Skip to main content

Hierarchical Nanomechanics of Collagen Fibrils: Atomistic and Molecular Modeling

  • Chapter
Book cover Collagen

Abstract

This chapter describes hierarchical multi-scale modeling of collagenous tissues, with a particular focus on the mechanical properties. Studies focus on elastic behavior, plastic behavior and fracture. Starting at the atomistic scale, we review development and application of a hierarchical multi-scale model that is capable of describing the dynamical behavior of a large number of tropocollagen molecules, reaching length scales of several micrometers and time scales of tens of microseconds. Particular emphasis is on elucidating the deformation mechanisms that operate at various scales, the scale-dependent properties, the effect of specific hierarchical features and length scales (cross-link densities, intermolecular adhesion, etc.) as well as on the effect of addition of mineral platelets during formation of nascent bone. This chapter contains a review of numerical techniques associated with modeling of chemically complex and hierarchical biological tissue, including first principles-based reactive force fields, empirical force fields, large-scale parallelization and visualization methods. A set of scaling relationships are summarized that enable one to predict deformation mechanisms and properties based on atomistic, molecular and other hierarchical features. The results are presented in deformation maps that summarize deformation modes, strength, dissipative properties and elastic behavior for various conditions, providing structure–property relationships for collagenous tissue. This chapter is concluded with a discussion of how insight of nanomechanical behavior at the smallest scales relates with the physiological role of collagen. The significance of universal structural patterns such as the staggered collagen fibril architecture versus specific structures in different collagen tissues is reviewed in light of the question of universality versus diversity of structural components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackbarow, T. and M. J. Buehler (2007a). “Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in protein materials” Nature Precedings http://hdl.nature.com/10101/npre.2007.826.1.

    Google Scholar 

  • Ackbarow, T. and M. J. Buehler (2007). “Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: Atomistic and continuum studies”. Journal of Materials Science 42(21): 8771–8787. DOI 10.1007/s10853-007-1719-2.

    Article  Google Scholar 

  • Ackbarow, T., X. Chen, et al. (2007). “Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains”. Proceedings of the National Academy of Sciences of the USA 104: 16410–16415.

    Article  Google Scholar 

  • Aizenberg, J., J. C. Weaver, et al. (2005). “Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale”. Science 309(5732): 275–278.

    Article  Google Scholar 

  • Alberts, B., A. Johnson, et al. (2002). Molecular Biology of the Cell, Taylor & Francis, London.

    Google Scholar 

  • Allen, M. P. and D. J. Tildesley (1989). Computer Simulation of Liquids, Oxford University Press, Oxford.

    Google Scholar 

  • Alsberg, E., H. J. Kong, et al. (2003). “Regulating bone formation via controlled scaffold degradation”. Journal of Dental Research 82(11): 903–908.

    Google Scholar 

  • An, K. N., Y. L. Sun, et al. (2004). “Flexibility of type I collagen and mechanical property of connective tissue”. Biorheology 41(3–4): 239–246.

    Google Scholar 

  • Anderson, T. L. (1991). Fracture Mechanics: Fundamentals and Applications, CRC Press, Boca Raton.

    Google Scholar 

  • Anderson, D. (2005). Collagen Self-Assembly: A Complementary Experimental and Theoretical Perspective. Toronto, Canada, University of Toronto. PhD.

    Google Scholar 

  • Arnoux, P. J., J. Bonnoit, et al. (2002). “Numerical damage models using a structural approach: Application in bones and ligaments”. European Physical Journal-Applied Physics 17(1):65–73.

    Article  Google Scholar 

  • Bailey, A. J. (2001). “Molecular mechanisms of ageing in connective tissues”. Mechanisms of Ageing and Development 122(7): 735–755.

    Article  Google Scholar 

  • Bailey, N. P. and J. P. Sethna (2003). “Macroscopic measure of the cohesive length scale: Fracture of notched single-crystal silicon”. Physical Review B 68(20).

    Google Scholar 

  • Bell, G. I. (1978). “Models for specific adhesion of cells to cells”. Science 200(4342): 618–627.

