Skip to main content

Thermochemical and Thermal/Photo Hybrid Solar Water Splitting

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kogan, Direct solar thermal splitting of water and on-site separation of the products. II. Experimental feasibility study, Int. J. Hydrogen Energy, 23 89-98 (1998).

    Article  Google Scholar 

  2. A. Steinfeld, Solar thermochemical production of hydrogen-a review, Solar Energy, 78 603–615 (2005).

    Article  Google Scholar 

  3. S. Licht, Solar water splitting to generate hydrogen fuel–A photothermal electrochemical analysis, Int. J. Hydrogen Energy, 30 459–470 (2005).

    Article  Google Scholar 

  4. J. E. Funk, Thermochemical hydrogen production: past and present, Int. J. Hydrogen Energy, 26 185–190 (2001).

    Article  Google Scholar 

  5. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsh, Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for sefficient solar water splitting, Int. J. Hydrogen Energy, 26 653–659 (2001).

    Article  Google Scholar 

  6. K. Agabossu, R. Chahine, J. Hamelin, F. Laurencelle, A. Anouar, J.-M. St-Arnaud, and T. K. Bose, Renewable energy systems based on hydrogen for remote applications, J. of Power Sources 96 168–172 (2001).

    Article  Google Scholar 

  7. T. Ohmori, H. Go, N. Yamaguchi, A. Nakayama, H. Mametisuka, and E. Suzuki, Photovoltaic water electrolysis using the sputter-deposited a-Si/c-Si solar cells, Int. J. of Hydrogen Energy 26 661–664 (2001).

    Article  Google Scholar 

  8. T. Tani, N. Sekiguchi, M. Sakai, and D. Otha, Optimization of solar hydrogen systems based on hydrogen production cost, Solar Energy 68 143–149 (2000).

    Article  Google Scholar 

  9. P. Hollmuller, J.-M. Jouibert, B. Lachal, and K. Yvon, Evaluation of a 5-kWp photovoltaic hydrogen production and storage installation for a residential home in Switzerland, Int. J. of Hydrogen Energy 25 97–109 (2000).

    Article  Google Scholar 

  10. S. Schulien, G. Sandstede, and H. W. Hahn, Hydrogen and carbon dioxide as raw materials for ecological energy – technology, Int. J. of Hydrogen Energy 24 299–303 (1999).

    Article  Google Scholar 

  11. C. Meurer, H. Barthels, W. A. Brocke, B. Emonts, and H. G. Groehn, Phoebus – and autonomous supply system with renewable energy: six years of operational experience and advanced concepts, Solar Energy 67 131–138 (1999).

    Article  Google Scholar 

  12. A. Szyszka, Ten year of solar hydrogen demonstration project at Neunburg vorm Wald, Germany, Int. J. of Hydrogen Energy 23 849–860 (1998).

    Article  Google Scholar 

  13. P. A. Lehman, C. E. Chamberlin, G. Pauletto, and M. A. Rocheleau, Operating experience with photovoltaic-hydrogen energy system, Int. J. of Hydrogen Energy 22 465–470 (1997).

    Article  Google Scholar 

  14. S. Galli and M. Stefanoni, Development of a solar-hydrogen cycle in Italy, Int. J. of Hydrogen Energy 22 453–458 (1997).

    Article  Google Scholar 

  15. J. W. Hollenberg, E. N. Chen, K. Lakeram, and D. Modroukas, Development of a photovoltaic energy conversion system with hydrogen energy storage, Int. J. of Hydrogen Energy 20 239–243 (1995).

    Article  Google Scholar 

  16. E. Bilgen, Solar hydrogen from photovoltaic-electrolyzer systems, Energy Conversion & Management 42 1047–1057 (2001).

    Google Scholar 

  17. M. P. Rzayeva, O. M. Salamov, and M. K. Kerimov, Modeling to get hydrogen and oxygen by solar water electroclysis, Int. J. of Hydrogen Energy, 26 195–201 (2001).

    Article  Google Scholar 

  18. S. Licht, Multiple bandgap semiconductor/electrolyte solar energy conversion, J. Phys., Chem. B, 105 6281–6294 (2001).

    Article  Google Scholar 

  19. Semiconductor Electrodes and Photoelectrochemistry, Edited by S. Licht, Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  20. A. Fujishima and K. Honda, Nature 37 238 (1972).

    Google Scholar 

  21. A. Heller, E. Asharon-Shalom, and W. A. Bonner, B. Miller, Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst, J. Am. Chem. Soc. 104 6942–6948 (1982).

    Article  Google Scholar 

  22. O. Khaselev and J. A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via waer splitting, Science, 280 425–427 (1998).

    Article  Google Scholar 

  23. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch, Efficient Solar Water Splitting, Conversion, J. Phys., Chem., B, 104 8920–8924 (2000).

    Article  Google Scholar 

  24. H. Ohya, M. Yatabe, M. Aihara, Y. Negishi, and T. Takeuchi, Feasibility of hydrogen production above 2500 K by direct thermal decomposition reaction in membrane reactor using solar energy, Int. J. Hydrogen Energy, 27 369–376 (2002).

    Article  Google Scholar 

  25. E. A. Fletcher and R. L. Moen, Hydrogen and oxygen from water, Science, 197 105 (1977).

    Article  Google Scholar 

  26. J. E. Noring, R. B. Diver and E. A. Fletcher, Hydrogen and oxygen water V. The ROC system, Energy, 6 109 (1981).

    Article  Google Scholar 

  27. R. B. Diver, S. Pederson, T. Kappauf, and E. A. Fletcher, Hydrogen and oxygen from water: VI. Quenching the effluent from a solar furnace, Energy 8 947 (1983).

    Article  Google Scholar 

  28. G. Olalde, D. Gauthier, and A. Vialaron, Film boiling around a zirconia target. Application to water thermolysis, Adv. Ceramics, 24 879–883 (1988).

    Google Scholar 

  29. J. Lede, F. Lapigque, J. Villermaux, B. Cales, A. Ounalli, J. F. Baumard, and A. M. Anthony, Production of hydrogen by direct thermal decomposition of water: Preliminary investigations, Int. J. Hydrogen Energy, 7 939–950 (1982).

    Article  Google Scholar 

  30. F. Lapigque, J. Lede, L. Villermaux, A. Cales, J. Baumard, A. M. Anthony, E. Abdul Aziz, D. Peuchberty, and M. Ledoux, ?Entropie, 110 42 (1983).

    Google Scholar 

  31. J. Lede, J. Villermaux, R. Ouzane, M. A. Hossain, and R. Ouahes, Production of hydrogen by simple impingement of a turbulent jet of steam upon a high temperature zirconia surface, Int. J. Hydrogen Energy, 12 3–11 (1987).

    Article  Google Scholar 

  32. A. Ounalli, B. Cales, K. Dembrinski, and J. F. Baumard, C. R. Acad. Sci. Paris, 292(11) 1185 (1981).

    Google Scholar 

  33. E. Bilgen, Solar hydrogen production by direct water decomposition process: a preliminary engineering assessment, Int. J. Hydrogen Energy, 9 53–48 (1984).

    Article  Google Scholar 

  34. E. Bilgen, M. Duccarroir, M. Foex, F. Silieude, and F. Trombe, Use of solar energy for direct and two-step water decomposition cycles, Int. J. Hydrogen Energy, 2 251–257 (1977).

    Article  Google Scholar 

  35. S. Ihara, Feasibility of hydrogen production by direct water splitting at high temperature, Int. J. Hydrogen Energy, 3 287–296 (1978).

    Article  Google Scholar 

  36. S. Ihara, On the study of hydrogen production from water using solar thermal energy, Int. J. Hydrogen Energy, 5 527–534 (1980).

    Article  Google Scholar 

  37. A. Yogev, A. Kribus, M. Epstein and A. Kogan, Solar “Thermal Reflector” systems: A new approach for high-temperature solar plants, Int. J. Hydrogen Energy 26 239–245 (1998).

    Article  Google Scholar 

  38. A. Kribus, P. Doron, R. Rubin, J. Karni, R. Reuven, S. Duchan, and E. Taragan, A multistage solar receiver: the route to high temperature, Solar Energy, 67 2–11 (2000).

    Google Scholar 

  39. A. Kogan, Direct solar thermal splitting of water and on-site separation of the products. IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor, Int. J. Hydrogen Energy, 25 1043–1050 (2000).

    Article  Google Scholar 

  40. H. Naito and H. Arashi, Hydrogen production from direct water splitting at high temperatures using a ZrO2-TiO2-Y2O3 membrane, Solid State Ionics, 79 366–370 (1995).

    Article  Google Scholar 

  41. R. P. Omorjan, R. N. Paunovic, M. N. Tekic, and M. G. Antov, Maximal extent of an isothermal reversible gas-phase reaction in single- and double-membrane reaction; direct thermal splitting of water, Int. J. Hydrogen Energy, 26 203–212 (2001).

    Article  Google Scholar 

  42. A. Kogan, Direct solar thermal splitting of water and on-site separation of the products. I. Theoretical evaluation of hydrogen yield, Int. J. Hydrogen Energy, 22 481–486 (1997).

