Skip to main content

Focused and Sustained Attention

  • Chapter
  • First Online:
Book cover The Neuropsychology of Attention

Abstract

The selection of stimuli and responses for cognitive processing is an essential element of attention. As we have discussed in the preceding chapters, the processes underlying selective attention has been a primary emphasis. Yet, as the cognitive science of attention evolved, it became evident that it was necessary to account for other important aspects of attentional phenomena. Kahneman’s capacity theory of attention was an early effort to address constraints on the amount of information that can be processed at any given point in time and the type of attentional limitations that emerge on concurrent task conditions [1]. Studies that demonstrated a distinction between controlled and automatic attentional processes [2–6] laid the groundwork for moving the cognitive science beyond its focus on attentional selection. The distinction between automatic and controlled attention provided an entrée into consideration of the neurophysiological underpinning of attention as measured by arousal and activation and their relationship to effort [7]. The fact that controlled attentional processes were fundamentally different from automatic processes with respect to capacity limitation constraints, performance characteristics over time, as well as demands for attentional focus, led to more directed study of focused attention and the notion that besides being tuned to certain information over others (selectivity), attention typically has an intensity. Furthermore, tasks with high demands for focused attention are often effortful and difficult to sustain for long periods of time, provided a foundation for expanding the concept of sustained attention beyond the simple vigilance paradigms of the information-processing approaches of the 1950s and 1960s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  2. Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology. General, 108, 356–388.

    Google Scholar 

  3. Kahneman, D., & Treisman, A. (1984). Changing views of attention and automaticity. In R. Parasuraman, D. R. Davies, & J. Beatty (Eds.), Varieties of attention. New York: Academic.

    Google Scholar 

  4. Schneider, W., Dumais, S. T., & Shriffrin, R. M. (1984). Automatic and control processing and attention. In R. Parasuraman, R. Davies, & R. J. Beatty (Eds.), Varieties of attention (pp. 1–27). New York: Academic.

    Google Scholar 

  5. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.

    Google Scholar 

  6. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127–190.

    Google Scholar 

  7. Pribram, K., & McGuinness, D. (1975). Arousal, activation, and effort in the control of attention. Psychological Review, 82(2), 116–149.

    PubMed  Google Scholar 

  8. James, W. (1892). Attention. In W. James (Ed.), Psychology (pp. 217–238). New York: Henry Holt and Company.

    Google Scholar 

  9. Wundt, W. (1902). Outlines of psychology (Trans., 2nd ed.). Oxford: Engelmann.

    Google Scholar 

  10. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology. General, 109, 160–174.

    Google Scholar 

  11. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.

    PubMed  Google Scholar 

  12. Posner, M. I. (2004). Cognitive neuroscience of attention. New York: Guilford Press.

    Google Scholar 

  13. Driver, J., & Baylis, G. C. (1998). Attention and visual object segmentation. In R. Parasuraman (Ed.), The attentive brain (pp. 299–327). Cambridge: MIT Press.

    Google Scholar 

  14. LaBerge, D. (1983). Spatial extent of attention to letters and words. Journal of Experimental Psychology. Human Perception and Performance, 9(3), 371–379.

    PubMed  Google Scholar 

  15. Tipper, S. P., & Driver, J. (1988). Negative priming between pictures and words in a selective attention task: Evidence for semantic processing of ignored stimuli. Memory & Cognition, 16(1), 64–70.

    Google Scholar 

  16. Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80(1–2), 127–158.

    PubMed  Google Scholar 

  17. Robertson, L. (1998). Visual spatial attention and parietal function: Their role in object perception. In R. Parasuraman (Ed.), The attentive brain (pp. 257–278). Cambridge: MIT Press.

    Google Scholar 

  18. Neisser, U. (1967). Cognitive psychology. New York: Appleton.

    Google Scholar 

  19. O’Grady, R. B., & Muller, H. J. (2000). Object-based selection operates on a grouped array of locations. Perception & Psychophysics, 62(8), 1655–1667.

    Google Scholar 

  20. Czigler, I., & Balazs, L. (1998). Object-related attention: An event-related potential study. Brain and Cognition, 38(2), 113–124.

    PubMed  Google Scholar 

  21. Vecera, S. P., & Farah, M. J. (1997). Is visual image segmentation a bottom-up or an interactive process? Perception & Psychophysics, 59(8), 1280–1296.

    Google Scholar 

  22. Kramer, A. F., Weber, T. A., & Watson, S. E. (1997). Object-based attentional selection—Grouped arrays or spatially invariant representations?: Comment on vecera and Farah (1994). Journal of Experimental Psychology, 126(1), 3–13.

    PubMed  Google Scholar 

  23. Schweinberger, S. R., Klos, T., & Sommer, W. (1995). Covert face recognition in prosopagnosia: A dissociable function? Cortex, 31(3), 517–529.

    PubMed  Google Scholar 

  24. Vecera, S. P., & Farah, M. J. (1994). Does visual attention select objects or locations? Journal of Experimental Psychology, 123(2), 146–160.

    PubMed  Google Scholar 

  25. Finke, K., Schneider, W. X., Redel, P., et al. (2007). The capacity of attention and simultaneous perception of objects: A group study of Huntington’s disease patients. Neuropsychologia, 45(14), 3272–3284.

    PubMed  Google Scholar 

  26. Schubo, A., Wykowska, A., & Muller, H. J. (2007). Detecting pop-out targets in contexts of varying homogeneity: Investigating homogeneity coding with event-related brain potentials (ERPs). Brain Research, 1138, 136–147.

    PubMed  Google Scholar 

  27. Linnell, K. J., Humphreys, G. W., McIntyre, D. B., Laitinen, S., & Wing, A. M. (2005). Action modulates object-based selection. Vision Research, 45(17), 2268–2286.

    PubMed  Google Scholar 

  28. von Muhlenen, A., & Muller, H. J. (2000). Perceptual integration of motion and form information: Evidence of parallel-continuous processing. Perception & Psychophysics, 62(3), 517–531.

    Google Scholar 

  29. Duncan, J., Humphreys, G., & Ward, R. (1997). Competitive brain activity in visual attention. Current Opinion in Neurobiology, 7(2), 255–261.

    PubMed  Google Scholar 

  30. Humphreys, G. W., Romani, C., Olson, A., Riddoch, M. J., & Duncan, J. (1994). Non-spatial extinction following lesions of the parietal lobe in humans. Nature, 372(6504), 357–359.

    PubMed  Google Scholar 

  31. Heathcote, A., & Mewhort, D. J. (1993). Representation and selection of relative position. Journal of Experimental Psychology. Human Perception and Performance, 19(3), 488–516.

    PubMed  Google Scholar 

  32. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458.

    PubMed  Google Scholar 

  33. Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology. General, 123(2), 161–177.

    PubMed  Google Scholar 

  34. Ho, M. C., & Yeh, S. L. (2009). Effects of instantaneous object input and past experience on object-based attention. Acta Psychologica, 132(1), 31–39.

    PubMed  Google Scholar 

  35. Lamy, D. (2000). Object-based selection under focused attention: A failure to replicate. Perception & Psychophysics, 62(6), 1272–1279.

    Google Scholar 

  36. Lamy, D., & Tsal, Y. (2000). Object features, object locations, and object files: Which does selective attention activate and when? Journal of Experimental Psychology. Human Perception and Performance, 26(4), 1387–1400.

    PubMed  Google Scholar 

  37. Martinez, A., Teder-Salejarvi, W., Vazquez, M., et al. (2006). Objects are highlighted by spatial attention. Journal of Cognitive Neuroscience, 18(2), 298–310.

    PubMed  Google Scholar 

  38. Martinez, A., Teder-Salejarvi, W., & Hillyard, S. A. (2007). Spatial attention facilitates selection of illusory objects: Evidence from event-related brain potentials. Brain Research, 1139, 143–152.

    PubMed  Google Scholar 

  39. Duncan, J. (1993). Similarity between concurrent visual discriminations: Dimensions and objects. Perception & Psychophysics, 54(4), 425–430.

    Google Scholar 

  40. Duncan, J. (1993). Coordination of what and where in visual attention. Perception, 22(11), 1261–1270.

    PubMed  Google Scholar 

  41. Baylis, G. C., & Driver, J. (1993). Visual attention and objects: Evidence for hierarchical coding of location. Journal of Experimental Psychology. Human Perception and Performance, 19(3), 451–470.

    PubMed  Google Scholar 

  42. Botvinick, M. M., Buxbaum, L. J., Bylsma, L. M., & Jax, S. A. (2009). Toward an integrated account of object and action selection: A computational analysis and empirical findings from reaching-to-grasp and tool-use. Neuropsychologia, 47(3), 671–683.

    PubMed  Google Scholar 

  43. Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information: The case of frequency of occurrence. American Psychologist, 39, 1372–1388.

    PubMed  Google Scholar 

  44. Neuman, O. (1984). Automatic processing: A review of recent findings and a plea for an old theory. In W. Prinz & A. F. Sanders (Eds.), Cogntion and motor processes. Berlin: Springer.

    Google Scholar 

  45. Spelke, E., Hirst, W. C., & Neisser, U. (1976). Skills of divided attention. Cognition, 4, 215–230.

    Google Scholar 

  46. Kahneman, D., & Henik, A. (1981). Perceptual organization and attention. In M. Kubovy & J. R. Pomerantz (Eds.), Perceptual organization. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  47. Cohen, J., & Huston, T. A. (1994). Progress in the use of interactive models for understanding attention and performance. In C. Umiltà & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing. Cambridge: Bradford.

    Google Scholar 

  48. Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332–361.