    Article  Google Scholar 

  • Bhattacharjee, A. and M. Bansal (2005). “Collagen structure: The Madras triple helix and the current scenario”. IUBMB Life 57(3): 161–172.

    Article  Google Scholar 

  • Bischoff, J. E., E. M. Arruda, et al. (2000). “Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model”. Journal of Biomechanics 33(6): 645–652.

    Article  Google Scholar 

  • Blanckenhagen, B. v., P. Gumbsch, et al. (2001). “Dislocation sources in discrete dislocation simulations of thin film plasticity and the Hall-Petch relation”. Modelling and Simulation in Materials Science and Engineering 9: 157–169.

    Article  Google Scholar 

  • Borel, J. P. and J. C. Monboisse (1993). “Collagens – Why such a complicated structure”. Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales 187(2): 124–142.

    Google Scholar 

  • Borsato, K. S. and N. Sasaki (1997). “Measurement of partition of stress between mineral and collagen phases in bone using X-ray diffraction techniques”. Journal of Biomechanics 30(9): 955–957.

    Article  Google Scholar 

  • Bozec, L. and M. Horton (2005). “Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy”. Biophysical Journal 88(6): 4223–4231.

    Article  Google Scholar 

  • Bozec, L. et al. (2005). “Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption. Ultramicroscopy 105: 79–89.

    Article  Google Scholar 

  • Bozec, L. et al. (2005). “Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption”. Ultramicroscopy 105: 79–89.

    Article  Google Scholar 

  • Brenner, D. W., O. A. Shenderova, et al. (2002). “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”. Journal Of Physics-Condensed Matter 14(4): 783–802.

    Article  Google Scholar 

  • Broberg, K. B. (1990). Cracks and Fracture, Academic Press, New York.

    Google Scholar 

  • Buehler, M. J. (2006a). “Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture and self-assembly”. Journal of Materials Research 21(8):1947–1961.

    Article  Google Scholar 

  • Buehler, M. J. (2006b). “Nature designs tough collagen: Explaining the nanostructure of collagen fibrils”. Proceedings of the National Academy of Sciences of the USA 103(33): 12285–12290.

    Article  Google Scholar 

  • Buehler, M. J. (2007a). “Hierarchical chemo-nanomechanics of stretching protein molecules: Entropic elasticity, protein unfolding and molecular fracture”. Journal of Mechanics of Materials and Structures 2(6): 1019–1057.

    Google Scholar 

  • Buehler, M. J. (2007b). “Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization”. Nanotechnology 18: 295102.

    Article  Google Scholar 

  • Buehler, M. J. (2007). “Nano- and micromechanical properties of hierarchical biological materials and tissues” Journal of Materials Science 42(21): 8765–8770. DOI 10.1007/s10853-007-1952-8.

    Article  Google Scholar 

  • Buehler, M. J. (2008). “Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies”. Journal of the Mechanical Behavior of Biomedical Materials 1(1): doi:10.1016/j.jmbbm.2007.04.001

    Google Scholar 

  • Buehler, M. J., F. F. Abraham, et al. (2003). “Hyperelasticity governs dynamic fracture at a critical length scale”. Nature 426: 141–146.

    Article  Google Scholar 

  • Buehler, M. J., F. F. Abraham, et al. (2004). “Stress and energy flow field near a rapidly propagating mode I crack”. Springer Lecture Notes in Computational Science and Engineering ISBN 3-540-21180-2: 143–156.

    Google Scholar 

  • Buehler, M. J. and T. Ackbarow (2007). “Fracture mechanics of protein materials”. Materials Today 10(9): 46–58.

    Article  Google Scholar 

  • Buehler, M. J., J. Dodson, et al. (2006). “The Computational Materials Design Facility (CMDF): A powerful framework for multiparadigm multi-scale simulations”. Materials Research Society Symposium Proceedings 894: LL3.8.

    Google Scholar 

  • Buehler, M. J., A. C. T. v. Duin, et al. (2006). “Multi-paradigm modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field”. Physical Review Letters 96(9): 095505.

    Article  Google Scholar 

  • Buehler, M. J. and H. Gao (2006). “Dynamical fracture instabilities due to local hyperelasticity at crack tips” Nature 439: 307–310.

    Article  Google Scholar 

  • Buehler, M. J., H. Tang, et al. (2007). “Threshold crack speed controls dynamical fracture of silicon single crystals”. Physical Review Letters. 99: 165502.

    Article  Google Scholar 

  • Buehler, M. J. and S. Y. Wong (2007). “Entropic elasticity controls nanomechanics of single tropocollagen molecules”. Biophysical Journal 93(1): 37–43.

    Article  Google Scholar 

  • Buehler, M. J., H. Yao, et al. (2006). “Cracking and adhesion at small scales: atomistic and continuum studies of flaw tolerant nanostructures”. Modelling and Simulation in Materials Science and Engineering 14: 799–816.

    Article  Google Scholar 

  • Bustamante, C., J. F. Marko, et al. (1994). “Entropic elasticity of lambda-phage DNA”. Science 265(5178): 1599–1600.

    Article  Google Scholar 

  • Chenoweth, K., S. Cheung, et al. (2005). “Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field”. Journal of the American Chemical Society 127(19): 7192–7202.

    Article  Google Scholar 

  • Cheung, S., W. Q. Deng, et al. (2005). “ReaxFF(MgH) reactive force field for magnesium hydride systems”. Journal of Physical Chemistry A 109(5): 851–859.

    Article  Google Scholar 

  • Courtney, T. H. (1990). Mechanical Behavior of Materials. New York, NY, USA, McGraw-Hill.

    Google Scholar 

  • Cressey, B. A. and G. Cressey (2003). “A model for the composite nanostructure of bone suggested by high-resolution transmission electron microscopy”. Mineralogical Magazine 67(6):1171–1182.

    Article  Google Scholar 

  • Cui, X. Q., C. M. Li, et al. (2007). “Biocatalytic generation of ppy-enzyme-CNT nanocomposite: From network assembly to film growth”. Journal of Physical Chemistry C 111(5): 2025–2031.

    Article  MathSciNet  Google Scholar 

  • Currey, J. D. (2002). Bones: Structure and Mechanics. Princeton, NJ, Princeton University Press.

    Google Scholar 

  • Currey, J. D. (2005). “Materials science – Hierarchies in biomineral structures”. Science 309(5732): 253–254.

    Article  Google Scholar 

  • Cusack, S. and A. Miller (1979). “Determination of the elastic-constants of collagen by Brillouin light-scattering”. Journal of Molecular Biology 135(1): 39–51.

    Article  Google Scholar 

  • Cuy, J. L., A. B. Mann, et al. (2002). “Nanoindentation mapping of the mechanical properties of human molar tooth enamel”. Archives of Oral Biology 47(4): 281–291.

    Article  Google Scholar 

  • Dao, M., C. T. Lim, et al. (2003). “Mechanics of the human red blood cell deformed by optical tweezers”. Journal of the Mechanics and Physics of Solids 51(11–12): 2259–2280.

    Article  Google Scholar 

  • Dao, M., C. T. Lim, et al. (2005). “Mechanics of the human red blood cell deformed by optical tweezers (vol 51, pg 2259, 2003)”. Journal of the Mechanics and Physics of Solids 53(2): 493–494.

    Article  Google Scholar 

  • Datta, D., A. C. T. v. Duin, et al. (2005). “Extending ReaxFF to biomacromolecules”. Unpublished.

    Google Scholar 

  • Duin, A. C. T. v., S. Dasgupta, et al. (2001). “ReaxFF: A reactive force field for hydrocarbons”. Journal of Physical Chemistry A 105: 9396–9409.

    Article  Google Scholar 

  • Duin, A. C. T. v., A. Strachan, et al. (2003). “ReaxFF SiO: Reactive force field for silicon and silicon oxide systems”. Journal of Physical Chemistry A 107: 3803–3811.

    Article  Google Scholar 

  • Engler, A. J., S. Sen, et al. (2006). “Matrix elasticity directs stem cell lineage specification”. Cell 126(4): 677–689.

    Article  Google Scholar 

  • Eppell, S. J., B. N. Smith, et al. (2006). “Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils”. Journal of the Royal Society Interface 3(6): 117–121.

    Article  Google Scholar 

  • Ercolessi, F. and J. B. Adams (1994). “Interatomic potentials from 1st principle-calculations – the force matching method”. Europhysics Letter 28(8): 583–588.

    Article  Google Scholar 

  • Fantner, G. E., T. Hassenkam, et al. (2005). “Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture”. Nature Materials 4(8): 612–616.

    Article  Google Scholar 

  • Fratzl, P., H. S. Gupta, et al. (2004). “Structure and mechanical quality of the collagen-mineral nano-composite in bone”. Journal of Materials Chemistry 14(14): 2115–2123.

    Article  Google Scholar 

  • Fratzl, P. and R. Weinkamer (2007). “Nature’s hierarchical materials”. Progress in Materials Science 52: 1263–1334.

    Article  Google Scholar 

  • Freeman, J. W. and F. H. Silver (2004). “Elastic energy storage in unmineralized and mineralized extracellular matrices (ECMs): A comparison between molecular modeling and experimental measurements”. Journal of Theoretical Biology 229(3): 371–381.

    Article  Google Scholar 

  • Freund, L. B. (1990). Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, ISBN 0-521-30330-3.

    MATH  Google Scholar 

  • Frost, H. J. and M. F. Ashby (1982). Deformation-mechanism Maps, Pergamon Press, Oxford.

    Google Scholar 

  • Gao, H. J. (2006). “Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials”. International Journal of Fracture 138(1–4): 101–137.

    Article  MATH  Google Scholar 

  • Gao, H., B. Ji, et al. (2003). “Materials become insensitive to flaws at nanoscale: Lessons from nature”. Proceedings of the National Academy Sciences of the USA 100(10): 5597–5600.

    Article  Google Scholar 

  • Glorieux, F. H. (2005). “Caffey disease: An unlikely collagenopathy”. Journal of Clinical Investigation 115(5): 1142–1144.

    Article  Google Scholar 

  • Goddard, W. A. (2006). A Perspective of Materials Modeling Handbook of Materials Modeling. S. Yip, Springer.

    Google Scholar 

  • Grandbois, M., M. Beyer, et al. (1999). “How strong is a covalent bond?” Science 283(5408): 1727–1730.

    Article  Google Scholar 

  • Griffith, A. A. (1920). “The phenomenon of rupture and flows in solids”. Philosophical Transactions of the Royal Society of London, Series A 221: 163–198.

    Google Scholar 

  • Gropp, W., W. Lusk, et al. (1999). Using MPI, MIT Press, Cambridge.

    Google Scholar 

  • Gupta, H. S., P. Messmer, et al. (2004). “Synchrotron diffraction study of deformation mechanisms in mineralized tendon”. Physical Review Letters 93(15).

    Google Scholar 

  • Gupta, H. S., J. Seto, et al. (2006). “Cooperative deformation of mineral and collagen in bone at the nanoscale”. Proceedings of the National Academy Sciences of the USA 103: 17741–17746.

    Article  Google Scholar 

  • Gupta, H. S., W. Wagermaier, et al. (2005). “Nanoscale deformation mechanisms in bone”. Nano Letters 5(10): 2108–2111.

    Article  Google Scholar 

  • Han, S. S., A. C. T. van Duin, et al. (2005). “Optimization and application of lithium parameters for the reactive force field, ReaxFF”. Journal of Physical Chemistry A 109(20): 4575–4582.

    Article  Google Scholar 

  • Hansma, P. K., P. J. Turner, et al. (2007). “Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: New insights from natural materials”. Nanotechnology 18(4).

    Google Scholar 

  • Harley, R., D. James, et al. (1977). “Phonons and elastic-moduli of collagen and muscle”. Nature 267(5608): 285–287.

    Article  Google Scholar 

  • Hellan, K. (1984). Introduction to Fracture Mechanics, McGraw-Hill, Inc., New York.

    Google Scholar 

  • Hellmich, C. and F. J. Ulm (2002). “Are mineralized tissues open crystal foams reinforced by crosslinked collagen? – some energy arguments”. Journal of Biomechanics 35(9):1199–1212.

    Article  Google Scholar 

  • Hirth, J. P. and J. Lothe (1982). Theory of Dislocations, Wiley-Interscience, New York.

    Google Scholar 

  • Hofmann, H., T. Voss, et al. (1984). “Localization of flexible sites in thread-like molecules from electron-micrographs – comparison of interstitial, basement-membrane and intima collagens”. Journal of Molecular Biology 172(3): 325–343.

    Article  Google Scholar 

  • Holland, J. H. (1995). Hidden Order – How Adaptation Builds Complexity. Reading, MA, Helix Books. http://www.top500.org/ TOP 500 Supercomputer Sites.

    Google Scholar 

  • Hule, R., A., Pochan, D., J., (2007). “Polymer nanocomposites for biomedical application”. MRS Bulletin 32(4): 5.

    Google Scholar 

  • Hulmes, D. J. S., T. J. Wess, et al. (1995). “Radial packing, order, and disorder in collagen fibrils”. Biophysical Journal 68(5): 1661–1670.

    Article  Google Scholar 

  • Humphrey, W., A. Dalke, et al. (1996). “VMD: Visual molecular dynamics”. Journal of Molecular Graphics 14(1): 33.

    Article  Google Scholar 

  • Israelowitz, M., S. W. H. Rizvi, et al. (2005). “Computational modeling of type I collagen fibers to determine the extracellular matrix structure of connective tissues”. Protein Engineering Design & Selection 18(7): 329–335.

    Article  Google Scholar 

  • Jaeger, C., N. S. Groom, et al. (2005). “Investigation of the nature of the protein-mineral interface in bone by solid-state NMR”. Chemistry of Materials 17(12): 3059–3061.

    Article  Google Scholar 

  • Jager, I. and P. Fratzl (2000). “Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles”. Biophysical Journal 79(4): 1737–1746.

    Google Scholar 

  • Kadau, K., T. C. Germann, et al. (2004). “Large-scale molecular-dynamics simulation of 19 billion particles”. International Journal of Modern Physics C 15: 193.

    Article  Google Scholar 

  • Kim, B. S., J. Nikolovski, et al. (1999). “Cyclic mechanical strain regulates the development of engineered smooth muscle tissue”. Nature Biotechnology 17(10): 979–983.

    Article  Google Scholar 

  • Kramer, R. Z., M. G. Venugopal, et al. (2000). “Staggered molecular packing in crystals of a collagen-like peptide with a single charged pair”. Journal of Molecular Biology 301(5):1191–1205.

    Article  Google Scholar 

  • Lakes, R. (1993). “Materials with structural hierarchy”. Nature 361(6412): 511–515.

    Article  Google Scholar 

  • Laudis, W., B. L. H. Kraus, et al. (2002). “Vascular-mineral spatial correlation in the calcifying turkey leg tendon”. Connective Tissue Research 43(4): 595–605.

    Article  Google Scholar 

  • Langer, R. and D. A. Tirrell (2004). “Designing materials for biology and medicine”. Nature 428(6982): 487–492.

    Article  Google Scholar 

  • Lantz, M. A., H. J. Hug, et al. (2001). “Quantitative measurement of short-range chemical bonding forces”. Science 291(5513): 2580–2583.

    Article  Google Scholar 

  • Layton, B. E., S. M. Sullivan, et al. (2005). “Nanomanipulation and aggregation limitations of self-assembling structural proteins”. Microelectronics Journal 36(7): 644–649.

    Article  Google Scholar 

  • Lees, S. (1987). “Possible effect between the molecular packing of collagen and the composition of bony tissues”. International Journal Of Biological Macromolecules 9(6): 321–326.

    Article  Google Scholar 

  • Lees, S. (2003). “Mineralization of type I collagen”. Biophysical Journal 85(1): 204–207.

    Google Scholar 

  • Lichtens Jr, G. R. Martin, et al. (1973). “Defect in conversion of procollagen to collagen in a form of Ehlers-Danlos syndrome”. Science 182(4109): 298–300.

    Article  Google Scholar 

  • Lim, C. T., E. H. Zhou, et al. (2006). “Experimental techniques for single cell and single molecule biomechanics”. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 26(8): 1278–1288.

    Google Scholar 

  • Lodish, H. B., Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James E. (1999). Molecular Cell Biology. W H Freeman & Co, New York.

    Google Scholar 

  • Lorenzo, A. C. and E. R. Caffarena (2005). “Elastic properties, Young’s modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics”. Journal of Biomechanics 38(7): 1527–1533.

    Article  Google Scholar 

  • Lotz, J. C., T. N. Gerhart, et al. (1990). “Mechanical-properties of trabecular bone from the proximal femur – a quantitative Ct study”. Journal of Computer Assisted Tomography 14(1):107–114.

    Article  Google Scholar 

  • Louis, O., F. Boulpaep, et al. (1995). “Cortical mineral-content of the radius assessed by peripheral qct predicts compressive strength on biomechanical testing”. Bone 16(3): 375–379.

    Article  Google Scholar 

  • Lu, H., B. Isralewitz, et al. (1998). “Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation”. Biophysical Journal 75(2): 662–671.

    Google Scholar 

  • MacKerell, A. D., D. Bashford, et al. (1998). “All-atom empirical potential for molecular modeling and dynamics studies of proteins”. Journal of Physical Chemistry B 102(18):3586–3616.

    Article  Google Scholar 

  • Mershin, A., B. Cook, et al. (2005). “A classic assembly of nanobiomaterials”. Nature Biotechnology 23(11): 1379–1380.

    Article  Google Scholar 

  • Miles, C. A. and A. J. Bailey (2001). “Thermally labile domains in the collagen molecule”. Micron 32(3): 325–332.

    Article  Google Scholar 

  • Mooney, S. D., C. C. Huang, et al. (2001). “Computed free energy differences between point mutations in a collagen-like peptide”. Biopolymers 58(3): 347–353.

    Article  Google Scholar 

  • Mooney, S. D. and T. E. Klein (2002). “Structural models of osteogenesis imperfecta-associated variants in the COL1A1 gene”. Molecular & Cellular Proteomics 1(11): 868–875.

    Article  Google Scholar 

  • Mooney, S. D., P. A. Kollman, et al. (2002). “Conformational preferences of substituted prolines in the collagen triple helix”. Biopolymers 64(2): 63–71.

    Article  Google Scholar 

  • Nalla, R. K., J. H. Kinney, et al. (2003a). “Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms”. Biomaterials 24(22): 3955–3968.

    Article  Google Scholar 

  • Nalla, R. K., J. H. Kinney, et al. (2003b). “Mechanistic fracture criteria for the failure of human cortical bone”. Nature Materials 2(3): 164–168.

    Article  Google Scholar 

  • Nalla, R. K., J. J. Kruzic, et al. (2005). “Mechanistic aspects of fracture and R-curve behavior in human cortical bone”. Biomaterials 26(2): 217–231.

    Article  Google Scholar 

  • Nalla, R. K., J. S. Stolken, et al. (2005). “Fracture in human cortical bone: local fracture criteria and toughening mechanisms”. Journal of Biomechanics 38(7): 1517–1525.

    Article  Google Scholar 

  • Nelson, M. T., W. Humphrey, et al. (1996). “NAMD: A parallel, object oriented molecular dynamics program”. International Journal Of Supercomputer Applications And High Performance Computing 10(4): 251–268.

    Article  Google Scholar 

  • Nieh, T. G. and J. Wadsworth (1991). “Hall-Petch relation in nanocrystalline solids”. Scripta Metallurgica 25(4).

    Google Scholar 

  • Nielson, K. D., A. C. T. v. Duin, et al. (2005). “Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes”. Journal of Physical Chemistry A 109: 49.

    Article  Google Scholar 

  • Orgel, J. P. R. O., T. C. Irving, et al. (1995). “Microfibrillar structure of type I collagen in situ”. Proceedings of the National Academy Sciences of the USA 103(24): 9001–9005.

    Article  Google Scholar 

  • Persikov, A. V., J. A. M. Ramshaw, et al. (2005). “Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability”. Biochemistry 44(5):1414–1422.

    Article  Google Scholar 

  • Peterlik, H., P. Roschger, et al. (2006). “From brittle to ductile fracture of bone”. Nature Materials 5(1): 52–55.

