Skip to main content

The influence of nonstationarity on the turbulent flux–gradient relationship for stable stratification

  • Original Paper
  • Chapter
Atmospheric Boundary Layers
  • 1633 Accesses

Abstract

Extensive eddy-correlation datasets are analyzed to examine the influence of nonstationarity of the mean flow on the flux–gradient relationship near the surface. This nonstationarity is due to wavelike motions, meandering of the wind vector, and numerous unidentified small-scale mesoscale motions. While the data do not reveal an obvious critical gradient Richardson number, the maximum downward heat flux increases approximately linearly with increasing friction velocity for significant stability.

The largest of our datasets is chosen to more closely examine the influence of stability, nonstationarity, distortion of the mean wind profile and self-correlation on the flux-gradient relationship. Stability is expressed in terms of z/L, the gradient Richardson number or the bulk Richardson number over the tower layer. The efficiency of the momentum transport systematically increases with increasing nonstationarity and attendant distortion of the mean wind profile. Enhancement of the turbulent momentum flux associated with nonstationarity is examined in terms of the nondimensional shear, Prandtl number and the eddy diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel HDI, Holm DD, Marsden JE, Ratiu T (1984) Richardson number criterion for the nonlinear stability of three-dimensional stratified flow. Phys Rev Lett 52:2352–2355

    Article  Google Scholar 

  2. Acevedo OC, Moraes OLL, Degrazia GA, Medeiros LE (2006) Intermittency and the exchange of scalars in the nocturnal surface layer. Boundary-layer meteorol 119:41–55

    Article  Google Scholar 

  3. Andreas EL (2002) Parameterizing scalar transfer over snow and ice: a review. J Hydrometeorol 3:417–431

    Article  Google Scholar 

  4. Anfossi D, Oettl D, Degrazia G, Boulart A (2005) An analysis of sonic anemometer observations in low wind speed conditions. Boundary-Layer Meteorol 114:179–203

    Article  Google Scholar 

  5. Atlas D, Metcalf JI, Richter JH, Gossard EE (1970) The birth of “CAT” and microscale turbulence. J Atmos Sci 27:903–913

    Article  Google Scholar 

  6. Banta RM, Pichugina YL, Brewer WA (2007) Turbulent velocity–variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J Atmos Sci (In press)

    Google Scholar 

  7. Basu S, Porté-Agel F, Foufoula-Georgiou E, Vinuesa J-F, Pahlow M (2006) Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence: an integration of field and laboratory measurements with large-eddy simulations. Boundary-Layer Meteorol 119:473–500

    Article  Google Scholar 

  8. Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30:327–341

    Article  Google Scholar 

  9. Businger J (2005) Reflections on boundary-layer problems of the past 50 years. Boundary-Layer Meteorol 116:149–159

    Article  Google Scholar 

  10. Chimonas G (1984) Apparent counter-gradient heat gluxes generated by atmospheric waves. Boundary-Layer Meteorol 31:1–12

    Article  Google Scholar 

  11. Chimonas G (2002) On internal gravity waves associated with the stable boundary layer. Boundary-Layer Meteorol 102:139–155

    Article  Google Scholar 

  12. Chimonas G (2003) Pressure gradient amplification of shear instabilities in the boundary layer. Dyn Atmos Oceans 37:131–145

    Article  Google Scholar 

  13. Cooper DI, Leclerc MY, Archuleta J, Coulter R, Eichinger WW, Kao CYJ, Nappo CJ (2006) Mass exchange in the stable boundary layer by coherent structures. Annu Rev Fluid Mech 136:113–131

    Google Scholar 

  14. Coulter RL, Doran JC (2002) Spatial and temporal occurrences of intermittent turbulence during CASES-99. Boundary-Layer Meteorol 105:329–349

    Article  Google Scholar 

  15. Derbyshire H (1995) Stable boundary layers: Observations, models and variability part II: data analysis and averaging effects. Boundary-Layer Meteorol 75:1–24

    Article  Google Scholar 

  16. Derbyshire S (1999) Boundary-layer decoupling over cold surfaces as a physical boundary-instability. Boundary-Layer Meteorol 90:297–325

    Article  Google Scholar 

  17. Edson JB, Crofoot R, McGillis W, Zappa C (2004) Investigations of flux–profile relationships in the marine atmospheric boundary layer during CBLAST. 16th Symposium on Boundary Layers and Turbulence, 9–13 August 2004, Portland, Maine.

