Skip to main content

Aurora Kinases and Their Inhibitors: More Than One Target and One Drug

  • Chapter
Book cover Targeted Therapies in Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 610))

Dependent on the degree of inhibition of different Aurora kinase family members, various events in mitosis are affected, resulting in differential cellular responses. These different cellular responses have to be considered in the clinical development of the small molecule inhibitors with respect to the chosen indications, schedules and appropriate endpoints. Here the properties of the most advanced small molecule Aurora kinase inhibitors are compared and a case report on the development of PHA-739358 — a spectrum selective kinases inhibitor with a dominant phenotype of Aurora kinases inhibition, which is currently being tested in clinical trials — is discussed. One of the selection criteria for this compound was its property of inhibiting more than one cancer relevant target, such as Abl wild-type and the multidrug resistant Abl T315I mutant. This opens another path for clinical development in CML, and clinical trials are underway to evaluate the activity in patients suffering from chronic myelogenous leukemia, who developed resistance to currently approved treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bischoff, J. R.; Anderson, L.; Zhu, Y.; Mossie, K.; Ng, L.; Souza, B.; Schryver, B.; Flanagan, P.; Clairvoyant, F.; Ginther, C.; Chan, C. S.; Novotny, M.; Slamon, D. J., and Plowman, G. D. (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 17, 3052–3065.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, J. D. and Schumacher, J. M. (2002) Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the Aurora B Kinase stimulates Aurora B kinase activity. J. Biol. Chem. 277, 27577–27580.

    Article  PubMed  CAS  Google Scholar 

  • Bongarzone, I.; Vigneri, P.; Mariani, L.; Collini, P.; Pilotti, S., and Pierotti, M. A. (1998) RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin. Cancer Res. 4, 223–228.

    PubMed  CAS  Google Scholar 

  • Briassouli, P.; Chan, F.; Savage, K.; Reis-Filho, J. S., and Linardopoulos S. (2007) Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res. 67, 1689–95.

    Article  PubMed  CAS  Google Scholar 

  • Carlomagno, F.; Salvatore, D.; Santoro, M.; de, Franciscis, V.; Quadro, L.; Panariello, L.; Colantuoni, V., and Fusco, A. (1995) Point mutation of the RET proto-oncogene in the TT human medullary thyroid carcinoma cell line. Biochem. Biophys. Res. Commun. 207, 1022–1028.

    Article  PubMed  CAS  Google Scholar 

  • Carmena, M. and Earnshaw, W. C. (2003) The cellular geography of aurora kinases. Nat. Rev. Mol. Cell Biol. 4, 842–854.

    Article  PubMed  CAS  Google Scholar 

  • Carvajal, R. D.; Tse, A., and Schwartz, G. K. (2006) Aurora kinases: new targets for cancer therapy. Clin. Cancer Res. 12, 6869–6875.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson, B.; Strife, A.; Wisniewski, D.; Lambek, C. L., and Liu, C. (2003) Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 17, 1211–1262.

    Article  PubMed  CAS  Google Scholar 

  • Crosio, C.; Fimia, G. M.; Loury, R.; Kimura, M.; Okano, Y.; Zhou, H.; Sen, S.; Allis, C. D., and Sassone-Corsi, P. (2002) Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell Biol. 22, 874–885.

    Article  PubMed  CAS  Google Scholar 

  • DiCioccio, R. A.; Song, H.; Waterfall, C.; Kimura, M. T.; Nagase, H.; McGuire, V.; Hogdall, E.; Shah, M. N.; Luben, R. N.; Easton, D. F.; Jacobs, I. J.; Ponder, B. A. J.; Whittemore, A. S.; Gayther, S. A.; Pharoah, P. D. P., and Kruger-Kjaer, S. (2004) STK15 Polymorphisms and Association with Risk of Invasive Ovarian Cancer. Cancer Epidemiology Biomarkers & Prevention13, 1589–1594.

    CAS  Google Scholar 

  • Dionne, C. A.; Camoratto, A. M.; Jani, J. P.; Emerson, E.; Neff, N.; Vaught, J. L.; Murakata, C.; Djakiew, D.; Lamb, J.; Bova, S.; George, D., and Isaacs, J. T. (1998) Cell cycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin. Cancer Res. 4, 1887–1898.

    PubMed  CAS  Google Scholar 

  • Ditchfield, C.; Johnson, V. L.; Tighe, A.; Ellston, R.; Haworth, C.; Johnson, T.; Mortlock, A.; Keen, N., and Taylor, S. S. (2003) Aurora-B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161, 267–280.

    Article  PubMed  CAS  Google Scholar 

  • Drews, J. (2006) Case histories, magic bullets and the state of drug discovery. Nat. Rev. Drug Discov. 5, 635–640.

    Article  PubMed  CAS  Google Scholar 

  • Egan, K. M.; Newcomb, P. A.; Ambrosone, C. B.; Trentham-Dietz, A.; Titus-Ernstoff, L.; Hampton, J. M.; Kimura, M. T., and Nagase, H. (2004) STK15 polymorphism and breast cancer risk in a population-based study. Carcinogenesis 25, 2149–2153.

    Article  PubMed  CAS  Google Scholar 

  • el-Deiry, W. S.; Harper, J. W.; O’Connor, P. M.; Velculescu, V. E.; Canman, C. E.; Jackman, J.; Pietenpol, J. A.; Burrell, M.; Hill, D. E.; Wang, Y.;Widman, K.;G. Mercer, W.;E. Kastan, M. B.; Kohn, K. W.; Elledge, S. J.; Kinzler, K. W., and Vogelstein, B. (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54, 1169–1174.

    PubMed  CAS  Google Scholar 

  • Fancelli, D. and Moll, J. (2005) Inhibitors of Aurora kinases for the treatment of cancer. Expert Opinion on Therapeutic Patents 15, 1169–1182.

    Article  CAS  Google Scholar 

  • Fancelli, D.; Moll, J.; Varasi, M.; Bravo, R.; Artico, R.; Berta, D.; Bindi, S.; Cameron, A.; Candiani, I.; Cappella, P.; Carpinelli, P.; Croci, W.; Forte, B.; Giorgini, M. L.; Klapwijk, J.; Marsiglio, A.; Pesenti, E.; Rocchetti, M.; Roletto, F.; Severino, D.; Soncini, C.; Storici, P.; Tonani, R.; Zugnoni, P., and Vianello, P. (2006) 1,4,5,6-tetrahydropyrrolo-[3,4c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J. Med. Chem. 49, 7247–7251.

    Article  PubMed  CAS  Google Scholar 

  • Galvin, K. M.; Huck, J.; Burenkova, O.; Burke, K.; Bowman, D.; Shinde, V.; Stringer, B.; Zhang, M.; Manfredi, M., and Meetze, K. (2006) Preclinical pharmacodynamic studies of Aurora-A inhibition by MLN8054. Journal of Clinical Oncology, ASCO Annual Meeting Proceedings (June 20 Supplement), 24, 13059.

    Google Scholar 

  • Gassmann, R.; Carvalho, A.; Henzing, A. J.; Ruchaud, S.; Hudson, D. F.; Honda, R.; Nigg, E. A.; Gerloff, D. L., and Earnshaw, W. C. (2004) Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J. Cell Biol. 166, 179–191.

    Article  PubMed  CAS  Google Scholar 

  • Giles, F. J.; Cortes, J.; Jones, D.; Bergstrom, D.; Kantarjian, H., and Freedman, S. J. (2007) MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 109, 500–502.

    Article  PubMed  CAS  Google Scholar 

  • Girdler, F.; Gascoigne, K. E.; Eyers, P. A.; Hartmuth, S.; Crafter, C.; Foote, K. M.; Keen, N. J., and Taylor, S. S. (2006) Validating Aurora-B as an anticancer drug target. J. Cell Sci. 119, 3664–3675.

    Article  PubMed  CAS  Google Scholar 

  • Glover, D. M.; Leibowitz, M. H.; McLean, D. A., and Parry, H. (1995) Mutations in Aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Goto, H.; Yasui, Y.; Kawajiri, A.; Nigg, E. A.; Terada, Y.; Tatsuka, M.; Nagata, K., and Inagaki, M. (2003) Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J. Biol. Chem. 278, 8526–8530.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, N. M.; DeMayo, F.; Finegold, M. J.; Medina, D.; Tilley, W. D.; Aspinall, J. O.; Cunha, G. R.; Donjacour, A. A.; Matusik, R. J., and Rosen, J. M. (1995) Prostate cancer in a transgenic mouse. Proc. Natl. Acad. Sci. U.S.A 92, 3439–3443.

    Article  PubMed  CAS  Google Scholar 

  • Gritsko, T. M.; Coppola, D.; Paciga, J. E.; Yang, L.; Sun, M.; Shelley, S. A.; Fiorica, J. V.; Nicosia, S. V., and Cheng, J. Q. (2003) Activation and over-expression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin. Cancer Res. 9, 1420–1426.

    PubMed  CAS  Google Scholar 

  • Hampton, T. (2007) New blood cancer therapies under study. JAMA 297, 457–458.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, E. A.; Bebbington, D.; Moore, J.; Rasmussen, R. K.; Jose-Adeogun, A. O.; Nakayama, T.; Graham, J. A.; Demur, C.; Hercend, T.; Diu-Hercend, A.; Su, M.; Golec, J. M., and Miller, K. M. (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med. 10, 262–267.

    Article  PubMed  CAS  Google Scholar 

  • Hauf, S.; Cole, R. W.; LaTerra, S.; Zimmer, C.; Schnapp, G.; Walter, R.; Heckel, A.; van, Meel J.; Rieder, C. L., and Peters, J. M. (2003) The small molecule Hesperadin reveals a role for Aurora-B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, J. R.; Patrick, D. R.; Dar, M. M., and Huang, P. S. (2007) Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer 7, 107–117.

    Article  PubMed  CAS  Google Scholar 

  • Jeng, Y. M.; Peng, S. Y.; Lin, C. Y., and Hsu, H. C. (2004) Over-expression and amplification of Aurora-A in hepatocellular carcinoma. Clin. Cancer Res. 10, 2065–2071.

    Article  PubMed  CAS  Google Scholar 

  • Ju, H.; Cho, H.; Kim, Y. S.; Kim, W. H.; Ihm, C.; Noh, S. M.; Kim, J. B.; Hahn, D. S.; Choi, B. Y., and Kang, C. (2006) Functional polymorphism 57Val>Ile of aurora kinase A associated with increased risk of gastric cancer progression. Cancer Lett. 242, 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Kantarjian, H.; Giles, F.; Wunderle, L.; Bhalla, K.; O’Brien, S.; Wassmann, B.; Tanaka, C.; Manley, P.; Rae, P.; Mietlowski, W.; Bochinski, K.; Hochhaus, A.; Griffin, J. D.; Hoelzer, D.; Albitar, M.; Dugan, M.; Cortes, J.; Alland, L., and Ottmann, O. G. (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N. Engl. J. Med. 354, 2542–2551.

    Article  PubMed  Google Scholar 

  • Katayama, H.; Sasai, K.; Kawai, H.; Yuan, Z. M.; Bondaruk, J.; Suzuki, F.; Fujii, S.; Arlinghaus, R. B.; Czerniak, B. A., and Sen, S. (2004) Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat. Genet. 36, 55–62.

    Article  PubMed  CAS  Google Scholar 

  • Kawajiri, A.; Yasui, Y.; Goto, H.; Tatsuka, M.; Takahashi, M.; Nagata, K., and Inagaki, M. (2003) Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol. Biol. Cell 14, 1489–1500.

    Article  PubMed  CAS  Google Scholar 

  • Kling, J. (2006) Moving diagnostics from the bench to the bedside. Nat. Biotechnol. 24, 891–893.

    Article  PubMed  CAS  Google Scholar 

  • Lanni, J. S. and Jacks, T. (1998) Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell Biol. 18, 1055–1064.

    PubMed  CAS  Google Scholar 

  • Lee, C. Y.; Andersen, R. O.; Cabernard, C.; Manning, L.; Tran, K. D.; Lanskey, M. J.; Bashirullah, A., and Doe, C. Q. (2006) Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev. 20, 3464–3474.

    Article  PubMed  CAS  Google Scholar 

  • Li, D.; Zhu, J.; Firozi, P. F.; Abbruzzese, J. L.; Evans, D. B.; Cleary, K.; Friess, H., and Sen, S. (2003) Over-expression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin. Cancer Res. 9, 991–997.

    PubMed  CAS  Google Scholar 

  • Li, J. J. and Li, S. A. (2006) Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol. Ther. 111, 974–984.

    Article  PubMed  CAS  Google Scholar 

  • Li, X.; Sakashita, G.; Matsuzaki, H.; Sugimoto, K.; Kimura, K.; Hanaoka, F.; Taniguchi, H.; Furukawa, K., and Urano, T. (2004) Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C. J. Biol. Chem. 279, 47201–47211.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q.; Kaneko, S.; Yang, L.; Feldman, R. I.; Nicosia, S. V.; Chen, J., and Cheng, J. Q. (2004) Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J. Biol. Chem. 279, 52175–52182.

    Article  PubMed  CAS  Google Scholar 

  • Manfredi, M. G.; Ecsedy, J. A.; Meetze, K. A.; Balani, S. K. Burenkova, O.; Chen, W.; Galvin, K. M.; Hoar, K. M.; Huck, J. J.; Leroy, P. J.; Ray, E. T.; Sells, T. B.; Stringer, B.; Stroud, S. G.; Vos T. J.; Weatherhead, G. S.; Wysong, D. R.; Zhang, M.; Bolen, J. B., and Claiborne, C. F. (2007) Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora-A kinase. Proc Natl Acad Sci U S A. 104, 4106–4111.

    Article  PubMed  CAS  Google Scholar 

  • Mao, J. H.; Wu, D.; Perez-Losada, J.; Jiang, T.; Li, Q.; Neve, R. M.; Gray, J. W.; Cai, W. W., and Balmain, A. (2007) Crosstalk between Aurora-A and p53: Frequent Deletion or Down-regulation of Aurora-A in Tumors from p53 Null Mice. Cancer Cell 11, 161–173.

    Article  PubMed  CAS  Google Scholar 

  • Marumoto, T.; Honda, S.; Hara, T.; Nitta, M.; Hirota, T.; Kohmura, E., and Saya, H. (2003) Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J. Biol. Chem. 278, 51786–51795.

    Article  PubMed  CAS  Google Scholar 

  • Maurer, J.; Janssen, J. W.; Thiel, E.; van, Denderen J.; Ludwig, W. D.; Aydemir, U.; Heinze, B.; Fonatsch, C.; Harbott, J., and Reiter, A. (1991) Detection of chimeric BCR- ABL genes in acute lymphoblastic leukaemia by the polymerase chain reaction. Lancet 337, 1055–1058.

    Article  PubMed  CAS  Google Scholar 

  • Miao, X.; Sun, T.; Wang, Y.; Zhang, X.; Tan, W., and Lin, D. (2004) Functional STK15 Phe31Ile polymorphism is associated with the occurrence and advanced disease status of esophageal squamous cell carcinoma. Cancer Res. 64, 2680–2683.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, C. J.; Tighe, A.; Johnson, V. L.; Scott, M. I.; Ditchfield, C., and Taylor, S. S. (2005) Bub1 and Aurora-B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J. Cell Sci. 118, 3639–3652.

    Article  PubMed  CAS  Google Scholar 

  • Murata-Hori, M.; Fumoto, K.; Fukuta, Y.; Iwasaki, T.; Kikuchi, A.; Tatsuka, M., and Hosoya, H. (2000) Myosin II regulatory light chain as a novel substrate for AIM-1, an aurora/Ipl1p-related kinase from rat. J. Biochem. (Tokyo) 128, 903–907.

    PubMed  CAS  Google Scholar 

  • Neben, K.; Korshunov, A.; Benner, A.; Wrobel, G.; Hahn, M.; Kokocinski, F.; Golanov, A.; Joos, S., and Lichter, P. (2004) Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res. 64, 3103–3111.

    Article  PubMed  CAS  Google Scholar 

  • Sakakura, C.; Hagiwara, A.; Yasuoka, R.; Fujita, Y.; Nakanishi, M.; Masuda, K.; Shimomura, K.; Nakamura, Y.; Inazawa, J.; Abe, T., and Yamagishi, H. (2001) Tumor-amplified kinase BTAK is amplified and over-expressed in gastric cancers with possible involvement in aneuploid formation. Br. J. Cancer 84, 824–831.

    Article  PubMed  CAS  Google Scholar 

  • Sasai, K.; Katayama, H.; Stenoien, D. L.; Fujii, S.; Honda, R.; Kimura, M.; Okano, Y.; Tatsuka, M.; Suzuki, F.; Nigg, E. A.; Earnshaw, W. C.; Brinkley, W. R., and Sen, S. (2004) Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil. Cytoskeleton 59, 249–263.

    Article  PubMed  CAS  Google Scholar 

  • Sasayama, T.; Marumoto, T.; Kunitoku, N.; Zhang, D.; Tamaki, N.; Kohmura, E.; Saya, H., and Hirota, T. (2005) Over-expression of Aurora-A targets cytoplasmic polyadenylation element binding protein and promotes mRNA polyadenylation of Cdk1 and cyclin B1. Genes Cells 10, 627–638.

    Article  PubMed  CAS  Google Scholar 

  • Schellens, J. H.; Boss, D.; Witteveen, P. O. Zandvliet, A.; Beijnen, J. H. Voogel-Fuchs, M. Morris, C. Wilson, D., and Voest, E. E. (2006) Phase I and pharmacological study of the novel Aurora kinase inhibitor AZD1152. Journal of Clinical Oncology, ASCO Annual Meeting Proceedings (June 20 Supplement), 24, 3008.

    Google Scholar 

  • Sen, S.; Zhou, H., and White, R. A. (1997) A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and over-expressed in human breast cancer cell lines. Oncogene 14, 2195–2200.

    Article  PubMed  CAS  Google Scholar 

  • Simeoni, M.; Magni, P.; Cammia, C.; De, Nicolao G.; Croci, V.; Pesenti, E.; Germani, M.; Poggesi, I., and Rocchetti, M. (2004) Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 64, 1094–1101.

    Article  PubMed  CAS  Google Scholar 

  • Sjoblom, T.; Jones, S.; Wood, L. D.; Parsons, D. W.; Lin, J.; Barber, T. D.; Mandelker, D.; Leary, R. J.; Ptak, J.; Silliman, N.; Szabo, S.; Buckhaults, P.; Farrell, C.; Meeh, P.; Markowitz, S. D.; Willis, J.; Dawson, D.; Willson, J. K.; Gazdar, A. F.; Hartigan, J.; Wu, L.; Liu, C.; Parmigiani, G.; Park, B. H.; Bachman, K. E.; Papadopoulos, N.; Vogelstein, B.; Kinzler, K. W., and Velculescu, V. E. (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274.

    Article  PubMed  Google Scholar 

  • Sun, C.; Chan, F.; Briassouli, P., and Linardopoulos, S. (2007) Aurora kinase inhibition down-regulates NF-kappaB and sensitizes tumor cells to chemotherapeutic agents. Biochem. Biophys. Res. Commun. 352, 220–225.

    Article  PubMed  CAS  Google Scholar 

  • Talpaz, M.; Shah, N. P.; Kantarjian, H.; Donato, N.; Nicoll, J.; Paquette, R.; Cortes, J.; O’Brien, S.; Nicaise, C.; Bleickardt, E.; Blackwood-Chirchir, M. A.; Iyer, V.; Chen, T. T.; Huang, F.; Decillis, A. P., and Sawyers, C. L. (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 354, 2531–2541.

    Article  PubMed  CAS  Google Scholar 

  • Tang, C. J.; Lin, C. Y., and Tang, T. K. (2006) Dynamic localization and functional implications of Aurora-C kinase during male mouse meiosis. Dev. Biol. 290, 398–410.

    Article  PubMed  CAS  Google Scholar 

  • Tatsuka, M.; Katayama, H.; Ota, T.; Tanaka, T.; Odashima, S.; Suzuki, F., and Terada, Y. (1998) Multinuclearity and increased ploidy caused by over-expression of the Aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res. 58, 4811–4816.

    PubMed  CAS  Google Scholar 

  • Wang, H.; Somers, G. W.; Bashirullah, A.; Heberlein, U.; Yu, F.; and Chia, W. (2006) Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev. 20, 3453–3463.

    Article  PubMed  CAS  Google Scholar 

  • Wheatley, S. P.; Henzing, A. J.; Dodson, H.; Khaled, W., and Earnshaw, W. C. (2004) Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J. Biol. Chem. 279, 5655–5660.

    Article  PubMed  CAS  Google Scholar 

  • Young, M. A.; Shah, N. P.; Chao, L. H.; Seeliger, M.; Milanov, Z. V.; Biggs, W. H., III; Treiber, D. K.; Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J.; Sawyers, C. L., and Kuriyan, J. (2006) Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680. Cancer Res. 66, 1007–1014.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H.; Kuang, J.; Zhong, L.; Kuo, W. L.; Gray, J. W.; Sahin, A.; Brinkley, B. R., and Sen, S. (1998) Tumor amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet. 20, 189–193.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Carpinelli, P., Moll, J. (2008). Aurora Kinases and Their Inhibitors: More Than One Target and One Drug. In: Colotta, F., Mantovani, A. (eds) Targeted Therapies in Cancer. Advances in Experimental Medicine and Biology, vol 610. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73898-7_5

Download citation

Publish with us

Policies and ethics