    Article  Google Scholar 

  • Petka, W. A., J. L. Harden, et al. (1998). “Reversible hydrogels from self-assembling artificial proteins”. Science 281(5375): 389–392.

    Article  Google Scholar 

  • Phillips, J. C., R. Braun, et al. (2005). “Scalable molecular dynamics with NAMD”. Journal of Computational Chemistry 26(16): 1781–1802.

    Article  Google Scholar 

  • Plimpton, S. (1995). “Fast parallel algorithms for short-range molecular-dynamics”. Journal of Computational Physics 117: 1–19.

    Article  MATH  Google Scholar 

  • Prater, C. B., H. J. Butt, et al. (1990). “Atomic force microscopy”. Nature 345(6278): 839–840.

    Article  Google Scholar 

  • Puxkandl, R., I. Zizak, et al. (2002). “Viscoelastic properties of collagen: Synchrotron radiation investigations and structural model”. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 357(1418): 191–197.

    Article  Google Scholar 

  • Ramachandran, G. N., Kartha, G. (1955). “Structure of collagen”. Nature 176: 593–595.

    Article  Google Scholar 

  • Rappé, A. K. and W. A. Goddard (1991). “Charge equilibration for molecular-dynamics simulations”. Journal of Physical Chemistry 95(8): 3358–3363.

    Article  Google Scholar 

  • Rief, M., M. Gautel, et al. (1997). “Reversible unfolding of individual titin immunoglobulin domains by AFM”. Science 276(5315): 1109–1112.

    Article  Google Scholar 

  • Ritchie, R. O., J. J. Kruzic, et al. (2004). “Characteristic dimensions and the micro-mechanisms of fracture and fatigue in ’nano’ and ’bio’ materials”. International Journal of Fracture 128(1–4): 1–15.

    Article  MATH  Google Scholar 

  • Ritchie, R. O., R. K. Nalla, et al. (2006). “Fracture and ageing in bone: Toughness and structural characterization”. Strain 42(4): 225–232.

    Article  Google Scholar 

  • Robins, S. P. and A. J. Bailey (1973). “The chemistry of the collagen cross-links”. Biochemical Journal. 135: 657–665.

    Google Scholar 

  • Sasaki, N. and S. Odajima (1996). “Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy”. Journal of Biomechanics 29(9):1131–1136.

    Article  Google Scholar 

  • Screen, H. R. C., D. L. Bader, et al. (2004). “Local strain measurement within tendon”. Strain 40(4): 157–163.

    Article  Google Scholar 

  • Smeenk, J. M., M. B. J. Otten, et al. (2005). “Controlled assembly of macromolecular beta-sheet fibrils”. Angewandte Chemie-International Edition 44(13): 1968–1971.

    Article  Google Scholar 

  • Smith, B. L., T. E. Schaffer, et al. (1999). “Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites”. Nature 399(6738): 761–763.

    Article  Google Scholar 

  • Strachan, A., E. M. Kober, et al. (2005). “Thermal decomposition of RDX from reactive molecular dynamics”. Journal of Chemical Physics 122(5): 054502.

    Article  Google Scholar 

  • Strachan, A., A. C. T. van Duin, et al. (2003). “Shock waves in high-energy materials: The initial chemical events in nitramine RDX”. Physical Review Letters 91(9): 098301.

    Article  Google Scholar 

  • Stuart, S. J., A. B. Tutein, et al. (2000). “A reactive potential for hydrocarbons with intermolecular interactions”. Journal of Chemical Physics 112(14): 6472-6486.

    Article  Google Scholar 

  • Sun, Y. L., Z. P. Luo, et al. (2002). “Direct quantification of the flexibility of type I collagen monomer”. Biochemical and Biophysical Research Communications 295(2): 382–386.

    Article  Google Scholar 

  • Sun, Y. L., Z. P. Luo, et al. (2004). “Stretching type II collagen with optical tweezers”. Journal of Biomechanics 37(11): 1665–1669.

    Article  Google Scholar 

  • Tai, K., F. J. Ulm, et al. (2006). “Nanogranular origins of the strength of bone”. Nano Letters 11: 2520–2525

    Article  Google Scholar 

  • Taylor, G. I. (1934). “Mechanism of plastic deformation in crystals”. Proceedings of the Royal Society A 145: 362.

    Article  Google Scholar 

  • Taylor, D., J.G. Hazenberg, et al. (2007). “Living with cracks: Damage and repair in human bone”. Nature Materials 6(4): 263–266.

    Article  Google Scholar 

  • Thompson, J. B., J. H. Kindt, et al. (2001). “Bone indentation recovery time correlates with bond reforming time”. Nature 414(6865): 773–776.

    Article  Google Scholar 

  • Tsai, D. H. (1979). “Virial theorem and stress calculation in molecular-dynamics”. Journal of Chemical Physics 70(3): 1375–1382.

    Article  Google Scholar 

  • Turner, C. H. (2006). Bone strength: Current concepts. Skeletal Development and Remodeling in Health, Disease, and Aging. 1068: 429–446.

    Google Scholar 

  • van der Rijt, J. A. J., K. O. van der Werf, et al. (2006). “Micromechanical testing of individual collagen fibrils”. Macromolecular Bioscience 6(9): 697–702.

    Article  Google Scholar 

  • van Duin, A. C. T., K. Nielson, et al. (2004). “Application of ReaxFF reactive force fields to transition metal catalyzed nanotube formation”. Abstracts of Papers of the American Chemical Society 227: U1031–U1031.

    Google Scholar 

  • Vesentini, S., C. F. C. Fitie, et al. (2005). “Molecular assessment of the elastic properties of collagen-like homotrimer sequences”. Biomechanics and Modeling in Mechanobiology 3(4): 224–234.

    Article  Google Scholar 

  • Wachter, N. J., G. D. Krischak, et al. (2002). “Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro”. Bone 31(1): 90–95.

    Article  Google Scholar 

  • Waite, J. H., X. X. Qin, et al. (1998). “The peculiar collagens of mussel byssus”. Matrix Biology 17(2): 93–106.

    Article  Google Scholar 

  • Weiner, S. and H. D. Wagner (1998). “The material bone: Structure mechanical function relations”. Annual Review of Materials Science 28: 271–298.

    Article  Google Scholar 

  • Wilson, E. E., A. Awonusi, et al. (2006). “Three structural roles for water in bone observed by solid-state NMR”. Biophysical Journal 90(10): 3722–3731.

    Article  Google Scholar 

  • Winey, K. I., Vaia R.A., (2007). “Polymer nanocomposites”. MRS Bulletin 32(4): 5.

    Google Scholar 

  • Wolf, D., V. Yamakov, et al. (2003). “Deformation mechanism and inverse Hall-Petch behavior in nanocrystalline materials”. Zeitschrift Fur Metallkunde 94: 1052–1061.

    Google Scholar 

  • Yip, S. (1998). “The strongest size”. Nature 391: 532–533.

    Article  Google Scholar 

  • Zervakis, M., V. Gkoumplias, et al. (2005). “Analysis of fibrous proteins from electron microscopy images”. Medical Engineering & Physics 27(8): 655–667.

    Article  Google Scholar 

  • Zhao, X. J. and S. G. Zhang (2006). “Molecular designer self-assembling peptides”. Chemical Society Reviews 35(11): 1105–1110.

    Article  MathSciNet  Google Scholar 

  • Zhao, X. J. and S. G. Zhang (2007). “Designer self-assembling peptide materials”. Macromolecular Bioscience 7(1): 13–22.

    Article  Google Scholar 

  • Zhu, W. H. and P. Wu (2004). “Surface energetics of hydroxyapatite: a DFT study”. Chemical Physics Letters 396(1–3): 38–42.

    Article  Google Scholar 

  • Zimmerman, J. A., E. B. Webb, et al. (2004). “Calculation of stress in atomistic simulation”. Modelling and Simulation in Materials Science and Engineering 12: S319–S332.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Buehler, M. (2008). Hierarchical Nanomechanics of Collagen Fibrils: Atomistic and Molecular Modeling. In: Fratzl, P. (eds) Collagen. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73906-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73906-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73905-2

  • Online ISBN: 978-0-387-73906-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics