Skip to main content

Quantitative Approaches to Characterizing Natural Chemical Weathering Rates

  • Chapter

Silicate minerals, constituting more than 90% of the rocks exposed at the earth’s surface, are commonly formed under temperature and pressure conditions that make them inherently unstable in surficial environments. Undoubtedly, the most significant aspect of chemical weathering resulting from this instability is the formation of soils which makes life possible on the surface of the earth. Many soil macronutrients in this “critical zone” are directly related to the rate at which primary minerals weather (Huntington, 1995; Chadwick et al., 2003). Chemical weathering also creates economically significant ore deposits, such as those for Al and U (Samma, 1986; Misra, 2000), as well as potentially releasing high concentrations of toxic trace elements such as Se and As (Frankenberger and Benson, 1994). Silicate weathering is a significant buffer to acidification caused by atmospheric deposition (Driscoll et al., 1989) and from land use practices (Farley and Werritty, 1989). Atmospheric CO2 levels have been primarily controlled by the balance between silicate weathering and the rate of volcanic inputs from the Earth’s interior, a relationship which may explain long-term climate stability (Ruddiman, 1997)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre A., Meunier J. D., Colin F., and Koud J. M. (1997) Plant impact on the biogeochemical cycle of silcon and related weathering processes. Geochim. Cosmochim. Acta 61, 677-682.

    Google Scholar 

  • Allegre C. J., Hart S. R., and Minster J. F. (1983) Chemical structure and evolution of the mantle continents determined by inversion of Nd and Sr isotopes 1. Theoretical methods. Earth Planet. Sci. Lett. 66, 177-190.

    Google Scholar 

  • Anderson S. P., Drever J. I., and Humphrey N. F. (1997) Chemical weathering in glacial enviroments. Geology 25, 399-402.

    Google Scholar 

  • April R., Newton R., and Coles L. T. (1986) Chemical weathering in two Adiron-dack watersheds: past and present-day rates. Geol. Soc. Amer. Bult. 97, 1232-1238.

    Google Scholar 

  • April R. and Keller D. (1993) Mineralogy of the rhizosphere in forest soils of the eastern United States. Biogeochemistry 9, 1-18.

    Google Scholar 

  • Bandstra J., Buss H., Moore J., Hausrath E., Liermann L., Navarre A., Jang J., and Brantley S. (2007) Fitting kinetic data for geochemical reactions. In Kinetics of Geochemical Systems (ed. S. F. Brantley, J. Kubiciki, and A. F. White). Springer Publishing, New York.

    Google Scholar 

  • Banfield J. F. and Barker W. W. (1994) Direct observation of reactant-product inter-faces formed in natural weathering of exsolved, defective amphibole to smectite: evidence for episodic, isovolumetric reactions involving structural inheritance. Geochim. Cosmochim. Acta 58, 1419-1429.

    Google Scholar 

  • Banfield J. F. and Nealson K. H. (1997) Geomicrobiology: interactions between microbes and minerals. In Reviews in Mineralogy, Vol. 35. Mineralogical Society of America, Washington, DC.

    Google Scholar 

  • Barker W. W. and Banfield J. F. (1995) Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in litho-biontic communities. Chem. Geol. 132, 55-69.

    Google Scholar 

  • Barth T. F. (1961) Abundance of the elements, aerial averages and geochemical cycles. Geochim. Cosmochim. Acta 23, 1-8.

    Google Scholar 

  • Beauvais A. (1999) Geochemical balance of lateritization processes and climatic signatures in weathering profiles overlain by ferricretes in Central Africa. Geochim. Cosmochim. Acta 63, 3939-3957.

    Google Scholar 

  • Bennett P. C. (1991) Fate of silicate minerals in a peat bog. Geology 19, 328-331.

    Google Scholar 

  • Bennett P. C., Hiebert F. K., and Choi W. J. (1996) Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater. Chem. Geol. 132,45-53.

    Google Scholar 

  • Berner E. K. and Berner R. A. (1996) Global Environment: Water, Air and Geochemical Cycles. Prentice-Hall, New York.

    Google Scholar 

  • Berner R. A. and Cochran M. F. (1998) Plant-induced weathering of Hawaiian basalts. J. Sediment. Res. 68, 723-726.

    Google Scholar 

  • Berner E. K., Berner R. A., and Molton K. L. (2004) Plants and mineral weathering: past and present. In Surface and Groundwater, Weathering, Erosion and Soils (ed. J. I. Drever) Elsevier, Amsterdam, pp. 69-188.

    Google Scholar 

  • Blum A. E. and Lasaga A. C. (1987) Monte Carlo simulations of surface reaction rate laws (ed. W. Stumm), Wiley & Sons, New York, pp. 255-291.

    Google Scholar 

  • Blum A. E. and Stillings L. L. (1995) Feldspar dissolution kinetics. In Chemical Weathering Rates of Silicate Minerals (ed. A. F. White and S. L. Brantley) Re-views in Mineralogy, Vol. 31, Mineralogical Society of America, Washington, DC, pp. 291-346.