    Google Scholar 

  18. Etling D (1990) On plume meandering under stable stratification. Atmos Environ. 24A:1979–1985

    Google Scholar 

  19. Fernando HJS (2003) Turbulence patches in a stratified shear flow. Phys Fluids 15:656: 3164–3169

    Article  Google Scholar 

  20. Finnigan JJ (1999) A note on wave-turbulence interaction and the possibility of scaling the very stable boundary layer. Boundary-Layer Meteorol 90:529–539

    Article  Google Scholar 

  21. Finnigan JJ (2000) Turbulence in plant canopies. Ann Rev Fluid Mech 32:519–571

    Article  Google Scholar 

  22. Finnigan JJ, Einaudi F (1981) The interaction between an internal gravity wave and the planetary boundary layer Part II: effect of the wave on the turbulence structure. Quart J Roy Meteorol Soc 107:807–832

    Article  Google Scholar 

  23. Finnigan JJ, Einaudi F, Fua D (1984) The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer. J Atmos Sci 41:2409–2436

    Article  Google Scholar 

  24. Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes, the Sheba data. Boundary-Layer Meteorol 116:201–235

    Article  Google Scholar 

  25. Grisogono B (1994) A curvature effect on the critical Richardson number. Croatian Meteorol J 29:43–46

    Google Scholar 

  26. Herring JR, Métais O (1989) Numerical experiments in forced stably stratified turbulence. J Fluid Mech 202:97–115

    Article  Google Scholar 

  27. Hicks BB (1976) Wind profile relationships from the ‘Wangara’ experiment. Quart J Roy Meteorol Soc 102:535–551

    Google Scholar 

  28. Hicks BB (1981) An examination of turbulence statistics in the surface boundary layer. Boundary-Layer Meteorol 21:389–402

    Article  Google Scholar 

  29. Holtslag AAM, De Bruin HAR (1988) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27:689–704

    Article  Google Scholar 

  30. Howell J, Sun J (1999) Surface layer fluxes in stable conditions. Boundary-Layer Meteorol 90:495–520

    Article  Google Scholar 

  31. Kim J, Mahrt L (1992) Simple formulation of turbulent mixing in the stable free atmosphere and nocturnal boundary layer. Tellus 44A:381–394

    Article  Google Scholar 

  32. Klipp C., Mahrt L (2004) Flux–gradient relationship, self-correlation and intermittency in the stable boundary layer. Quart J Roy Meteorol Soc 130:2087–2104

    Article  Google Scholar 

  33. Kondo J, Kanechika O, Yasuda N (1978) Heat and momentum transfers under strong stability in the atmospheric surface layer. J Atmos Sci 35:1012–1021

    Article  Google Scholar 

  34. Kristensen L, Jensen NO, Peterson EL (1981) Lateral dispersion of pollutants in a very stable atmosphere—the effect of the meandering. Atmos Environ 15:837–844

    Article  Google Scholar 

  35. Lee S-M, Giori W, Princevac M, Fernando HJS (2006) Implementation of a stable PBL turbulence parameterization for the mesoscale model MM5: nocturnal flow in complex terrain. Boundary-Layer Meteorol 119:109–134

    Article  Google Scholar 

  36. Lilly DK (1983) Stratified turbulence and the mesoscale variability of the atmosphere. J Atmos Sci 40:749–761

    Article  Google Scholar 

  37. Mahrt L (1987) Grid-averaged surface fluxes. Mon Wea Rev 115:1550–1560

    Article  Google Scholar 

  38. Mahrt L, Vickers D (2002) Contrasting vertical structures of nocturnal boundary layers. Boundary-Layer Meteorol 105:351–363

    Article  Google Scholar 

  39. Mahrt L, Vickers D, Frederickson P, Davidson K, Smedman A-S (2003) Sea-surface aerodynamic roughness. J Geophys Res 108:1–9

    Article  Google Scholar 

  40. Mahrt L, Vickers D (2005) Boundary-layer adjustment over small-scale changes of surface heat flux. Boundary-Layer Meteorol 116:313–330

    Article  Google Scholar 

  41. Mahrt L, Vickers D (2006) Extremely weak mixing in stable conditions. Boundary-Layer Meteorol 119:19–39

    Article  Google Scholar 

  42. McWilliams J (2004) Phenomenological hunts in two-dimensional and stably stratified turbulence. In: Federovich E, Rotunno R, Stevens B (eds) Atmospheric turbulence and mesoscale meteorology. Cambridge University Press, pp 35–49

    Google Scholar 

  43. Monti P, Fernando HJS, Chan W, Princevac M, Kowalewski T, Pardyjak E (2002) Observations of flow and turbulence in the nocturnal boundary layer over a slope. J Atmos Sci 59:2513–2434

    Article  Google Scholar 

  44. Moraes OLL, Acevedo OC, Da Silva R, Magnago R, Siqueira AC (2004) Nocturnal surface-layer characteristics at the bottom of a valley. Boundary-Layer Meteorol 112:159–177

    Article  Google Scholar 

  45. Nakamura R, Mahrt L (2005) A study of intermittent turbulence with CASES-99 tower measurements. Boundary-Layer Meteorol 114:367–387