    Google Scholar 

  43. A. Kogan, E. Spiegler, and M. Wolfshtein, Direct solar thermal splitting of water and onsite separation of the products. III. Improvement of reactor efficiency by steam entrainment, Int. J. Hydrogen Energy, 25 739–745 (2000).

    Article  Google Scholar 

  44. S. Z. Baykara, Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency, Int. J. Hydrogen Energy, 29 1451–1458 (2004).

    Article  Google Scholar 

  45. S. Z. Baykara, Experimental solar water thermolysis, Int. J. Hydrogen Energy, 29 1459– 1469 (2004).

    Article  Google Scholar 

  46. N. Serpone, D. Lawless, and R. Terzian, Solar fuels: status and perspectives, Solar Energy, 49 221–234 (1992).

    Article  Google Scholar 

  47. J. Funk, Thermochemical hydrogen production past and present, Int. J. Hydrogen Energy, 26 185–190 (2001).

    Article  Google Scholar 

  48. D. OKeefe, C. Allen, G. Besenbruch, L. Brown, J. Norman, R. Sharp, and K. McCorkle, Preliminary results from bench-scale testing of sulfur-iodine thermochemical watersplitting cycle, Int. J. Hydrogen Energy, 7 381–392 (1982).

    Article  Google Scholar 

  49. M. Sakurai, E. Bilgen, A. Tsutsumi, and K. Yoshida, Solar UT-3 thermochemical cycle for hydrogen production, Solar Energy, 57 51–58 (1996).

    Article  Google Scholar 

  50. T. Nakamura, Hydrogen production from water utilizing solar heat at high temperatures, Solar Energy, 19 467–475 (1977).

    Article  Google Scholar 

  51. A. Steinfeld, S. Sanders, and R. Palumbo, Design aspects of solar thermochemical engineering, Solar Energy, 65 43–53 (1999).

    Article  Google Scholar 

  52. A. Tofighi, Ph.D. Thesis, L’Institut National Polytechnique de Toulouse, France, 1982.

    Google Scholar 

  53. F. Sibieude, M. Ducarroir, A. Tofighi, and J. Ambriz, High-temperature experiments with a solar furnace: the decomposition of Fe3O4,Mn3O4, CdO, Int. J. Hydrogen Energy, 7 79– 88 (1982).

    Article  Google Scholar 

  54. R. D. Palumbo, A. Rouanet, and G. Pichelin, The solar thermal decomposition of TiO2 above 2200 K and its use in the production of Zn from ZnO, Energy - Int. J., 20 857– 868 (1995).

    Google Scholar 

  55. R. Palumbo, J. Lede, O. Boutin, E. Elorza Ricart, A. Steinfeld, S. Moeller, A. Weidenkaff, E. A. Fletcher, and J. Bielicki, The production of Zn from ZnO in a single step high temperature solar decomposition process, Chem. Eng. Sci., 53 2503–2518 (1998).

    Article  Google Scholar 

  56. M. Sturzenegger and P. Nuesch, Efficiency analysis for a manganese-oxide-based thermochemical cycle, Energy, 24 959–970 (1999).

    Article  Google Scholar 

  57. K. Ehrensberger, A. Frei, P. Kuhn, H. R. Oswald, and P. Hug, Comparative experimental investigations on the water-splitting reaction with iron oxide Fe1-yO and iron manganese oxides (Fe1-xMnx) 1-yO, Solid State Ionics, 78 151–160 (1995).

    Article  Google Scholar 

  58. Y. Tamaura, A. Steinfeld, P. Kuhn, and K. Ehrensberger, Production of solar hydrogen by a novel, 2-step, watersplitting thermochemical cycle, Energy, 20 325–330 (1995).

    Article  Google Scholar 

  59. Y. Tamaura, M. Kojima, Y. Sano, Y. Ueda, N. Hasegawa, and M. Tsuji, Thermodynamic evaluation of watersplitting by a cation-excessive (Ni, Mn) ferrite, Int. J. Hydrogen Energy, 23 1185–1191 (1998).

    Article  Google Scholar 

  60. A. Weidenkaff, A. Reller, A. Wokaun, and A. Steinfeld, Thermogravimetric analysis of the ZnO/Zn water splitting cycle, Thermochim. Acta, 359 69–75 (2000).

    Article  Google Scholar 

  61. A. Weidenkaff, A. Reller, F. Sibieude, A. Wokaun, and A. Steinfeld, Experimental investigations on the crystallization of zinc by direct irradiation of zinc oxide in a solar furnace, Chem. Mater., 12 2175–2181 (2000).

    Article  Google Scholar 

  62. S. Moeller and R. Palumbo, Solar thermal decomposition kinetics of ZnO in the temperature range 1950–2400 K, Chem. Eng. Sci., 56 4505–4515 (2001).

    Article  Google Scholar 

  63. A. Weidenkaff, A. Wuillemin, A. Steinfeld, A. Wokaun, B. Eichler, and A. Reller, The direct solar thermal dissociation of ZnO: condensation and crystallization of Zn in the presence of oxygen, Solar Energy, 65 59–69 (1999).

    Article  Google Scholar 

  64. E. A. Fletcher, Solar thermal and solar quasi-electrolytic processing and separations: zinc from zinc oxide as an example, Ind. Eng. Chem. Res., 38 2275–2282 (1999).

    Article  Google Scholar 

  65. E. A. Fletcher, F. Macdonald, and D. Kunnerth, High temperature solar electrothermal processing II. Zinc from zinc oxide, Energy, 10 1255–1272 (1985).

    Article  Google Scholar 

  66. D. J. Parks, K.L. Scholl, and E.A. Fletcher, A study of the use of Y2O3 doped ZrO2 membranes for solar electro-thermal and solar thermal separations, Energy, 13 121 –136 (1988).

    Article  Google Scholar 

  67. R. D. Palumbo and E. A. Fletcher, High temperature solar electro-thermal processing. III. Zinc from zinc oxide at 1200–1675 K using a non-consumable anode, Energy, 13 319–332 (1988).

    Article  Google Scholar 

  68. P. Haueter, S. Moeller, R. Palumbo, and A. Steinfeld, The production of zinc by thermal dissociation of zinc oxide - solar chemical reactor design, Solar Energy 67 161–167 (1999).

    Article  Google Scholar 

  69. H. Aoki, H. Kaneko, N. Hasegawa, H. Ishihara, A. Suzuki, and Y. Tamaura, The ZnFe2O4/(ZnO+Fe3O4) system for H2 production using concentrated solar energy, Solid State Ionics, 172, 113-116, 2004

    Google Scholar 

  70. M. Inoue, N. Hasewaga, R. Uehara, N. Gokon, H. Kaneko, and Y. Tamaura, Solar hydrogen generation with H2O/ZNO/MnFe2O4 system, Solar Energy, 76 309–315 (2004).

    Article  Google Scholar 

  71. C. Perkins and A. W. Weimer, Likely near-term solar-thermal water splitting technologies, Int. J. of Hydrogen Energy, 29 1587–1599 (2004).

    Article  Google Scholar 

  72. H. Kaneko, N. Gokon, N. Hasewaga, and Y. Tamaura, Solar thermochemcial process for hydrogen production using ferrites, Energy, 30 2171–2178 (2005).

    Article  Google Scholar 

  73. P. Blum, Cell for electrolysis of steam at high temperture, U.S. Patent 3, 993,653, Dec. 9, 1975.

    Google Scholar 

  74. D. I. Tcherev, Device for solar energy Conversion by photo-electrolytic decomposition of water, U.S. Patent 3, 925,212, Nov. 23, 1976.

    Google Scholar 

  75. A. J. DeBethune, T. S. Licht, and N. S. Swendemna, The temperature coefficient of Electrode Potentials, J. Electrochem. Soc., 106 618–625 (1959).

    Google Scholar 

  76. J. O’M. Bockris, Energy Options, Halsted Press, New York, 1980.

    Google Scholar 

  77. D. E. Monahan, Process and apparatus for generating hydrogen and oxygen using solar energy, U.S. Patent 4,233,127, Nov. 11, 1980.

    Google Scholar 

  78. L. E. Crackel, Spectral converter, U.S. Patent 4,313,425, Feb. 2, 1982.

    Google Scholar 

  79. C. Alkan, M. Sekerci, and S. Kung, Production of hydrogen using Fresnel lens-solar electrochemical cell, Int. J. of Hydrogen Energy, 20 17–20 (1995).

    Article  Google Scholar 

  80. C. W. Neefe, Passive hydrogel fuel generator, U.S. Patent 4,511,450, April 16, 1985.

    Google Scholar 

  81. D. E. Soule, Hybrid solar energy generating system, U.S. Patent 4,700,013, Oct. 13, 1987.

    Google Scholar 

  82. G. Tindell, Electrical energy production apparatus, U.S. Patent 4,841,731, June 27, 1989.

    Google Scholar 

  83. J. B. Lasich, Production of hydrogen from solar radiation at high efficiency, U.S. Patent 5,973,825, Oct. 26, 1999.

    Google Scholar 

  84. S. R. Vosen and J. O. Keller, Hybrid energy storage systems for stand-alone electric power systems: optimization of system performance and cost through control strategies, Int. J. of Hydrogen Energy, 24 1139–1156 (1999).

    Article  Google Scholar 

  85. J. Padin, T. N. Veziroglu, and A. Shahin, Hybrid solar high-temperature hydrogen production system, Int. J. of Hydrogen Energy, 25 295–317 (2000).

    Article  Google Scholar 

  86. H. Izumi, Hybrid solar collector for generating electricity and heat by separating solar rays into long wavelength and short wavelength, U.S. Patent 6,057,504, May 2, 2000.

    Google Scholar 

  87. S. Licht, Efficient solar generation of hydrogen fuel - a fundamental analysis, Electrochemical Communications, 4 790–795 (2002).

    Article  Google Scholar 

  88. S. Licht, Solar water splitting to generate hydrogen fuel: Photothermal electrochemical analysis, J. Phys. Chem. B, 107 4253–4260 (2002).

    Article  Google Scholar 

  89. S. Licht, L. Halperin, M. Kalina, M. Zidman, and N. Halperin, Electrochemical Potential Tuned Solar Water Splitting, Chemical Communications, 3006-3007 (2003).

    Google Scholar 

  90. S. Licht, pH measurement in conentrated alkaline solutions, Anal. Chem., 57 514–519 (1987).

    Article  Google Scholar 

  91. T. S. Light, T. S, Licht, A. C. Bevilacqua, and Kenneth R. Morash, Conductivity and resistivity of ultrapure water, Electrochem. Solid State Lett., 8 E16–E19 (2005)

    Article  Google Scholar 

  92. S. Licht, Analysis in highly concentrated solutions: Potentiometric, conductance, evanescent, densometric, and spectroscopic methodolgies, in Electroanalytical Chemistry, Vol. 20, Edited by A. Bard and I. Rubinstein, Marcel Dekker, New York, 1998, pp. 87–140.

    Google Scholar 

  93. M. W. Chase, J. Phys. Chem. Ref. Data 14, Monograph 9 (JANF Thermochemical Tables, 4th edition), 1998.

    Google Scholar 

  94. M. W. Chase, J. Phys. Chem. Ref. Data Supplement No. 1 to 14, (JANF Thermochemical Tables, 3rd edition), 1986.

    Google Scholar 

  95. W. Kreuter and H. Hofmann, Electrolysis: The important energy transformer in a world of sustainable energy, Int. J. Hydrogen Energy, 23 661–669 (1998).

    Article  Google Scholar 

  96. M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, Solar Efficiency Tables (Version 17), Progr. Photovolt, 9 49–56 (2001).

    Article  Google Scholar 

  97. E. Fletcher, J. Solar Energy Eng, 123 143 (2001).

    Article  Google Scholar 

  98. A. Yogev, Quantum Processes for Solar Energy Conversion, Weizmann Sun Symp. Proc., Rehovot, Israel, 1996.

    Google Scholar 

  99. R. Kribus, J. Doron, P. Rubin, J. Karni, R. Reuven, S. Duchan, and T. Tragan, A multistage solar receiver, Solar Energy, 67 3–11 (1999).

    Article  Google Scholar 

  100. E. Segal and M. Epstein, The optics of the solar tower reflector, Solar Energy, 69 229– 241 (2001).

    Article  Google Scholar 

  101. B. Misch, A. Firus, and G. Brunner, An alternative method of oxidizing aqueous waste in supercritical water: oxygen supply by means of electrolysis, J. Supercritical Fluids, 17 227–237 (2000).

    Article  Google Scholar 

  102. O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochimica Acta, 45 2423–35 (2000).

    Article  Google Scholar 

  103. D. Kusunoki, Y. Kikuoka, V. Yanagi, K. Kugimiya, M. Yoshino, M. Tokura, K. Watanabe H. Miyamoto, S. Ueda, M. Sumi, and S. Tokunaga, Development of Mitsubishi - planar reversible cell - Fundamental test on hydrogen-utilized electric power storage system, Int. J. Hydrogen Energy, 20 831–834 (1995).

    Article  Google Scholar 

  104. K. Eguchi , T. Hatagishi, and H. Arai, Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia- or ceria-based electrolyte, Solid State Ionics, 86-8 1245–1249 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Licht, S. (2008). Thermochemical and Thermal/Photo Hybrid Solar Water Splitting. In: Rajeshwar, K., McConnell, R., Licht, S. (eds) Solar Hydrogen Generation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72810-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72810-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-72809-4

  • Online ISBN: 978-0-387-72810-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics