Skip to main content

Tuning of Parameters Backstepping Ship Course Controller by Genetic Algorithm

  • Conference paper
Advances in Information Processing and Protection

Abstract

A ship, as an object for course control, is characterised by a nonlinear function describing the static maneuvering characteristics. One of the methods which can be used for designing a nonlinear course controller for ships is the backstepping method. It was used here for designing the configurations of nonlinear controllers, which were then applied for ship course control. The parameters of the obtained nonlinear control structures were tuned to optimise the operation of the control system. The optimisation was performed using genetic algorithms. The quality of operation of the designed control algorithms was checked in simulation tests performed on the mathematical model of the tanker completed by steering gear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amerongen J. (1982). Adaptive steering of ship. A model reference approach to improved manoeuvering and economical course keeping, PhD Thesis, Delft University of Technology, Netherlands.

    Google Scholar 

  2. Astrom K.J, Wittenmark B., (1989). Adaptive Control, Addison Wesley, Reading MA.

    Google Scholar 

  3. Fossen T.I., Strand J.P. (1998). Nonlinear Ship Control (Tutorial Paper), In Proceedings of the IFAC Conference on Control Application in Marine Systems CAMS’98. Fukuoka,Japan.pp. 1-75.

    Google Scholar 

  4. Fossen, T. I. and J. P. Strand (1999). A Tutorial on Nonlinear Backstepping: Applications to Ship Control, Modelling, Identification and Control, MIC-20(2), 83-135.

    Article  MathSciNet  Google Scholar 

  5. Fossen T. I. (2002). Marine Control Systems. Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics, Trondheim, Norway.

    Google Scholar 

  6. Goldberg D. E. (1989). Genetic algorithms in serching, optimisation and machine learning, Reading, MA: Addison Wesley.

    Google Scholar 

  7. He S., Reif K., Unbehauen R. (1998). A neural approach for control of nonlinear systems with feedback linearization, IEEE Trans. Neural Networks, 9(6), 1409–1421.

    Article  Google Scholar 

  8. Kokotović P., Arcak M. (2001). Constructive nonlinear control: a historical perspective, Automatica 37(5), 637-662.

    MathSciNet  MATH  Google Scholar 

  9. Krstić M., Kanellakopulos I., Kokotović P.V. (1995). Nonlinear and Adaptive Control Design, John Willey&Sons Ltd., New York.

    Google Scholar 

  10. Krstić M., Tsiotras P., (1999) Inverse Optimal Stabilization of a Rigid Spacecraft, IEEE Transactions on Automatic Control, 44(5), 1042-1049.

    Article  MATH  Google Scholar 

  11. La Salle J., Lefschetz S. (1966). Zarys teorii stabilnosci Lapunowa i jego metody bezposredniej, BNI. Warszawa.

    Google Scholar 

  12. Michalewicz Z. (1996). Genetic algorithms + data structures = evolution programs, Berlin: Springer.

    MATH  Google Scholar 

  13. Pettersen K.Y., Nijmeijer H. (2004). Global practical stabilization and tracking for an underactuated ship - a combined averaging and backstepping approach, Modelling, Identification and Control, 20(4), 189-199.

    Google Scholar 

  14. Skjetne R., Fossen T.I., Kokotović P.V. (2005). Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory, Automatica 41(2), 289–298.

    Article  MATH  MathSciNet  Google Scholar 

  15. Tomera M., Witkowska A., Śmierzchalski R., (2005). A Nonlinear Ship Course Controller Optimised Using a Genetic Method. Materialy VIII Krajowej Konferencji nt. Algorytmy Ewolucyjne i Optymalizacja Globalna, Korbielòw, 30 maja – 01 czerwca 2005 r., ss. 255–262.

    Google Scholar 

  16. Velagić J., Vukić Z., Omerdić E. (2003). Adaptive fuzzy ship autopilot for track-keeping, Control Engineering Practice, 11(4), 433–443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Witkowska, A., Smierzchalski, R. (2007). Tuning of Parameters Backstepping Ship Course Controller by Genetic Algorithm. In: PejaÅ›, J., Saeed, K. (eds) Advances in Information Processing and Protection. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73137-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73137-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73136-0

  • Online ISBN: 978-0-387-73137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics