

  • Dutta I, Bourell DL, Latimer D (1988) J Compos Mater 22:829

    Article  Google Scholar 

  • Fu L-J, Schmerling M, Marcus HL (1986) In: Composite materials: fatigue and fracture, ASTM STP 907. ASTM, Philadelphia, 51

    Google Scholar 

  • Fujiwara C, Yoshida M, Matsuhama M, Ohama S (1995). In: Proceedings of International Conference on Composite Materials (ICCM-10), p II–687.

    Google Scholar 

  • Gabryel CM, McLeod AD (1991) Metall Trans 23A:1279

    Google Scholar 

  • Ghosh AK (1993) In: Metal matrix composites. Butterworth-Heinemann, Boston, p 119

    Google Scholar 

  • Hill RG, Nelson RP, Hellerich CL (1969). In: Proceedings of the 16th refractory working group meeting, Seattle, WA

    Google Scholar 

  • Hunt WH, Osman TM, Lewandowski JJ (1993) JOM 45:30

    Google Scholar 

  • Isaacs JA, Taricco F, Michaud VJ, Mortensen A (1991) Metall Trans 22A:2855

    Article  Google Scholar 

  • Jones C, Kiely CJ, Wang SS (1993) J Mater Res 4:327

    Article  Google Scholar 

  • Katzman HA (1987) J Mater Sci 22:144

    Article  Google Scholar 

  • Kerans RJ, Parthasarathy TA (1991) J Am Ceram Soc 74:1585

    Article  Google Scholar 

  • Kohyama A, Igata N, Imai Y, Teranishi H, Ishikawa T (1985). In: Proceedings of the fifth International Conference on Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA, p 609

    Google Scholar 

  • Lloyd DJ (1994) Int Mater Rev 39:1

    Article  Google Scholar 

  • Majidi AP, Chou TW (1987) Proc Int Conf Compos Mater VI 2:422

    Google Scholar 

  • Manning C, Gurganus T (1969) J Am Ceram Soc 52:115

    Article  Google Scholar 

  • Manoharan M, Lewandowski JJ, Hunt WH (1993) Mater Sci Eng A17:63

    Article  Google Scholar 

  • McDanels DL (1985) Metall Trans 16A:1105

    Article  Google Scholar 

  • McLean M (1983) Directionally solidified materials for high temperature service. The Metals Soc, London

    Google Scholar 

  • Mehrabian R, Riek RG, Flemings MC (1974) Metall Trans 5:1899

    Article  Google Scholar 

  • Meyerer W, Kizer D, Paprocki S, Paul H (1978). In: Proceedings of the 1978 International Conference on Composite Materials (ICCM/2), TMS-AIME, New York, p 141

    Google Scholar 

  • Meyers MA, Chawla KK (1984) Mechanical metallurgy. Prentice-Hall, Englewood Cliffs, 494

    Google Scholar 

  • Michaud VJ (1993) Metal matrix composites. Butterworth-Heinemann, Boston, p 3

    Google Scholar 

  • Mitra R, Chiou WA, Fine ME, Weertman JR (1993) J Mater Res 8:2300

    Google Scholar 

  • Mortensen A, Gungor MN, Cornie JA, Flemings MC (1986) J Metals 38:30

    Google Scholar 

  • Mortensen A, Cornie JA, Flemings MC (1988) J Metals 40:12

    Google Scholar 

  • Nardone VC, Prewo KM (1986) Scr Mater 20:43

    Google Scholar 

  • Naslain R, Thebault J, Pailler R (1976). In: Proceedings of the 1975 International Conference on Composite Materials, vol 1, TMS-AIME, New York, p 116

    Google Scholar 

  • Nieh TG, Karlak RF (1984) Scr Mater 17:67

    Google Scholar 

  • Nishida Y (2001) Adv Eng Mater 3:315

    Article  Google Scholar 

  • Nourbakhsh S, Liang FL, Margolin H (1990) Metall Trans A 21A:213

    Article  Google Scholar 

  • Parrini L, Schaler R (1994) J Alloy Comp 211:402

    Article  Google Scholar 

  • Partridge PG, Ward-Close CM (1993) Int Mater Rev 38:1

    Article  Google Scholar 

  • Pennander L, Anderson C-H (1991) In: Hansen N et al. (eds) Metal matrix composites – Processing, microstructure and properties. 12th Risø international symposium on materials science, p 575

    Google Scholar 

  • Pfeifer M, Rigsbee JM, Chawla KK (1990) J Mater Sci 25:1563

    Article  Google Scholar 

  • Phillips WL (1978). In: Proceedings of the 1978 International Conference on Composite Materials (ICCM/2), TMS-AIME, New York, p 567

    Google Scholar 

  • Rack HJ (1987). In: Sixth International Conference on Composite Materials, Elsevier Applied Science, New York, p 382

    Google Scholar 

  • Rezai-Aria F, Liechti T, Gagnon G (1993) Scr Metall Mater 28:587

    Article  Google Scholar 

  • Rhee S (1970) J Am Ceram Soc 53:386

    Article  Google Scholar 

  • Rohatgi PK, Asthana R, Das S (1986) Int Met Rev 31:115

    Article  Google Scholar 

  • Schuster DM, Skibo MD, Bruski RS (1993) J Miner Met Mater Soc 45(5):26

    Article  Google Scholar 

  • Shen Y-L, Needleman A, Suresh S (1994) Metall Mater Trans A 25A:839

    Article  Google Scholar 

  • Sherby O, Lee S, Koch R, Sumi T, Wolfenstine J (1985) Mater Manuf Process 5:363

    Article  Google Scholar 

  • Shi N, Arsenault RJ (1991) J Compos Technol Res 13:211

    Article  Google Scholar 

  • Shi N, Arsenault RJ (1993) Metall Trans 24A:1879

    Article  Google Scholar 

  • Srivatsan TS, Lavernia EJ (1992) J Mater Sci 27:5965

    Article  Google Scholar 

  • Suresh S, Chawla KK (1993) In: Metal matrix composites. Butterworth-Heinemann, Boston, p 119

    Google Scholar 

  • Thomas DG (1965) J Colloid Sci 20:267

    Article  Google Scholar 

  • Vaidya RU, Chawla KK (1994) Compos Sci Technol 50:13

    Article  Google Scholar 

  • van Suchtelan J (1972) Philips Res Rep 27:28

    Google Scholar 

  • van Suchtelen J (1972) Philips Res Rep 27:28

    Google Scholar 

  • Vasudevan AK, Doherty RD (eds) (1989) Aluminum alloys – Contemporary research and applications. Academic, Boston

    Google Scholar 

  • Vasudevan AK, Petrovic JJ (eds) (1992) High temperature structural silicides, Elsevier, Amsterdam

    Google Scholar 

  • Walter JL (1982) In situ composites IV. Elsevier, New York, p 85

    Google Scholar 

  • Warren R, Andersson C-H (1984) Composites 15:101

    Article  Google Scholar 

  • Williams DR, Fine ME (1985a). In: Proceedings of the 5th International Conference on Composite Materials (ICCM/V), TMS, Warrendale, PA, p 275

    Google Scholar 

  • Williams DR, Fine ME (1985b). In: Proceedings of the Fifth International Conference on Composite Materials (ICCM/V), TMS-AIME, Warrendale, PA, p 369

    Google Scholar 

Further Reading

  • Chawla N, Chawla KK (2006) Metal matrix composites. Springer, New York

    Book  Google Scholar 

  • Clyne TW, Withers PJ (1993) An introduction to metal matrix composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mortensen A, Llorca J (2010) Annu Rev Mater Res 40:243

    Article  Google Scholar 

  • Suresh S, Needleman A, Mortensen A (eds) (1993) Metal matrix composites. Butterworth-Heinemann, Boston

    Google Scholar 

  • Taya M, Arsenault RJ (1990) Metal matrix composites. Pergamon, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishan K. Chawla .

Problems

Problems

  1. 6.1.

    Pressure casting is frequently used to prepare metal matrix composite. Explain why.

  2. 6.2.

    Describe some of the advantages of metal matrix composites over monolithic metals.

  3. 6.3.

    Discuss the advantages of metal matrix composites vis à vis polymer matrix composite.

  4. 6.4.

    Discuss the advantages and disadvantages of liquid metal processing vis à vis other methods of fabricating metal matrix composites.

  5. 6.5.

    Silicon carbide (0.1 μm thick) coated boron fiber was used to reinforce a metallic matrix. The SiC coating serves as a diffusion barrier coating. Estimate the time for dissolution of this coating at 700 K if the diffusion coefficient at 700 K is 10−16 m2/s.

  6. 6.6.

    The metallic matrix will generally undergo constrained plastic flow in the presence of a moderately high volume fraction of high modulus fibers. Draw schematically the stress–strain curves of a constrained metal matrix (i.e., in situ behavior) and an unconstrained metal (i.e., 100% matrix metal). Explain the difference.

  7. 6.7.

    Aluminum and magnesium are two common metal matrix materials. What is the viscosity of molten aluminum and magnesium?

  8. 6.8.

    What is the effect on viscosity of adding ceramic particles to a molten metal such as aluminum or magnesium? Discuss its implications in the processing of MMCs with respect to features such as particle size, volume fraction, etc.

  9. 6.9.

    Discuss the problem of thermal stability of unidirectionally solidified eutectic (in situ) metallic composites.

  10. 6.10.

    Discuss the use of silicon carbide particle reinforced aluminum composites in braking applications.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chawla, K.K. (2012). Metal Matrix Composites. In: Composite Materials. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74365-3_6

Download citation

Publish with us

Policies and ethics