    Article  Google Scholar 

  46. Nappo CJ (2002) An introduction to atmospheric gravity waves. Academic Press, 276 pp

    Google Scholar 

  47. Newsom R, Banta R (2003) Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES99. J Atmos Sci 60:16–33

    Article  Google Scholar 

  48. Ohya Y (2001) Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorol 98:57–82

    Article  Google Scholar 

  49. Ohya Y, Uchida T (2003) Turbulence structure of stable boundary layers with a near-linear temperature profile. Boundary-Layer Meteorol 108:19–38

    Article  Google Scholar 

  50. Panofsky HA, Dutton JA (1984) Atmospheric turbulence — models and methods for engineering applications. John Wiley and Sons, New York, 397 pp

    Google Scholar 

  51. Pardyjak E, Monti P, Fernando H (2002) Flux Richardson number measurements in stable atmospheric shear flows. J Fluid Mech 449:307–316

    Article  Google Scholar 

  52. Poulos GS, Blumen W, Fritts D, Lundquist J, Sun J, Burns S, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B, Jensen M (2002) CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull Amer Meteorol Soc 81:757–779

    Google Scholar 

  53. Riley JJ, Lelong M-P (2000) Fluid motions in the presence of strong stable stratification. Annu Rev Fluid Mech 32:613–657

    Article  Google Scholar 

  54. Salmond JA (2005) Wavelet analysis of intermittent turbulence in a very stable nocturnal boundary layer: Implications for the vertical mixing of ozone. Boundary-Layer Meteorol 114:463–488

    Article  Google Scholar 

  55. Sorbjan Z (2006) Local structure of turbulence in stably stratified boundary layers. J Atmos Sci 63:526–537

    Article  Google Scholar 

  56. Strang EJ, Fernando HJS (2001) Vertical mixing and transports through a stratified shear layer. J Phys Oceanog 31:2026–2048

    Article  Google Scholar 

  57. Sukoriansky S, Galperin B, Perov V (2005) Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Boundary-Layer Meteorol 117:231–257

    Article  Google Scholar 

  58. Sun J, Burns SP, Lenschow DH, Banta R, Newsom R, Coulter R, Frasier S, Ince T, Nappo C, Cuxart J, Blumen W, Lee X, Hu X-Z (2002) Intermittent turbulence associated with a density current passage in the stable boundary layer. Boundary-Layer Meteorol 105:199–219

    Article  Google Scholar 

  59. Sun J, Lenschow DH, Burns SP, Banta RM, Newsom RK, Coulter S, Frasier S, Ince T, Nappo C, Balsley B, Jensen M, Mahrt L, Miller D, Skelly B (2004) Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Boundary-Layer Meteorol 110:255–279

    Article  Google Scholar 

  60. Ueda H, Mitsumoto S, Komori S (1981) Buoyancy effects on the turbulent transport processes in the lower atmosphere. Quart J Roy Meteorol Soc 107:561–578

    Article  Google Scholar 

  61. van de Wiel BJH, Moene AF, Ronda RJ, De Bruin HAR, Holtslag AAM (2002) Intermittent turbulence in the stable boundary layer over land Part II: a system dynamics approach. J Atmos Sci 59:2567–2581

    Article  Google Scholar 

  62. van den Kroonenberg A, Bange J (2007) Turbulent flux calculation in the polar stable boundary layer: multiresolution flux decomposition and wavelet analysis. J Geophys Res (In press)

    Google Scholar 

  63. Van Ulden AP, Holtslag AAM (1985) Estimation of atmospheric boundary layer parameters for diffusion applications. J Clim Appl Meteorol 24:1197–1207

    Article  Google Scholar 

  64. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Tech 14:512–526

    Article  Google Scholar 

  65. Vickers D, Mahrt L (2006) A solution for flux contamination by mesoscale motions with very weak turbulence. Boundary-Layer Meteorol 118:431–447

    Article  Google Scholar 

  66. Yagüe C, Maqueda G, Rees JM (2001) Characteristics of turbulence in the lower atmosphere at Halley IV Station, Antarctica. Dyn Atmos Oceans 34:205–223

    Article  Google Scholar 

  67. Yagüe C, Viana S, Maqueda G, Redondo JM (2006) Influence of stability on the flux-profile relationships for wind speed, \(\phi _{\rm m}\), and temperature, \(\phi_{\rm h}\), for the stable atmospheric boundary layer. Nonlin Proc Geophys 13:185–203

    Article  Google Scholar 

  68. Zilitinkevich SS, Calanca P (2000) An extended similarity theory for the stably stratified atmospheric surface layer. Quart J Roy Meteorol Soc 126:1913–1923

    Article  Google Scholar 

  69. Zilitinkevich S, Baklanov A, Rost J, Smedman AS, Lykosov V, Calanca P (2002) Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Quart J Roy Meteorol Soc 128:25–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mahrt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, B.V.

About this chapter

Cite this chapter

Mahrt, L. (2007). The influence of nonstationarity on the turbulent flux–gradient relationship for stable stratification. In: Baklanov, A., Grisogono, B. (eds) Atmospheric Boundary Layers. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74321-9_7

Download citation

Publish with us

Policies and ethics