Skip to main content

Geochemical Kinetics and Transport

  • Chapter

The kinetics of geochemical and biogeochemical processes can be studied in isolation in the laboratory, but only rarely is it possible to separate these processes from those of transport when considering their importance in natural systems at the field scale. This is because the driving force for most reactions of interest in water—rock interaction is transport. The most intense geochemical and biogeochemical activity occurs at the interface between global compartments like the oceans, the atmosphere, and the Earth’s crust where elemental and nutrient fluxes provide the maximum driving force for reactions to take place. The important role of transport in these settings makes it critical to consider these time-dependent processes in conjunction with those processes we think of as more purely biogeochemical. In other words, these global interfaces are open systems, where both mass and energy transfers must be accounted for.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aris R. (1956) On the dispersion of a solute in a fluid flowing through a tube. Proceedings of the Royal Society London Series A 235, 67-77.

    Article  Google Scholar 

  • Bahr J. M. and Rubin J. (1987) Direct comparison of kinetic and local equilibrium formulations for solute transport affected by surface reactions. Water Resources Research 23(3), 438-452.

    Article  Google Scholar 

  • Bear J. (1972) Dynamics of Fluids in Porous Media. Dover Publications, Inc., NY.

    Google Scholar 

  • Berner R. A. (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press, NJ.

    Google Scholar 

  • Bethke C. M. and Johnson T. M. (2002) Paradox of groundwater age. Geology 30(2), 107-110.

    Article  Google Scholar 

  • Boudreau B. P. (1997) Diagenetic Models and Their Implementation. SpringerVerlag, Heidelberg NY.

    Google Scholar 

  • Boyce W. E. and DiPrima R. C. (1986) Elementary Differential Equations and Boundary Value Problems. John Wiley & Sons, NY.

    Google Scholar 

  • Dagan G. (1988) Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resources Research 24, 1491-1500.

    Article  Google Scholar 

  • Dagan G. (1989) Flow and transport in porous formations. Springer-Verlag, Heidelberg NY.

    Google Scholar 

  • Darcy H. (1856) Les fontaines publiques de la ville de Dijon. Dalmont, Paris.

    Google Scholar 

  • Daugherty R. L. and Franzini J. B. (1965) Fluid Mechanics with Engineering Applications. McGraw-Hill, NY.

    Google Scholar 

  • Denbigh K. (1981) The Principles of Chemical Equilibrium. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gelhar L. W. (1986) Stochastic subsurface hydrology from theory to applications. Water Resources Research 22, 135S-145S.

    Article  Google Scholar 

  • Gelhar L. W. (1993) Stochastic Subsurface Hydrology. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Gelhar L. W. and Axness C. L. (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resources Research 19(1), 161-180.

    Article  Google Scholar 

  • Gelhar L. W., Welty C., and Rehfeldt K. R. (1992) A critical-review of data on field-scale dispersion in aquifers. Water Resources Research 28(7), 1955-1974.

    Article  Google Scholar 

  • Haggerty R., Schroth M. H., and Istok J. D. (1998) Simplified method of “PushPull” test data analysis for determining in situ reaction rate coefficients. Ground Water 36(2), 314-324.

    Article  Google Scholar 

  • Harvey C. and Gorelick S. M. (2000) Rate-limited mass transfer or macrodispersion: Which dominates plume evolution at the macrodispersion experiment (MADE) site? Water Resources Research 36(3), 637-650.

    Article  Google Scholar 

  • Jamtveit B. and Meakin P. (1999) Growth, Dissolution and Pattern Formation in Geosystems, pp. 428. Springer, Berlin.

    Google Scholar 

  • Lasaga A. C. (1998) Kinetic Theory in the Earth Sciences. Princeton University Press, NJ.

    Google Scholar 

  • Li L., Peters C. A., and Celia M. A. (2006) Upscaling geochemical reaction rates using pore-scale network modeling. Advances in Water Resources 29(9), 1351-1370.

    Article  Google Scholar 

  • Lichtner P. C. (1988) The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium. Geochimica Cosmochimica Acta 52(1), 143-165.

    Article  Google Scholar 

  • Lichtner P. C. (1993) Scaling properties of time-space kinetic mass transport equations and the local equilibrium limit. American Journal of Science 293(4), 257-296.

    Google Scholar 

  • Lichtner P. C. (1996) Continuum formulation of multicomponent-multiphase reactive transport. In Reactive transport in porous media, Vol. 34 (eds. P. C. Lichtner, C. I. Steefel, and E. H. Oelkers), pp. 1-81. Mineralogical society of America, Washington DC.

    Google Scholar 

  • Lichtner P. C. (1998) Modeling reactive flow and transport in natural systems. Proceedings of the Rome Seminar on Environmental Geochemistry, 5-72.

    Google Scholar 

  • Liesegang R. E. (1896) Naturwiss. Wonchenschr. 11, 353.

    Google Scholar 

  • Maher K., Steefel C. I., DePaolo D. J., and Viani B. E. (2006) The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. Geochimica et Cosmochimica Acta 70 (2),337-363.

    Article  Google Scholar 

  • Malmstr öm M. E., Destouni G., Banwart S. A., and Str ömberg B. H. E. (2000) Resolving the scale-dependence of mineral weathering rates. Environmental Science Technology 34(7), 1375-1378.

    Article  Google Scholar 

  • Meile C. and Tuncay K. (2006) Scale dependence of reaction rates in porous media. Advances in Water Resources 29(1), 62-71.

    Article  Google Scholar 

  • Murphy W. M., Oelkers E. H., and Lichtner P. C. (1989) Surface reaction versus diffusion control of mineral dissolution and growth rates in geochemical processes. Chemical Geology 78, 357-380.

    Article  Google Scholar 

  • Newman J. S. (1991) Electrochemical Systems. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Oelkers E. A. (1996) Physical and chemical properties of rocks and fluids for chemical mass transport calculations. In Reactive Transport in Porous Media, Vol. 34 (eds. P. C. Lichtner, C. I. Steefel, and E. H. Oelkers), pp. 131-191. Mineralogical Society of America, Washington DC.

    Google Scholar 

  • Oelkers E. H., Schott J., and Devidal J.-L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochimica et Cosmochimica Acta 58(9), 2011-2024.

    Article  Google Scholar 

  • Ogata A. and Banks R. B. (1961) A solution of the differential equation of logitudinal dispersion in porous media. In U.S. Geological Survey Professional Paper, 411-A.

    Google Scholar 

  • Onsager L. (1931) Reciprocal relations in irreversible processes II. Physical Review 38,2265-2279.

    Article  Google Scholar 

  • Ortoleva P. (1994) Geochemical Self-Organization. Oxford University Press, NY.

    Google Scholar 

  • Ortoleva P., Auchmuth G., Chadam J., Hettmer H., Merino E., Moore C. H., and Ripley E. (1986) Redox front propagation and banding modalities. Physica 19D, 334-354.

    Google Scholar 

  • Ortoleva P., Chadam J., Merino E., and Sen A. (1987) Geochemical self-organization II: The reactive-infiltration instability. American Journal of Science 287,1008-1040.

    Google Scholar 

  • Pharmamenko E. I. (1967) Electrical Properties of Rock. Plenum Press, NY.

    Google Scholar 

  • Phillips O. M. (1991) Flow and Reactions in Permeable Rocks. Cambridge University Press, Cambridge.

    Google Scholar 

  • Plummer L. N., Busenberg E., Bohlke J. K., Nelms D. L., Michel R. L., and Schlosser P. (2001) Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, VA: A multi-tracer approach. Chemical Geology 179, 93-111.

    Article  Google Scholar 

  • Pokrovsky O. S., Golubev S. V., and Schott J. (2005) Dissolution kinetics of calcite, dolomite and magnesite at 25 C and 0 to 50 atm pCO2 . Chemical Geology 217(3-4),239-255.

    Article  Google Scholar 

  • Prigogine I. (1967) Introduction to the thermodynamics of irreversible processes. Interscience.

    Google Scholar 

  • Sak P. B., Fischer, D. M., Gardner T. W., Gardener, T., Murphy, K., M., and Brantley, S. L. (2004) Rates of weathering rind formation on Costa Rican basalt. Geochimica et Cosmochimica Acta 68(7), 1453-1472.

    Article  Google Scholar 

  • Skagius K. and Neretnieks I. (1986) Diffusivity measurements and electricalresistivity measurements in rock samples under mechanical stress. Water Resources Research 22(4), 570-580.

    Article  Google Scholar 

  • Slichter C. S. (1905) Field measurement of the rate of movement of underground waters. In U.S. Geological Survey, Water Supply Paper.

    Google Scholar 

  • Snodgrass M. F. and Kitanidis P. K. (1998) A method to infer in-situ reaction rates from push-pull experiments. Ground Water 36, 645-650.

    Article  Google Scholar 

  • Steefel C. I., DePaolo D. J., and Lichtner P. C. (2005) Reactive transport modeling: An essential tool and a new research approach for the Earth Sciences. Earth and Planetary Science Letters 240, 539-558.

    Article  Google Scholar 

  • Steefel C. I. and Lasaga A. C. (1990) The evolution of dissolution patterns: Permeability change due to coupled flow and reaction. In Chemical Modeling of Aqueous Systems II, Vol. 416 (eds. D. Melchior and R. L. Bassett), pp. 212-225. American Chemical Society, Washington.

    Chapter  Google Scholar 

  • Steefel C. I. and Lasaga A. C. (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. American Journal of Science 294, 529-592.

    Google Scholar 

  • Steefel C. I. and Lichtner P. C. (1998) Multicomponent reactive transport in discrete fractures: II. Infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site. Journal of Hydrology 209(1-4), 200-224.

    Article  Google Scholar 

  • Steefel C. I. and MacQuarrie K. T. B. (1996) Approaches to modeling of reactive transport in porous media. In Reactive Transport in Porous Media, Vol. 34 (eds. P. C. Lichtner, C. I. Steefel, and E. H. Oelkers), pp. 83-130. Mineralogical Society of America, Washington DC.

    Google Scholar 

  • Steefel C. I. and Van Cappellen P. (1990) A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening. Geochimica et Cosmochimica Acta 54(10), 2657-2677.

    Article  Google Scholar 

  • Taylor G. I. (1953) The dispersion of soluble matter in a solvent flowing through a tube. Proceedings of the Royal Society London Series A 219, 196-203.

    Article  Google Scholar 

  • Tompson A. F. B., Carle S. F., Rosenberg N. D., and Maxwell R. M. (1999) Analysis of groundwater migration from artificial recharge in a large urban aquifer: A simulation perspective. Water Resources Research 35(10), 2981-2998.

    Article  Google Scholar 

  • Varni M. and Carrera J. (1998) Simulation of groundwater age distributions. Water Resources Research 34, 3271-3281.

    Article  Google Scholar 

  • Weissmann G. S., Zhang Y., LaBolle E. M., and Fogg G. E. (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resources Research 38(10), 1198.

    Article  Google Scholar 

  • White A. F. and Brantley S. L. (2003) The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? Chem. Geol. 202 (3-4), 479-506.

    Article  Google Scholar 

  • White A. F., Schulz M. S., Vivit D. V., Blum A. E., and Stonestrom D. A. (2006) Controls on soil pore water solutes: An approach for distinguishing between biogenic and lithogenic processes. Journal of Geochemical Exploration 88(1-3), 363-366.

    Article  Google Scholar 

  • Zhu C. (2005) In situ feldspar dissolution rates in an aquifer. Geochimica et Cosmochimica Acta 69(6), 1435-1453.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Steefel, C. (2008). Geochemical Kinetics and Transport. In: Brantley, S., Kubicki, J., White, A. (eds) Kinetics of Water-Rock Interaction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73563-4_11

Download citation

Publish with us

Policies and ethics