Skip to main content

Functional Nucleic Acid Sensors as Screening Tools

  • Chapter
  • 1404 Accesses

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Functional nucleic acids such as aptamers and allosteric ribozymes can sense their ligands specifically, thereby undergoing structural alterations that can be converted into a detectable signal. The direct coupling of molecular recognition to signal generation in real time allows the generation of versatile reporters that can be applied in high-throughput screening (HTS). In the following chapter we describe different types of nucleic acids that have been applied successfully in screening approaches. We first refer to DNA and RNA aptamers, then consider allosteric ribozymes, and finally present examples of natural nucleic acids that were applied in screening assays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Owicki, J.C. (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J. Biomol. Screen. 5:297–306.

    Article  CAS  Google Scholar 

  2. Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.

    Article  CAS  Google Scholar 

  3. Robertson, D.L. and Joyce, G.F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature (Lond.) 344:467–468.

    Article  CAS  Google Scholar 

  4. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.

    Article  CAS  Google Scholar 

  5. Famulok, M. (2005) Allosteric aptamers and aptazymes as probes for screening approaches. Curr. Opin. Mol. Ther. 7:137–143.

    CAS  Google Scholar 

  6. Silverman, S.K. (2003) Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA 9:377–383.

    Article  CAS  Google Scholar 

  7. Roth, A. and Breaker, R.R. (2004) Selection in vitro of allosteric ribozymes. Methods Mol. Biol. 252:145–164.

    CAS  Google Scholar 

  8. Breaker, R.R. (2002) Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13:31–39.

    Article  CAS  Google Scholar 

  9. Winkler, W.C. and Breaker, R.R. (2003) Genetic control by metabolite-binding riboswitches. ChemBioChem 4:1024–1032.

    Article  CAS  Google Scholar 

  10. Barrick, J.E., Corbino, K.A., Winkler, W.C., Nahvi, A., Mandal, M., Collins, J., Lee, M., Roth, A., Sudarsan, N., Jona, I., Wickiser, J.K. and Breaker, R.R. (2004) New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA 101:6421–6426.

    Article  CAS  Google Scholar 

  11. Yang, Y., Kochoyan, M., Burgstaller, P., Westhof, E. and Famulok, M. (1996) Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science 272:1343–1347.

    Article  CAS  Google Scholar 

  12. Williamson, J.R. (2000) Induced fit in RNA–protein recognition. Nat. Struct. Biol. 7:834–837.

    Article  CAS  Google Scholar 

  13. Nutiu, R. and Li, Y. (2003) Structure-switching signaling aptamers. J. Am. Chem. Soc. 125:4771–4778.

    Article  CAS  Google Scholar 

  14. Nutiu, R., Yu, J.M.Y. and Li, Y. (2004) Signaling aptamers for monitoring enzymatic activity and for inhibitor screening. ChemBioChem 5:1139–1144.

    Article  CAS  Google Scholar 

  15. Elowe, N.H., Nutiu, R., Allali-Hassani, A., Cechetto, J.D., Hughes, D.W., Li, Y. and Brown, E.D. (2006) Small-molecule screening made simple for a difficult target with a signaling nucleic acid aptamer that reports on deaminase activity. Angew. Chem. Int. Ed. Engl. 45:5648–5652.

    Article  CAS  Google Scholar 

  16. Hafner, M., Schmitz, A., Grune, I., Srivatsan, S.G., Paul, B., Kolanus, W., Quast, T., Kremmer, E., Bauer, I. and Famulok, M. (2006) Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance. Nature (Lond.) 444:941–944.

    Article  CAS  Google Scholar 

  17. Tang, J. and Breaker, R.R. (1997) Rational design of allosteric ribozymes. Chem. Biol. 4:453–459.

    Article  CAS  Google Scholar 

  18. Najafi-Shoushtari, S.H., Mayer, G. and Famulok, M. (2004) Sensing complex regulatory networks by conformationally controlled hairpin ribozymes. Nucleic Acids Res. 32:3212–3219.

    Article  CAS  Google Scholar 

  19. Piganeau, N., Thuillier, V. and Famulok, M. (2001) In vitro selection of allosteric ribozymes: theory and experimental validation. J. Mol. Biol. 312:1177–1190.

    Article  CAS  Google Scholar 

  20. Piganeau, N., Jenne, A., Thuillier, V. and Famulok, M. (2001) An allosteric ribozyme regulated by doxycyline. Angew. Chem. Int. Ed. Engl. 40:3503.

    Article  Google Scholar 

  21. Koizumi, M., Soukup, G.A., Kerr, J.N. and Breaker, R.R. (1999) Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Biol. 6:1062–1071.

    Article  CAS  Google Scholar 

  22. Robertson, M.P. and Ellington, A.D. (2001) In vitro selection of nucleoprotein enzymes. Nat. Biotechnol. 19:650–655.

    Article  CAS  Google Scholar 

  23. Robertson, M.P., Knudsen, S.M. and Ellington, A.D. (2004) In vitro selection of ribozymes dependent on peptides for activity. RNA 10:114–127.

    Article  CAS  Google Scholar 

  24. Soukup, G.A. and Breaker, R.R. (1999) Engineering precision RNA molecular switches. Proc. Natl. Acad. Sci. USA 96:3584–3589.

    Article  CAS  Google Scholar 

  25. Srinivasan, J., Cload, S.T., Hamaguchi, N., Kurz, J., Keene, S., Kurz, M., Boomer, R.M., Blanchard, J., Epstein, D., Wilson, C. and Diener, J.L. (2004) ADP-specific sensors enable universal assay of protein kinase activity. Chem. Biol. 11:499–508.

    Article  CAS  Google Scholar 

  26. Hartig, J.S., Najafi-Shoushtari, S.H., Grune, I., Yan, A., Ellington, A.D. and Famulok, M. (2002) Protein-dependent ribozymes report molecular interactions in real time. Nat. Bio-technol. 20:717–722.

    Article  CAS  Google Scholar 

  27. Hartig, J.S. and Famulok, M. (2002) Reporter ribozymes for real-time analysis of domain-specific interactions in biomolecules: HIV-1 reverse transcriptase and the primer-template complex. Angew. Chem. Int. Ed. Engl. 41:4263–4266.

    Article  CAS  Google Scholar 

  28. Najafi-Shoushtari, S.H. and Famulok, M. (2007) DNA aptamer-mediated regulation of the hairpin ribozyme by human alpha-thrombin. Blood Cells Mol. Dis. 38:19–24.

    Article  CAS  Google Scholar 

  29. Winkler, W.C. (2005) Riboswitches and the role of noncoding RNAs in bacterial metabolic control. Curr. Opin. Chem. Biol. 9:594–602.

    Article  CAS  Google Scholar 

  30. Blount, K. and Breaker, R. (2006) Riboswitches as antibacterial drug targets. Nat. Biotechnol. 12:1558–1564.

    Article  Google Scholar 

  31. Mayer, G. and Famulok, M. (2006) High-throughput-compatible assay for glmS riboswitch metabolite dependence. ChemBioChem 7:602–604.

    Article  CAS  Google Scholar 

  32. Blount, K., Puskarz, I., Penchovsky, R. and Breaker, R. (2006) Development and application of a high-throughput assay for glmS riboswitch activators. RNA Biol. 3:77–81.

    CAS  Google Scholar 

  33. Sudarsan, N., Wickiser, J.K., Nakamura, S., Ebert, M.S. and Breaker, R.R. (2003) An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. 17:2688–2697.

    Article  CAS  Google Scholar 

  34. Sudarsan, N., Cohen-Chalamish, S., Nakamura, S., Emilsson, G.M. and Breaker, R.R. (2005) Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithia-mine. Chem. Biol. 12:1325–1335.

    Article  CAS  Google Scholar 

  35. Davies, B.P. and Arenz, C. (2006) A homogenous assay for micro RNA maturation. Angew. Chem. Int. Ed. Engl. 45:5550–5552.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the DFG, the SFBs 645 and 704 for grants to M.F., and the Austrian Academy of Sciences for a grant to A.R. and the members of the Famulok lab. This work was supported by Aventis Gencell and by a grant from the Volkswagen Foundation (Priority program “conformational control”) to M.F. We thank M. Blind, G. Mayer, D. Proske, and G. Sengle (Universitat Bonn) for helpful discussions as well as J. Crouzet, J.F. Mayaux, and M. Finer (Aventis Gencell) for support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rentmeister, A., Famulok, M. (2009). Functional Nucleic Acid Sensors as Screening Tools. In: Yingfu, L., Yi, L. (eds) Functional Nucleic Acids for Analytical Applications. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73711-9_13

Download citation

Publish with us

Policies and ethics