    Google Scholar 

  • Blum J. D. and Erel Y. (1997) Rb-Sr isotope systematics of a granitic soil chronosequence: the importance of biotite weathering. Geochim. Cosmochim. Acta 61, 3193-3204.

    Google Scholar 

  • Bluth G. S. and Kump L. R. (1994) Lithologic and climatic controls of river chemistry. Geochim. Cosmochim. Acta 58, 2341-2359.

    Google Scholar 

  • Borman F. H., Wang D., Bormann F. H., Benoit G., April R., and Snyder M. C. (1998) Rapid plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43, 129-155.

    Google Scholar 

  • Bowser C. J. and Jones B. J. (2002) Mineralogical controls on the composition of natural waters dominated by silicate hydrolysis. Am. J. Sci. 302, 582-662.

    Google Scholar 

  • Brady P. V. (1991) The effect of silicate weathering on global temperature and atmospheric CO2 . J. Geophys. Res. 96, 18101-18106.

    Google Scholar 

  • Brady P. V. and Carroll S. A. (1994) Direct effects of CO2 and temperature on silicate weathering: possible implications for climate control. Geochim. Cosmochim. Acta 58, 1853-1863.

    Google Scholar 

  • Brady P. V., Dorn R. I., Brazel A. J., Clark J., Moore R. B., and Glidewell T. (1999) Direct measurement of the combined effects of lichen, rainfall and temperature on silicate weathering. Geochim. Cosmochim. Acta 63, 3293-3305.

    Google Scholar 

  • Brantley S. L., Crane S. R., Creear D., Hellmann R., and Stallard R. (1986) Dissolu-tion at dislocation etch pits in quartz. Geochim. Cosmochim. Acta 50, 2349-2361.

    Google Scholar 

  • Brantley S. L., Blai A. C., Cremens D. L., MacInnis I., and Darmody R. G. (1993) Natural etching rates of feldspar and hornblende. Aquat. Sci. 55, 262-272.

    Google Scholar 

  • Brantley S. L., White A. F., and Hodson M. E. (1999) Surface area of primary sili-cate minerals. In Growth, Dissolution and Pattern Formation in Geosystems (ed. B. Jamtveit and P. Meakin), Kluwer Academic Publishers, Amsterdam, pp. 291-326.

    Google Scholar 

  • Brantley S. L., Bau M., Yau, S., and Alexander B. (2001) Interpreting kinetics of groundwater-mineral interaction using major element, trace element and isotopic tracers. In Water-Rock Interaction 10 (ed. R. Cidu), Balkema, Rotterdam, pp. 13-18.

    Google Scholar 

  • Brantley S. L. and Conrad C. F. (2007) Analysis of rates of chemical reactions. In Kinetics of Geochemical Systems (ed. S. L. Brantley, J. Kubiciki, and A. F. White). Springer Publications, New York.

    Google Scholar 

  • Brenner D. L., Amundson R., Baisden W. T., Kendall C., and Harden J. (2001) Soil N and 15 N variations with time in a California grassland ecosystem. Geochim. Cosmochim. Acta 65, 4171-4186.

    Google Scholar 

  • Brimhall G. H., Lewis C. J., Ford C., Bratt J., Taylor G., and Warin O. (1991) Quan-titative geochemical approach to pedogenesis: importance of parent material re-duction, volumetric expansion, and eolian influx in lateritization. Geoderma 51, 51-91.

    Google Scholar 

  • Brown D. J., Helme P. A., and Clayton M. K. (2003) Robust geochemical indices for redox and weathering on a granitic laterite landscape in Central Uganda. Geochim. Cosmochim. Acta 67, 2711-2723.

    Google Scholar 

  • Brown E. T., Stallard R. F., Larsen M. C., Raisbeck G. M., and Yiou F. (1995) Denudation rates determined from the accumulation of in situ produced 10 Be in the Luquillo Experimental Forest, Puerto Rico. Earth Planet. Sci. Lett. 129, 193-202.

    Google Scholar 

  • Bullen T. D. (1997) Chemical weathering of a soil chronosequence on granitic alluvium: II Mineralogic and isotopic constraints on the behavior of strontium. Geochim. Cosmochim. Acta 61, 291-306.

    Google Scholar 

  • Bullen T. D., Krabbenhoft D. P., and Kendal, C. (1996) Kinetic and mineralogic con-trols on the evolution of groundwater chemistry and 87 Sr/86 Sr in a sandy silicate aquifer, northern Wisconsin, USA. Geochim. Cosmochim. Acta 60, 1807-1821.

    Google Scholar 

  • Burch T. E., Nagy K. L., and Lasaga A. C. (1993) Free energy dependence of albite dissolution kinetics at 80 C, and pH 8.8. Chem. Geol. 105, 137-162.

    Google Scholar 

  • Burns D. A., Plummer L. N., McDonnell J. J., Busenberg E., Casile G. C., Kendall C., Hooper R. P., Freer J. E., Peters N. E., Beven K. J., and Schlosser P. (2003) The geochemical evolution of riparian groundwater in a forested Piedmont catchment. Groundwater 41, 913-925.

    Google Scholar 

  • Carson M. A. and Kirby K. T. (1972) Hillslope, Form and Processes. Cambridge University Press, New York.

    Google Scholar 

  • Casey W. H. and Sposito G. (1992) On the temperature dependence of mineral dissolution rates. Geochim. Cosmochim. Acta 56, 3825-3830.

    Google Scholar 

  • Casey W. H. and Westrich H. R. (1992) Control of dissolution rates of orthosilicate minerals by divalent metal-oxygen bonds. Nature 355, 157-159.

    Google Scholar 

  • Chadwick O. A., Brimhall G. H., and Hendricks D. M. (1990) From black box to a grey box: a mass balance interpretation of pedogenesis. Geomorphology 3, 369-390.

    Google Scholar 

  • Chadwick O. A., Gavenda R. T., Kelly E. F., Ziegler K., Olson C. G., Elliot W. C., and Hendricks D. M. (2003) The impact of climate on the biogeochemical functioning of volcanic soils. Chem. Geol. 202, 195-223.

    Google Scholar 

  • Clayton J. L. (1986) An estimate of plagioclase weathering rate in the Idaho batholith based upon geochemical transport rates. In Rates of Chemical Weath-ering of Rocks and Minerals (S. Colman and D. Dethier eds.) Academic Press, Orlando, pp. 453-466.

    Google Scholar 

  • Cleaves E. T. (1993) Climatic impact on isovolumetric weathering of a coarsegrained schist in the northern Piedmont Province of the central Atlantic states. Geomorphology 8, 191-198.

    Google Scholar 

  • Clow D. W. and Drever J. I. (1996) Weathering rates as a function of flow through an alpine soil. Chem. Geol. 132, 131-141.

    Google Scholar 

  • Delvaux B., Herbillion A. J., and Vielvoye L. (1989) Characterization of a weathering sequence of soils derived from volcanic ash in Cameroon, taxonomic, mineralogical and agronomic implications. Geoderma 45, 375-388.

    Google Scholar 

  • Desert C., Dupre B., Francois L., Schott J., Gaillard J., Chakrapani G., and Bajpai S. (2001) Erosion of Deccan Traps determined by river geochemistry: impact on global climate and the 87 Sr/86 Sr ratio of seawater. Earth and Planetary Science Letters 188, 459-474.

    Google Scholar 

  • Dethier D. P. (1986) Weathering rates and the chemical flux from catchment in the Pacific Northwest, U.S.A. In Rates of Chemical Weathering of Rocks and Minerals (eds. S. Colman and D. Dethier) Academic Press, Orlando, pp. 503-530.

    Google Scholar 

  • Dorn R. I. and Brady P. V. (1995) Rock-based measurement of temperature-dependent plagioclase weathering. Geochim. Cosmochim. Acta 59, 2847-2852.

    Google Scholar 

  • Drever J. I. (1994) The effect of land plants on weathering rates of silicate minerals. Geochim. Cosmochim. Acta 58, 2325-2332.

    Google Scholar 

  • Drever J. I. and Clow D. W. (1995) Weathering rates in catchments. In Chemical Weathering Rates of Silicate Minerals (ed. A. F. White and S. L. Brantley), Reviews in Mineralogy 31 Mineral. Soc. Amer., Washington, DC, pp 463-481.

    Google Scholar 

  • Driscoll C. T., Likens G. E., Hedlin L. O., Eaton J. S., and Bormann F. H. (1989) Changes in the chemistry of surface waters. Environmental Sci. Technol. 23, 137-142.

    Google Scholar 

  • Driscoll C. T., van Breemen N., and Mulder J. (1985) Aluminum chemistry in a forested spodosol. Soil Sci. Soc. Am. J. 49, 437-444.

    Google Scholar 

  • Dunne T. (1978) Rates of chemical denudation of silicate rocks in tropical catchments. Nature 274, 244-246.

    Google Scholar 

  • Dupre B., Gaillardet J., Rousseau J., and Allegre C. J. (1996) Major and trace elements of river-borne material: the Congo basin. Geochim. Cosmochim. Acta 60, 1301-1321.

    Google Scholar 

  • Duzgoren-Aydin N. S., Aydin A., and Malpas J. (2002) Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong. Eng. Geol. 63,99-109.

    Google Scholar 

  • Edmond J. M., Palmer M. R., Measures C. I., Grant B., and Stallard R. F. (1995) The fluvial geochemistry and denudation rate of the Guyana Shield in Venezuela, Colombia, and Brazil. Geochim. Cosmochim. Acta 59, 3301-3325.

    Google Scholar 

  • Farley D. A. and Werritty A. (1989) Hydrochemical budgets for the Loch Dee exper-imental catchments, southwest Scotland (1981-1985). J. Hydrol. 109, 351-368.

    Google Scholar 

  • Fedo C. M., Nesbitt H., W., and Yong G. M. (1995) Unraveling the effects of potas-sium metasomatism in sedimentary rocks and paleosols, implications for pale-oweatherng conditions and provenance. Geology 23, 921-924.

    Google Scholar 

  • Flury M. and Fluhler H. (1994) Susceptibility of soils to preferential flow of water: a field study. Water Resour. Res. 30, 1945-1954.

    Google Scholar 

  • Frankenberger W. T. and Benson S. (1994) Selenium in the Environment, Marcel Dekker, New York.

    Google Scholar 

  • Fry E. J. (1927) The mechanical action of crustaceous lichens on substrata of shale, schist, gneiss and obsidian. Ann. Botany 41, 437-460.

    Google Scholar 

  • Gaillardet J., Dupre E. B., and Allegre C. J. (1995) A global geochemical mass budget applied to the Congo basin rivers: erosion rates and continental crust composition. Geochimica Cosmochimica. Acta 59, 3469-3485.

    Google Scholar 

  • Gaillardet J., Dupre E. B., and Allegre C. J. (1999) Geochemistry of large river sediments: silicate weathering or recycling tracer? Geochimica. Cosmochimica. Acta 63, 4035-4051.

    Google Scholar 

  • Gaillardet J. (2007) Isotope geochemistry as a tool for deciphering kinetics of waterrock interaction. In Kinetics of Geochemical Systems (ed. S. L. Brantley, J. Kubiciki, and A. F. White). Springer Publications, New York.

    Google Scholar 

  • Gardner L. R. (1980) Mobilization of Al and Ti during weathering-isovolumetric geochemical evidence. Chem. Geol. 30, 151-165.

    Google Scholar 

  • Garrels R. M. and Mackenzie F. T. (1967) Origin of the chemical composition of some springs and lakes. In Equilibrium concepts in natural water systems, Adv. Chem Ser, Vol. 67 (ed. W. Stumm), Amer. Chem. Soc., Washington, DC, pp. 222-242

    Google Scholar 

  • Gislason R. S. and Eugster H. P. (1987) Meteoric water-basalt interactions. I: A laboratory study. Geochim. Cosmochim. Acta 51, 2827-2840.

    Google Scholar 

  • Goldlich S. S. (1938) A study of Rock Weathering. J. Geol. 46, 17-58.

    Google Scholar 

  • Griffiths R. P., Baham J. E., and Caldwell B. A. (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biology and Biochemistry 26, 331-337.

    Google Scholar 

  • Harden, J. W. (1987) Soils developed in granitic alluvium near Merced California. U. S. Geologic Survey Bult. 1590A 104p.

    Google Scholar 

  • Harrois L. and Moore J. M. (1988) The C. I. W. indices: a new chemical index of weathering. Sediment. Geol. 55, 319-322.

    Google Scholar 

  • Heimsath A. M., Chappell, J. Dietrich W. E., Nishiizumi K., and Finkel R. C. (2000) Soil production on a retreating escarpment in southeastern Australia. Geology 28, 787-790.

    Google Scholar 

  • Helgeson H. C. (1971) Kinetics of mass transfer among silicates and aqueous solutions. Geochim. Cosmochim. Acta 35, 421-469.

    Google Scholar 

  • Hillel D. (1982) Introduction to Soil Physics. Academic Press, Orlando.

    Google Scholar 

  • Hodson M. E. (2002) Experimental evidence for the mobility of Zr and other trace elements in soils. Geochim. Cosmochim. Acta 66, 819-828.

    Google Scholar 

  • Hooper R. P., Christophersen N., and Peters N. E. (1990) Modeling stream water chemistry as a mixture of soil water end-members: an application to the Panola Mountain Catchment, Georgia, U.S.A. J. of Hydrol. 116, 321-343.

    Google Scholar 

  • Huh Y., Panteleyev G., Babich D., Zaitsev A., and Edmond J. (1998) The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochim. Cosmochim. Acta 62, 2053-2075.

    Google Scholar 

  • Huntington T. G. (1995) Carbon sequestration in an aggrading forest ecosystem in the southern USA. Soil Sci. Soc. Amer. J. 59, 1459-1467.

    Google Scholar 

  • Jenny H. (1941) Factors of soil formation. McGraw-Hill, New York.

    Google Scholar 

  • Johnsson M. J., Ellen S. D., and McKittrick M. A. (1993) Intensity and duration of chemical weathering: an example from soil clays of the southeastern Koolau Mountains, Oahu, Hawaii. Geol. Soc. Am. Spec. Pub. 284, 147-170.

    Google Scholar 

  • Jongmans A. G., Van Breeman N., Lundstrom U., van Hess P. A. W., Srinivason M., Unestam T., Giesle R., Melkerud P. A., and Olsson M. (1997) Rock-eating fungi. Nature 389, 682-683.

    Google Scholar 

  • Katz B. G., Bricker O. P., and Kennedy M. M. (1985) Geochemical mass-balance relationships for selected ions in precipitation and stream water, Catoctin Mountains, Maryland. Am. J. Sci. 285, 931-962.

    Google Scholar 

  • Katz B. G. (1989) Influence of mineral weathering reactions on the chemical composition of soil water, springs, and groundwater, Catoctin Mountains, Maryland. Hydrol. Process. 3, 185-202.

    Google Scholar 

  • Keating, E. H. and Bahr, J. M. (1998) Using reactive solutes to constrain ground-water flow models at a site in northern Wisconsin. Water Resour. Res. 34, 3561-3571.

    Google Scholar 

  • Kelly E. F., Chadwick O. A., and Hilinski T. E. (1998) The effect of plants on mineral weathering. Biogeochemistry 42, 21-53.

    Google Scholar 

  • Kenoyer G. J. and Bowser C. J. (1992a) Groundwater evolution in a sandy silicate aquifer in Northern Wisconsin 1. Patterns and rates of change. Water Resour. Res. 28,579-589.

    Google Scholar 

  • Kenoyer G. J. and Bowser C. J. (1992b) Groundwater chemical evolution in a sandy silicate aquifer in Northern Wisconsin 2. Reaction modeling. Water Resour. Res. 28,591-600.

    Google Scholar 

  • Kieffer B., Jove C. F., Oelkers E. H. and Schott J. (1999) An experimental study for the reactive surface area of the Fontainebleau sandstone as a function of porosity, permeability, and fluid flow rate. Geochim. Cosmochim. Acta 63, 3525-3534.

    Google Scholar 

  • Kim K. (2002) Plagioclase weathering in the groundwater system of a sandy silicate aquifer. Hydro. Process 16, 1793-1806.

    Google Scholar 

  • Kirkwood S. E. and Nesbitt H. W. (1991) Formation and evolution of soils from an acidified watershed: Plastic Lake, Ontario, Canada. Geochim. Cosmochim. Acta 55,1295-1308.

    Google Scholar 

  • Kubicki J. (2007) Transiiton state theory and molecular orbital calculations applied to rates and reaction mechanisms in geochemical kineitics. In Kinetics of Geo-chemical Systems (ed. S. F. Brantley, J. Kubiciki, and A. F. White).Springer Publishing, New York.

    Google Scholar 

  • Kurtz A. C., Derry L. A., and Chadwick O. A. (2002) Germanium-silicon fractiona-tion in the weathering environment. Geochim. Cosmochim. Acta 66, 1525-1537.

    Google Scholar 

  • Lasaga A. C. (1984) Chemical kinetics of water-rock interaction. J. Geophys. Res. 89,4009-4025.

    Google Scholar 

  • Land M., Ingri J., and Ohlander B. (1999) Past and present weathering rates in northern Sweden. Appl. Geochem. 14, 761-774.

    Google Scholar 

  • Lee M. R., Hodson M. E., and Parsons I. (1998) The role of intragranular micro-textures and microstructures in chemical and mechanical weathering: direct com-parisons of experimentally and naturally weathered alkali feldspars. Geochim. Cosmochim. Acta, 62, 2771-2788.

    Google Scholar 

  • Lerman A. and Wu L. (2007) Kinetics of global geochemical cycles. In Kinetics of Geochemical Systems (ed. S. L. Brantley, J. Kubicki, and A. F. White), Springer Publications, New York.

    Google Scholar 

  • Likens G. E., Bormann F. H., Pierce R. S., Eaton J. S., and Johnson N. M. (1977) Biogeochemistry of a Forested Ecosystem. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Louvat P. and Allegre C. J. (1998) Factors controlling present weathering rates: new contributions from basalt erosion studies. Mineral. Magazine 62A, 907-908.

    Google Scholar 

  • Lucas Y. (2001) The role of plants in weathering. Ann. Rev. Earth Planet. Sci. 29, 135-163.

    Google Scholar 

  • Luttge A. B. and Lasaga, A.C. (1999) An interferometric study of the dissolution kinetics of anorthite: the role of reactive surface area. Am. J. Sci. 299, 652-678.

    Google Scholar 

  • Luttge A. and Arvidson R. S. (2007) The mineral-water interface. In Kinetics of Geochemical Systems (ed. S. L. Brantley, J. Kubicki, and A. F. White), Springer Publications, New York.

    Google Scholar 

  • Maher K., DePaolo D. J. and Lin J. C. (2004) Rates of silicate dissolution in deep sea sediment: in situ measurment using 234 U/238 U of pore fluids. Geochim. Cosmochim. Acta 68, 4629-4648.

    Google Scholar 

  • Mast M. A., Drever J. I., and Barron J. (1990) Chemical weathering in the Loch Vale watershed, Rocky Mountain National Park, Colorado. Water Resour. Res. 26,2971-2978.

    Google Scholar 

  • Maurice P., Forsythe J., Hersman L., and Sposito G. (1996) Application of atomicforce microscopy to studies of microbial interactions with hydrous Fe(III)-oxides. Chem. Geol. 132, 33-43.

    Google Scholar 

  • McDowell W. H. and Asbury C. E. (1994) Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnol. Oceanogr. 39, 111-125.

    Google Scholar 

  • Merrill G. P. (1906) A Treatise on Rocks, Rock Weathering and Soils. MacMillian, New York.

    Google Scholar 

  • Meyback M. (1994) Material Fluxes on the Surface of the Earth. National Academy of Sciences, Academy Press, New York.

    Google Scholar 

  • Millot R., Gaillardet J., Dupre B., and Allegre C. J. (2002) The global control of silicate weathering rates and the coupling of physical erosion: new insights from rivers of the Canadian Shield. Earth Planet. Lett. 196, 83-98.

    Google Scholar 

  • Misra K. C. (2000) Understanding Mineral Deposits. Kluwer Academic Publishers, New York.

    Google Scholar 

  • Mogk D. W. and Locke W. W. I. (1988) Application of auger electron spectroscopy (AES) to naturally weathered hornblende. Geochim. Cosmochim. Acta 52, 2537-2542.

    Google Scholar 

  • Murphy S. F., Brantley S. L., Blum A. E., White A. F., and Dong H. (1998) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico. II Rate and mechanism of biotite weathering. Geochim. Cosmochim. Acta 62, 227-243.

    Google Scholar 

  • Nagy K. L., Blum A. E., and Lasaga A. C. (1991) Dissolution and precipitation kinetics of kaolinite at 80 C and pH 3. The dependence on the saturation state. Am. J. Sci. 291, 649-686.

    Google Scholar 

  • Negrel P., Allegre C. J., Dupre B., and Lewin E. (1993) Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo basin case. Earth Planet. Sci. Lett. 120, 59-76.

    Google Scholar 

  • Nesbitt H. W., Young G. M., McLennan S. M., and Keys R. R. (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J. Geol. 104, 525-542.

    Google Scholar 

  • Nesbitt H. W., Fedo C. M., and Young G. M. (1997) Quartz and feldspar stability, steady and non-steady state weathering and petrogenesis of siliciclastic sands and muds. J. Geol. 105, 173-191.

    Google Scholar 

  • Nugent M. A., Brantley S. L., Pantano C. G., and Maurice P. A. (1998) The influence of natural mineral coatings on feldspar weathering. Nature 396, 527-622.

    Google Scholar 

  • O’Brien A. K., Rice K. C., Bricker O. P., Kennedy M. M., and Anderson R. T. (1997) Use of geochemical mass balance modeling to evaluate the role of weathering in determining stream chemistry in five mid-Atlantic watersheds of different lithologies. Hydrol. Process. 11, 719-744.

    Google Scholar 

  • Oelkers E. H. and Schott J. (1995) Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis. Geochim. Cosmochim. Acta 59, 5039-5053.

    Google Scholar 

  • Oelkers E. H. (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochim. Cosmochim. Acta 65, 3703-3719.

    Google Scholar 

  • Oliva P., Viers J., and Dupre B. (2003) Chemical weathering in a granitic environment. Chem. Geol. 202, 225-256.

    Google Scholar 

  • Paces T. (1973) Steady-state kinetics and equilibrium between groundwater and granitic rock. Geochim. Cosmochim. Acta 37, 2641-2663.

    Google Scholar 

  • Paces T. (1986) Rates of weathering and erosion derived from mass balance in small drainage basins. In Rates of Chemical Weathering of Rocks and Minerals (ed. D. Dethier and S. Coleman) Academic Press, Orlando, pp. 531-550.

    Google Scholar 

  • Parker A. (1970) An index of weathering for silicate rocks. Geol. Magazine 107, 501-505.

    Google Scholar 

  • Parkhurst D. L. and Plummer L. N. (1993) Geochemical models. In Regional Ground-Water Quality (ed. W. M. Alley), Van Nostrand Reinhold, New York, pp. 199-225.

    Google Scholar 

  • Pavich M. J. (1986) Processes and rates of saprolite production and erosion on a foliated granitic rock of the Virginia Piedmont. In Rates of Chemical Weathering of Rocks and Minerals (ed. S. M. Dethier and D. P. Coleman), Academic Press. Orlando, pp. 551-590.

    Google Scholar 

  • Perg L. A., Anderson R. S., and Finkel R. C. (2001) Use of a new 10 Be and 26 Al inventory method to date marine terraces, Santa Cruz, California, USA. Geology 29,879-882.

    Google Scholar 

  • Plummer L., Prestemon E. C., and Parkhurst D. L. (1991) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow path. Water Resoures Investigation Report 91-4078, 227p.

    Google Scholar 

  • Plummer L. N., Prestemom E. C., and Parkhurst D. L. (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow path. U. S. Geological Survey Open File Report 94-4169, 191p.

    Google Scholar 

  • Plummer L. N., Michel R. L., Turman, M. and Gyynn P. D. (1996) Environmental traces for age dating young ground water. In Regional Ground-Water Quality (ed. W. M. Alley), Van Nostrand Reinhold, New York, pp. 255-296.

    Google Scholar 

  • Price J. and Velbel M. A. (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem. Geol. 196, 397-416.

    Google Scholar 

  • Rademacher L. K., Clark J. F., Hudson G. B., Erman D. C., and Erman N. A. (2001) Chemical evolution of shallow groundwater as recorded by springs, Sagehen basin, Nevada County, California. Chem. Geol. 179, 37-51.

    Google Scholar 

  • Rice K. C. and Bricker O. P. (1995) Seasonal cycles of dissolved constituents in the streamwater in two forested catchments in the mid-Atlantic region of the eastern USA. J. Hydrol. 170, 137-158.

    Google Scholar 

  • Rice K. C. and Hornberger G. M. (1998) Comparison of hydrochemical tracers to estimate source contributions to peak flow in a small forested headwater catchment. Water Resour. Res. 34, 1755-1766.

    Google Scholar 

  • Riebe C. S., Kirchner J. K., Granger D. E., and Finkel R. C. (2001) Strong tectonic and weak climate control of long-term weathering rates. Geology 29, 511-514.

    Google Scholar 

  • Riebe C. S., Kirchner J. K., and Finkel R. C. (2003) Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochim. Cosmochim. Acta 67, 441-4427.

    Google Scholar 

  • Ruddiman W. F. (1997) Tectonic Uplift and Climate Change. Plenum Press, New York.

    Google Scholar 

  • Rodden E. (2007) Microbial controls of geokinetics. In Kinetics of Geochemical Systems (ed. S. F. Brantley, J. Kubiciki, and A. F. White).Springer Publishing, New York.

    Google Scholar 

  • Ruxton B. P. (1968) Measures of the degree of chemical weathering of rocks. J. Geol. 76, 518-527.

    Google Scholar 

  • Samma J. C. (1986) Ore Fields and Continental Weathering. Van Nostrand, New York.

    Google Scholar 

  • Schnoor J. L. (1990) Kinetics of chemical weathering: a comparsion of laboratory and field rates. In Aquatic Chemical Kinetics (ed. W. Stumm), John Wiley & Sons, New York, pp. 475-504.

    Google Scholar 

  • Schulz M. S. and White A. F. (1999) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico III: quartz dissolution rates. Geochim. Cosmochim. Acta 63, 337-350.

    Google Scholar 

  • Siegal D. and Pfannkuch H. O. (1984) Silicate dissolution influence on Filson Creek chemistry, northeastern Minnesota. Geol. Soc Am. Bult. 95, 1444-1453.

    Google Scholar 

  • Stallard R. F. (1995) Tectonic, environmental, and human aspects of weathering and erosion: a global review using a steady-state perspective. Ann. Rev. Earth Planet. Sci. 23, 11-39.

    Google Scholar 

  • Stallard R. F. and Edmond J. M. (1983) Geochemistry of the Amazon,: 2. The influence of geology and weathering environment on dissolved load. J. Geophys. Res. 88,9671-9688.

    Google Scholar 

  • Stewart B. W., Capo R. C., and Chadwick O. A. (2001) Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils. Geochim. Cosmochim. Acta 65, 1087-1099.

    Google Scholar 

  • Steefel C. (2007) Geochemical kinetics and transport. In Kinetics of Geochemical Systems (ed. S. F. Brantley, J. Kubiciki, and A. F. White). Springer Publishing, New York.

    Google Scholar 

  • Stillings S. L., Drever J. I., Brantley S., Sun Y., and Oxburgh R. (1996) Rates of feldspar dissolution at pH 3-7 with 0-8 M oxalic acid. Chem. Geol. 132, 79-89.

    Google Scholar 

  • Stonestrom D. A., White A. F., and Akstin K. C. (1998) Determining rates of chemical weathering in soils-solute transport versus profile evolution. J. Hydrol. 209, 331-345.

    Google Scholar 

  • Sverdrup H. and Warfvinge P. (1995) Estimating field weathering rates using lab-oratory kinetics. In Chemical Weathering Rates of Silicate Minerals (ed. A. F. White and S. L. Brantley) Reviews in Mineralogy, Vol. 31, Mineralogical Society of. America, Washington, DC, pp. 485-539.

    Google Scholar 

  • Swoboda-Colberg N. G. and Drever J. I. (1992) Mineral dissolution rates: a comparison of laboratory and field studies. In Proceedings of the 7th International Sym-posium. Water-Rock Interaction (ed. Y. K. Kharaka and A. S. Maest). Balkema, Leiden, pp. 115-117.

    Google Scholar 

  • Taylor A. S., Blum J. D., and Lasaga A. C. (2000) The dependence of labradorite dissolution and Sr isotope release rates on solution saturation state. Geochim. Cosmochim. Acta 64, 2389-2400.

    Google Scholar 

  • Tisdall J. M. (1982) Organic matter and water-stable aggregates in soils. J. Soil Sci. 33,141-163.

    Google Scholar 

  • Trudgill S. T. (1995) Solute Modelling in Catchment Systems. John Wiley & Sons, New York.

    Google Scholar 

  • Turner B. F., Stallard R. F., and Brantley S. L. (2003) Investigation of in situ weathering of quartz diorite in the Rio Icacos basin, Luquillo Experimental Forest, Puerto Rico. Chem. Geol. 202, 313-341.

    Google Scholar 

  • Van Breemen N., Lundstrom U., Jongmans A. G., Gieler R., and Olsson M. (2000) Mycorrrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49,53-67.

    Google Scholar 

  • Velbel M. A. (1985) Geochemical mass balances and weathering rates in forested watersheds of the southern Blue Ridge. Am. J. Sci. 285, 904-930.

    Google Scholar 

  • Velbel M. A. (1986) The mathematical basis for determining rates of geochemical and geomorphic processes in small forested watersheds by mass balance: examples and impilications. In Rates of Chemical Weathering of Rocks and Minerals (ed. S. M. Colman and D. P. Dethier), Academic Press, Orlando, pp. 439-449.

    Google Scholar 

  • Velbel M. C. (1993) Temperature dependence of silicate weathering in nature: how strong a feedback on long-term accumulation of atmospheric CO2 and global greenhouse warming. Geology 21, 1059-1062.

    Google Scholar 

  • Velbel M. C. (1996) Interaction of ecosystem processes and weathering processes. In Solute Modeling in Catchment Systems (ed. S. T. Trudgill) John Wiley & Sons, New York, pp. 193-209.

    Google Scholar 

  • Von Blanckenburg, F. (2006) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. 242, 224-239.

    Google Scholar 

  • Walker J. F., Hunt R. L., Bullen T. D., Krabbenhoft D. P., and Kendall C. (2003) Variability of isotope and major ion chemistry in the Allequash Basin, Wisconsin. Groundwater 41, 883-894.

    Google Scholar 

  • White A. F. (1995) Chemical weathering rates in soils. In Chemical Weathering Rates of Silicate Minerals, Vol. 31 (ed. A. F. White and S. L. Brantley), Reviews in Mineralogy, Vol. 31, Mineralogical Society of America, Washington, DC, pp. 407-458.

    Google Scholar 

  • White A. F. and Peterson M. L. (1990) Role of reactive surface area characterization in geochemical models. In Chemical Modeling of Aqueous Systems II, Vol. 416 (ed. R. D. Basset and R. L. Melchior). American Chemical Society. Advances in Chemistry Series 213, pp. 461-475.

    Google Scholar 

  • White A. F. and Blum A. E. (1995) Effects of climate on chemical weathering rates in watersheds. Geochim. Cosmochim. Acta 59, 1729-1747.

    Google Scholar 

  • White A. F. and Brantley S. L. (2003) The effect of time on the weathering of silicate minerals: why to weathering rates differ in the laboratory and field? Chem. Geol. 190,69-89.

    Google Scholar 

  • White A. F., Blum A. E., Schulz M. S., Bullen T. D., Harden J. W., and Peterson M. L. (1996) Chemical weathering of a soil chronosequence on granitic alluvium 1. Reaction rates based on changes in soil mineralogy. Geochim. Cosmochim. Acta 60, 2533-2550.

    Google Scholar 

  • White A. F., Blum A. E., Schulz M. S., Vivit D. V., Larsen M., and Murphy S. F. (1998) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term chemical fluxes. Geochem. Cosmochim. Acta 62, 209-226.

    Google Scholar 

  • White A. F., Blum A. E., Bullen T. D., Vivit D. V., Schulz M., and Fitzpatrick J. (1999a) The effect of temperature on experimental and natural weathering rates of granitoid rocks. Geochim. Cosmochim. Acta 63, 3277-3291.

    Google Scholar 

  • White A. F., Bullen T. D., Vivit D. V., and Schulz M. S. (1999b) The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochim. Cosmochim. Acta 63, 1939-1953.

    Google Scholar 

  • White A. F., Blum A. E., Stonestrom D. A., Bullen T. D., Schulz M. S., Huntington T. G., and Peters N. E. (2001) Differential rates of feldspar weathering in granitic regoliths. Geochim. Cosmochim. Acta 65, 847-869.

    Google Scholar 

  • White A. F., Blum A. E., Schulz M. S., Huntington T. G., Peters N. E., and Stonestrom D. A. (2002) Chemical weathering of the Panola Granite: solute and regolith elemental fluxes and the dissolution rate of biotite. In Water-rock Inter-action, Ore Deposits, and Environmental Geochemistry: A tribute to David A. Crerar (ed. R. Hellmann and S. A. Wood) The Geochemical Society. Special Publ. no. 7, pp. 37-59.

    Google Scholar 

  • White A. F, Schulz M. S., Lowenstern J. B., Vivit D. V., and Bullen T. D. (2005) The ubiquitous nature of accessory calcite in granitoid rocks: implications for weath-ering, solute evolution and petrogensis. Geochim. Cosmochim. Acta 69, 1455-1471

    Google Scholar 

  • White A. F., Schulz M. S., Vivit D. V., Blum A. E., Stonestrom D. A., and Anderson S. P. (2007) Chemical weathering of a marine terrace chronosequence, Santa Cruz, California: what does element and mineral soil profiles tell us about weath-ering environments and reaction rates? Geochim. Cosmochim. Acta (in press).

    Google Scholar 

  • Zeman L. J. and Slaymaker O. (1978) Mass balance model for calculation of ionic input loads in atmospheric fallout and discharge from a mountainous basin. Hydrol. Sci. 23, 103-117.

    Google Scholar 

  • Zhu C. (2005) In situ feldspar dissolution in an aquifer. Geochim. Cosmochim. Acta 69,847-869.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

White, A. (2008). Quantitative Approaches to Characterizing Natural Chemical Weathering Rates. In: Brantley, S., Kubicki, J., White, A. (eds) Kinetics of Water-Rock Interaction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73563-4_10

Download citation

Publish with us

Policies and ethics