    PubMed  Google Scholar 

  49. Mewhort, D. J., Braun, J. G., & Heathcote, A. (1992). Response time distributions and the Stroop Task: A test of the Cohen, Dunbar, and McClelland (1990) model. Journal of Experimental Psychology. Human Perception and Performance, 18(3), 872–882.

    PubMed  Google Scholar 

  50. Stafford, T., & Gurney, K. N. (2004). The role of response mechanisms in determining reaction time performance: Pieron’s law revisited. Psychonomic Bulletin & Review, 11(6), 975–987.

    Google Scholar 

  51. Hirst, W. (1986). The psychology of attention. In J. E. LeDoux & W. Hirst (Eds.), Mind and brain: Dialogues in cognitive neuroscience (pp. 105–141). New York: Cambridge University.

    Google Scholar 

  52. Gopher, D. (1993). The skill of attention control: Acquisition and execution of attention strategies. In D. Meyer & S. Kornblum (Eds.), Attention and performance XIV: Synergies in experimental psychology. Cambridge: Bradford.

    Google Scholar 

  53. Peck, A. C., & Detweiler, M. C. (2000). Training concurrent multistep procedural tasks. Human Factors, 42(3), 379–389.

    PubMed  Google Scholar 

  54. Wulf, G., & Lewthwaite, R. (2009). Conceptions of ability affect motor learning. Journal of Motor Behavior, 41(5), 461–467.

    PubMed  Google Scholar 

  55. Wulf, G., & Shea, C. H. (2002). Principles derived from the study of simple skills do not generalize to complex skill learning. Psychonomic Bulletin & Review, 9(2), 185–211.

    Google Scholar 

  56. Wulf, G., & Prinz, W. (2001). Directing attention to movement effects enhances learning: A review. Psychonomic Bulletin & Review, 8(4), 648–660.

    Google Scholar 

  57. Wulf, G., McNevin, N., & Shea, C. H. (2001). The automaticity of complex motor skill learning as a function of attentional focus. Quarterly Journal of Experimental Psychology, 54(4), 1143–1154.

    PubMed  Google Scholar 

  58. Wulf, G., Lauterbach, B., & Toole, T. (1999). The learning advantages of an external focus of attention in golf. Research Quarterly for Exercise and Sport, 70(2), 120–126.

    PubMed  Google Scholar 

  59. Schmidt, R. A., & Wulf, G. (1997). Continuous concurrent feedback degrades skill learning: Implications for training and simulation. Human Factors, 39(4), 509–525.

    PubMed  Google Scholar 

  60. Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1996). Where in the brain does visual attention select the forest and the trees? Nature, 382(6592), 626–628.

    PubMed  Google Scholar 

  61. Gould, J. D., & Schaffer, A. (1967). The effects of divided attention on visual monitoring of multi-channel displays. Human Factors, 9(3), 191–202.

    PubMed  Google Scholar 

  62. Hiscock, M., Inch, R., & Kinsbourne, M. (1999). Allocation of attention in dichotic listening: Differential effects on the detection and localization of signals. Neuropsychology, 13(3), 404–414.

    PubMed  Google Scholar 

  63. Brouwer, W., Verzendaal, M., van der Naalt, J., Smit, J., & van Zomeren, E. (2001). Divided attention years after severe closed head injury: The effect of dependencies between the subtasks. Brain and Cognition, 46(1–2), 54–56.

    PubMed  Google Scholar 

  64. Mangels, J. A., Craik, F. I., Levine, B., Schwartz, M. L., & Stuss, D. T. (2002). Effects of divided attention on episodic memory in chronic traumatic brain injury: A function of severity and strategy. Neuropsychologia, 40(13), 2369–2385.

    PubMed  Google Scholar 

  65. Emmanouil, T. A., & Treisman, A. (2008). Dividing attention across feature dimensions in statistical processing of perceptual groups. Perception & Psychophysics, 70(6), 946–954.

    Google Scholar 

  66. Treisman, A., & Souther, J. (1986). Illusory words: The roles of attention and of top-down constraints in conjoining letters to form words. Journal of Experimental Psychology. Human Perception and Performance, 12(1), 3–17.

    PubMed  Google Scholar 

  67. Treisman, A., & Paterson, R. (1984). Emergent features, attention, and object perception. Journal of Experimental Psychology. Human Perception and Performance, 10(1), 12–31.

    PubMed  Google Scholar 

  68. Shiffrin, R. M., & Schneider, W. (1984). Automatic and controlled processing revisited. Psychological Review, 91(2), 269–276.

    PubMed  Google Scholar 

  69. Sperling, G. (1967). Successive approximations to a model for short term memory. Acta Psychologica, 27, 285–292.

    PubMed  Google Scholar 

  70. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363(6430), 623–625.

    PubMed  Google Scholar 

  71. Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.

    PubMed  Google Scholar 

  72. Kahneman, D., Tursky, B., Shapiro, D., & Crider, A. (1969). Pupillary, heart rate and skin resistance changes during a mental task. Journal of Experimental Psychology, 79, 164–167.

    PubMed  Google Scholar 

  73. Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 1583–1585.

    PubMed  Google Scholar 

  74. Tursky, B., Shapiro, D., Crider, A., & Kahneman, D. (1969). Pupillary, heart rate, and skin resistance changes during a mental task. Journal of Experimental Psychology, 79(1), 164–167.

    PubMed  Google Scholar 

  75. Dalton, P., Santangelo, V., & Spence, C. (2009). The role of working memory in auditory selective attention. Quarterly Journal of Experimental Psychology (2006), 62(11), 2126–2132.

    Google Scholar 

  76. Dalton, P., Lavie, N., & Spence, C. (2009). The role of working memory in tactile selective attention. Quarterly Journal of Experimental Psychology (2006), 62(4), 635–644.

    Google Scholar 

  77. Lavie, N., & De Fockert, J. (2005). The role of working memory in attentional capture. Psychonomic Bulletin & Review, 12(4), 669–674.

    Google Scholar 

  78. Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology, 133(3), 339–354.

    PubMed  Google Scholar 

  79. Verrel, J., Lovden, M., Schellenbach, M., Schaefer, S., & Lindenberger, U. (2009). Interacting effects of cognitive load and adult age on the regularity of whole-body motion during treadmill walking. Psychology and Aging, 24(1), 75–81.

    PubMed  Google Scholar 

  80. Oberauer, K., & Bialkova, S. (2009). Accessing information in working memory: Can the focus of attention grasp two elements at the same time? Journal of Experimental Psychology, 138(1), 64–87.

    PubMed  Google Scholar 

  81. Poole, B. J., & Kane, M. J. (2009). Working-memory capacity predicts the executive control of visual search among distractors: The influences of sustained and selective attention. Quarterly Journal of Experimental Psychology (2006), 62(7), 1430–1454.

    Google Scholar 

  82. Oberauer, K. (2003). Selective attention to elements in working memory. Experimental Psychology, 50(4), 257–269.

    PubMed  Google Scholar 

  83. Berti, S., & Schroger, E. (2003). Working memory controls involuntary attention switching: Evidence from an auditory distraction paradigm. The European Journal of Neuroscience, 17(5), 1119–1122.

    PubMed  Google Scholar 

  84. Simon, S. R., Meunier, M., Piettre, L., Berardi, A. M., Segebarth, C. M., & Boussaoud, D. (2002). Spatial attention and memory versus motor preparation: Premotor cortex involvement as revealed by fMRI. Journal of Neurophysiology, 88(4), 2047–2057.

    PubMed  Google Scholar 

  85. Badecker, W., & Straub, K. (2002). The processing role of structural constraints on the interpretation of pronouns and anaphors. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(4), 748–769.

    PubMed  Google Scholar 

  86. Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(3), 411–421.

    PubMed  Google Scholar 

  87. Vasterling, J. J., Duke, L. M., Brailey, K., Constans, J. I., Allain, A. N., Jr., & Sutker, P. B. (2002). Attention, learning, and memory performances and intellectual resources in Vietnam veterans: PTSD and no disorder comparisons. Neuropsychology, 16(1), 5–14.

    PubMed  Google Scholar 

  88. Barnard, P. J., Scott, S. K., & May, J. (2001). When the central executive lets us down: Schemas, attention, and load in a generative working memory task. Memory, 9(4–6), 209–221.

    Google Scholar 

  89. McElree, B. (2001). Working memory and focal attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 27(3), 817–835.

    PubMed  Google Scholar 

  90. Wickelgren, I. (2001). Neurobiology. Working memory helps the mind focus. Science, 291(5509), 1684–1685.

    PubMed  Google Scholar 

  91. Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26(2), 263–276.

    Google Scholar 

  92. Sanford, A. J., Moxey, L. M., & Paterson, K. B. (1996). Attentional focusing with quantifiers in production and comprehension. Memory & Cognition, 24(2), 144–155.

    Google Scholar 

  93. Postal, V. (2004). Expertise in cognitive psychology: Testing the hypothesis of long-term working memory in a study of soccer players. Perceptual and Motor Skills, 99(2), 403–420.

    PubMed  Google Scholar 

  94. Kellogg, R. T. (2001). Long-term working memory in text production. Memory & Cognition, 29(1), 43–52.

    Google Scholar 

  95. Schultetus, R. S., & Charness, N. (1999). Recall or evaluation of chess positions revisited: The relationship between memory and evaluation in chess skill. The American Journal of Psychology, 112(4), 555–569.

    PubMed  Google Scholar 

  96. Gobet, F. (1998). Expert memory: A comparison of four theories. Cognition, 66(2), 115–152.

    PubMed  Google Scholar 

  97. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245.

    PubMed  Google Scholar 

  98. Posner, M. I. (1986). Chronometric explorations of the mind. New York: Oxford University Press.

    Google Scholar 

  99. Cohen, R. A., Sparling-Cohen, Y. A., & O’Donnell, B. F. (1993). The neuropsychology of attention. New York: Plenum Press.

    Google Scholar 

  100. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428.

    PubMed  Google Scholar 

  101. Salthouse, T. A., Babcock, R. L., & Shaw, R. J. (1991). Effects of adult age on structural and operational capacities in working memory. Psychology and Aging, 6(1), 118–127.

    PubMed  Google Scholar 

  102. Salthouse, T. A., Fristoe, N., McGuthry, K. E., & Hambrick, D. Z. (1998). Relation of task switching to speed, age, and fluid intelligence. Psychology and Aging, 13(3), 445–461.

    PubMed  Google Scholar 

  103. Salthouse, T. A., Fristoe, N. M., Lineweaver, T. T., & Coon, V. E. (1995). Aging of attention: Does the ability to divide decline? Memory & Cognition, 23(1), 59–71.

    Google Scholar 

  104. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028.

    PubMed  Google Scholar 

  105. Stern, Y., Habeck, C., Moeller, J., et al. (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex, 15(4), 394–402.

    PubMed  Google Scholar 

  106. Silverthorn, D. (2009). Human physiology: An integrated approach. Upper Saddle River: Benjamin Cummings, Pearson.

    Google Scholar 

  107. Mackworth, N. H. (1950). Researches in the measurement of human performance. MRC Special Report Series No. 268, H. M. Stationery Office.

    Google Scholar 

  108. Mackworth, J. F. (1969). Vigilance and habituation: A neuropsychological approach. Harmondsworth: Penguin.

    Google Scholar 

  109. Colquhoun, W. P. (1961). The effect of unwanted signals on performance on a vigilance task. Ergonomics, 4, 41–51.

    Google Scholar 

  110. Colquhoun, W. P., & Baddeley, A. D. (1964). Role of pretest expectancy in vigilance decrement. Journal of Experimental Psychology, 68, 156–160.

    PubMed  Google Scholar 

  111. Colquhoun, W. P., & Baddeley, A. D. (1967). Influence of signal probability during pretraining on vigilance decrement. Journal of Experimental Psychology, 73(1), 153–155.

    PubMed  Google Scholar 

  112. Jerison, H. J. (1959). Effects of noise on human performance. Journal of Applied Psychology, 43, 96–101.

    Google Scholar 

  113. Jerison, H. J. (1967). Signal detection theory in the analysis of human vigilance. Human Factors, 9, 285–288.

    PubMed  Google Scholar 

  114. Jerison, H. J., & Wallis, R. A. (1957). Performance on a simple vigilance task in noise and quiet. Journal of the Acoustical Society of America, 29, 1163–1165.

    Google Scholar 

  115. Broadbent, D. E. (1963). Some recent research from the Applied Psychological Research Unit, Cambridge. In D. N. Buckner & J. J. McGrath (Eds.), Vigilance: A symposium. New York: McGraw-Hill.

    Google Scholar 

  116. Baddeley, A. D., & Colquhoun, W. P. (1969). Signal probability and vigilance: A reappraisal of the ‘signal-rate’ effect. British Journal of Psychology, 60(2), 169–178.

    PubMed  Google Scholar 

  117. Broadbent, D. E., & Gregory, M. (1963). Vigilance considered as a statistical decision. British Journal of Psychology, 54, 309–323.

    PubMed  Google Scholar 

  118. Broadbent, D. E., & Gregory, M. (1965). Effects of noise and of signal rate upon vigilance analysed by means of decision theory. Human Factors, 7(2), 155–162.

    PubMed  Google Scholar 

  119. Colquhoun, W. P. (1966). Training for vigilance: A comparison of different techniques. Human Factors, 8, 7–12.

    PubMed  Google Scholar 

  120. Mackworth, J. F., & Taylor, M. M. (1963). The d′ measure of signal detectability in vigilance-like situations. Canadian Journal of Psychology, 17, 302–325.

    PubMed  Google Scholar 

  121. Mackworth, J. F. (1965). Deterioration of signal detectability during a vigilance task as a function of background event rate. Psychonomic Sciences., 3, 421–422.

    Google Scholar 

  122. Corcoran, D. W., & Houston, T. G. (1977). Is the lemon test an index of arousal level? British Journal of Psychology, 68(3), 361–364.

    PubMed  Google Scholar 

  123. Corcoran, D. W. J., Mullin, J., Rainey, M. T., & Frith, G. (1977). The effects of raised signal and noise amplitude during the course of vigilance tasks. New York: Academic.

    Google Scholar 

  124. Corcoran, D. W., & Houston, T. G. (1977). Is the lemon test an index of arousal level? The British Journal of Psychiatry, 68, 361–364.

    Google Scholar 

  125. McGrath, J. J. (1963). Irrelevant stimulation and vigilance performance. In D. N. Buckner & J. J. McGrath (Eds.), In “Vigilance: A Symposium”. New York: McGraw-Hill.

    Google Scholar 

  126. McGrath, J. J. (1965). Performance sharing in an audio-visual vigilance task. Human Factors, 7, 141–153.

    PubMed  Google Scholar 

  127. Broadbent, D. E. (1971). Decision and stress. London: Academic.

    Google Scholar 

  128. Parasuraman, R. (1984). Sustained attention in detection and discrimination. In R. Parasuraman, R. Davies, & R. J. Beatty (Eds.), Varieties of attention (pp. 243–289). New York: Academic.

    Google Scholar 

  129. Parasuraman, R., Warm, J. S., & See, J. E. (1998). Brain systems of vigilance. In R. Parasuraman (Ed.), The attentive brain (pp. 221–256). Cambridge: MIT Press.

    Google Scholar 

  130. Warm, J. S., & Warm, J. S. (1979). Psychology of perception. New York: Holt, Rineheart, Winston.

    Google Scholar 

  131. Brouwer, W. H., & van Wolffelaar, P. C. (1985). Sustained attention and sustained effort after closed head injury: Detection and 0.10 Hz heart rate variability in a low event rate vigilance task. Cortex, 21(1), 111–119.

    PubMed  Google Scholar 

  132. Whyte, J., Polansky, M., Fleming, M., Coslett, H. B., & Cavallucci, C. (1995). Sustained arousal and attention after traumatic brain injury. Neuropsychologia, 33(7), 797–813.

    PubMed  Google Scholar 

  133. Cohen, R., Lohr, I., Paul, R., & Boland, R. (2001). Impairments of attention and effort among patients with major affective disorders. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(3), 385–395.

    PubMed  Google Scholar 

  134. Robbins, T. W. (2000). From arousal to cognition: The integrative position of the prefrontal cortex. Progress in Brain Research, 126, 469–483.

    PubMed  Google Scholar 

  135. Robbins, T. W., Granon, S., Muir, J. L., Durantou, F., Harrison, A., & Everitt, B. J. (1998). Neural systems underlying arousal and attention. Implications for drug abuse. Annals of the New York Academy of Sciences, 846, 222–237.

    PubMed  Google Scholar 

  136. Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276–292.

    PubMed  Google Scholar 

  137. Kahneman, D., Beatty, J., & Pollack, I. (1967). Perceptual deficit during a mental task. Science, 157(3785), 218–219.

    PubMed  Google Scholar 

  138. Porges, S. W. (1972). Heart rate variability and deceleration as indexes of reaction time. Journal of Experimental Psychology, 92(1), 103–110.

    PubMed  Google Scholar 

  139. Thackray, R. I. (1968). Patterns of physiological activity accompanying performance on a perceptual-motor task (pp. 1–11). AM 69–8. AM [reports]. United States.

    Google Scholar 

  140. Doussard-Roosevelt, J. A., McClenny, B. D., & Porges, S. W. (2001). Neonatal cardiac vagal tone and school-age developmental outcome in very low birth weight infants. Developmental Psychobiology, 38(1), 56–66.

    PubMed  Google Scholar 

  141. Fox, N. A., & Porges, S. W. (1985). The relation between neonatal heart period patterns and developmental outcome. Child Development, 56(1), 28–37.

    PubMed  Google Scholar 

  142. Bazhenova, O. V., Stroganova, T. A., Doussard-Roosevelt, J. A., Posikera, I. A., & Porges, S. W. (2007). Physiological responses of 5-month-old infants to smiling and blank faces. International Journal of Psychophysiology, 63(1), 64–76.

    PubMed  Google Scholar 

  143. Suess, P. E., Porges, S. W., & Plude, D. J. (1994). Cardiac vagal tone and sustained attention in school-age children. Psychophysiology, 31(1), 17–22.

    PubMed  Google Scholar 

  144. Porges, S. W. (1984). Physiologic correlates of attention: A core process underlying learning disorders. Pediatric Clinics of North America, 31(2), 371–385.

    PubMed  Google Scholar 

  145. Porges, S. W., & Humphrey, M. M. (1977). Cardiac and respiratory responses during visual search in nonretarded children and retarded adolescents. American Journal of Mental Deficiency, 82(2), 162–169.

    PubMed  Google Scholar 

  146. Cacioppo, J. T., & Petty, R. E. (1981). Electromyograms as measures of extent and affectivity of information processing. American Psychologist, 36(5), 441–456.

    PubMed  Google Scholar 

  147. Cacioppo, J. T., & Petty, R. E. (1981). Electromyographic specificity during covert information processing. Psychophysiology, 18(5), 518–523.

    PubMed  Google Scholar 

  148. Cohen, R. A., & Waters, W. (1985). Psychophysiological correlates of levels and states of cognitive processing. Neuropsychologia, 23, 243–256.

    PubMed  Google Scholar 

  149. Diehr, M. C., Heaton, R. K., Miller, W., & Grant, I. (1998). The Paced Auditory Serial Addition Task (PASAT): Norms for age, education, and ethnicity. Assessment, 5(4), 375–387.

    PubMed  Google Scholar 

  150. Gonzalez, R., Grant, I., Miller, S. W., et al. (2006). Demographically adjusted normative standards for new indices of performance on the Paced Auditory Serial Addition Task (PASAT). The Clinical Neuropsychologist, 20(3), 396–413.

    PubMed  Google Scholar 

  151. Wiens, A. N., Fuller, K. H., & Crossen, J. R. (1997). Paced Auditory Serial Addition Test: Adult norms and moderator variables. Journal of Clinical and Experimental Neuropsychology, 19(4), 473–483.

    PubMed  Google Scholar 

  152. Wingenfeld, S. A., Holdwick, D. J., Jr., Davis, J. L., & Hunter, B. B. (1999). Normative data on computerized paced auditory serial addition task performance. The Clinical Neuropsychologist, 13(3), 268–273.

    PubMed  Google Scholar 

  153. Movius, H. L., & Allen, J. J. (2005). Cardiac Vagal Tone, defensiveness, and motivational style. Biological Psychology, 68(2), 147–162.

    PubMed  Google Scholar 

  154. Bazhenova, O. V., Plonskaia, O., & Porges, S. W. (2001). Vagal reactivity and affective adjustment in infants during interaction challenges. Child Development, 72(5), 1314–1326.

    PubMed  Google Scholar 

  155. Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology, 32(4), 301–318.

    PubMed  Google Scholar 

  156. Hockey, G. R. J. (1970). Effect of loud noise on attentional selectivity. Quarterly Journal of Experimental Psychology, 22, 28–36.

    Google Scholar 

  157. Hockey, G. R. J. (1970). Signal probability and spatial location as possible bases for increased selectivity in noise. Quarterly Journal of Experimental Psychology, 22, 37–42.

    Google Scholar 

  158. Hockey, G. R. J. (1978). Attentional selectivity and the problems of replication: A reply to Forster and Grierson. The British Journal of Psychiatry, 69, 499–503.

    Google Scholar 

  159. Hockey, G. R. J. (1979). Stress and the cognitive components of skilled performance. In V. Hamilton & D. M. Warburton (Eds.), Human stress and cognition. Chichester: Wiley.

    Google Scholar 

  160. Haier, R., Siegel, B. J., Nuechterlein, K. H., Hazlett, E., et al. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199–217.

    Google Scholar 

  161. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning & Verbal Behavior., 11, 671–684.

    Google Scholar 

  162. McArdle, W., Katch, F. I., & Katch, V. L. (2009). Exercise physiology: Nutrition, energy, and human performance (7th ed.). Philadelphia: Lippincott Williams & Wilkins: Wolters Kluwer Health.

    Google Scholar 

  163. Broadbent, D. E. (1979). Is a fatigue test now possible? Ergonomics, 22, 1277–1290.

    PubMed  Google Scholar 

  164. Broadbent, D. E. (1957). Effects of noise of high and low frequency on behavior. Ergonomics, 1, 21–29.

    Google Scholar 

  165. Bartley, S. H. (1981). Fatigue. Perceptual and Motor Skills, 53, 958.

    PubMed  Google Scholar 

  166. Cohen, R. A., & Fisher, M. (1989). Amantadine treatment of fatigue associated with multiple sclerosis. Arch Neurol, 46, 676–680.

    PubMed  Google Scholar 

  167. Cohen, R. A., & Fisher, M. (1988). Neuropsychological correlates of fatigue associated with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 10(1), 48.

    Google Scholar 

  168. Krupp, L. B., Alvarez, L. A., LaRocca, N. G., & Scheinberg, L. C. (1988). Fatigue in multiple sclerosis. Archives of Neurology, 45, 435–437.

    PubMed  Google Scholar 

  169. DeLuca, J., Genova, H. M., Hillary, F. G., & Wylie, G. (2008). Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. Journal of Neurological Sciences, 270(1–2), 28–39.

    Google Scholar 

  170. DeLuca, J., Johnson, S. K., Beldowicz, D., & Natelson, B. H. (1995). Neuropsychological impairments in chronic fatigue syndrome, multiple sclerosis, and depression. Journal of Neurology, Neurosurgery, and Psychiatry, 58(1), 38–43.

    PubMed  Google Scholar 

  171. DeLuca, J., Johnson, S. K., & Natelson, B. H. (1993). Information processing efficiency in chronic fatigue syndrome and multiple sclerosis. Archives of Neurology, 50(3), 301–304.

    PubMed  Google Scholar 

  172. Deluca, J., Johnson, S. K., & Natelson, B. H. (1994). Neuropsychiatric status of patients with chronic fatigue syndrome: An overview. Toxicology and Industrial Health, 10(4–5), 513–522.

    PubMed  Google Scholar 

  173. Johnson, S. K., Lange, G., DeLuca, J., Korn, L. R., & Natelson, B. (1997). The effects of fatigue on neuropsychological performance in patients with chronic fatigue syndrome, multiple sclerosis, and depression. Applied Neuropsychology, 4(3), 145–153.

    PubMed  Google Scholar 

  174. Lange, G., Wang, S., DeLuca, J., & Natelson, B. H. (1998). Neuroimaging in chronic fatigue syndrome. The American Journal of Medicine, 105(3A), 50S–53S.

    PubMed  Google Scholar 

  175. Hull, C. L. (1943). Principles of behavior. New York: Appleton-Century.

    Google Scholar 

  176. Wilkinson, R. T. (1962). Muscle tension during mental work under sleep deprivation. Journal of Experimental Psychology, 64, 565–571.

    PubMed  Google Scholar 

  177. Malmo, R. B., & Surwillo, W. W. (1960). Sleep deprivation: Changes in performance and physiological indicants of activation. Psychological Monograph, 74 (Whole No. 502).

    Google Scholar 

  178. Kahol, K., Leyba, M. J., Deka, M., et al. (2008). Effect of fatigue on psychomotor and cognitive skills. American Journal of Surgery, 195(2), 195–204.

    PubMed  Google Scholar 

  179. Roach, G. D., Dawson, D., & Lamond, N. (2006). Can a shorter psychomotor vigilance task be used as a reasonable substitute for the ten-minute psychomotor vigilance task? Chronobiology International, 23(6), 1379–1387.

    PubMed  Google Scholar 

  180. Petrilli, R. M., Roach, G. D., Dawson, D., & Lamond, N. (2006). The sleep, subjective fatigue, and sustained attention of commercial airline pilots during an international pattern. Chronobiology International, 23(6), 1357–1362.

    PubMed  Google Scholar 

  181. Dufour, A., Touzalin, P., & Candas, V. (2007). Time-on-task effect in pseudoneglect. Experimental Brain Research. Experimentelle Hirnforschung, 176(3), 532–537.

    Google Scholar 

  182. Arnedt, J. T., Owens, J., Crouch, M., Stahl, J., & Carskadon, M. A. (2005). Neurobehavioral performance of residents after heavy night call vs after alcohol ingestion. Journal of the American Medical Association, 294(9), 1025–1033.

    PubMed  Google Scholar 

  183. Thorne, D. R., Johnson, D. E., Redmond, D. P., Sing, H. C., Belenky, G., & Shapiro, J. M. (2005). The Walter Reed palm-held psychomotor vigilance test. Behavior Research Methods, 37(1), 111–118.

    PubMed  Google Scholar 

  184. Bourgeois-Bougrine, S., Carbon, P., Gounelle, C., Mollard, R., & Coblentz, A. (2003). Perceived fatigue for short- and long-haul flights: A survey of 739 airline pilots. Aviation, Space, and Environmental Medicine, 74(10), 1072–1077.

    PubMed  Google Scholar 

  185. van der Hulst, M. (2003). Long workhours and health. Scandinavian Journal of Work, Environment & Health, 29(3), 171–188.

    Google Scholar 

  186. Weinger, M. B. (1999). Vigilance, boredom, and sleepiness. Journal of Clinical Monitoring and Computing, 15(7–8), 549–552.

    PubMed  Google Scholar 

  187. Fell, D. L., & Black, B. (1997). Driver fatigue in the city. Accident; Analysis and Prevention, 29(4), 463–469.

    PubMed  Google Scholar 

  188. Horne, J. A. (1988). Sleep loss and “divergent” thinking ability. Sleep, 11(6), 528–536.

    PubMed  Google Scholar 

  189. Lauber, J. K., & Kayten, P. J. (1988). Sleepiness, circadian dysrhythmia, and fatigue in transportation system accidents. Sleep, 11(6), 503–512.

    PubMed  Google Scholar 

  190. De Renzi, E., & Faglioni, P. (1966). [Influence of sleep deprivation and work on performance in vigilance tests]. Archivio di Psicologia, Neurologia e Psichiatria, 27(6), 552–566.

    PubMed  Google Scholar 

  191. Lowden, A., Anund, A., Kecklund, G., Peters, B., & Akerstedt, T. (2009). Wakefulness in young and elderly subjects driving at night in a car simulator. Accident; Analysis and Prevention, 41(5), 1001–1007.

    PubMed  Google Scholar 

  192. Jackson, M. L., Croft, R. J., Owens, K., et al. (2008). The effect of acute sleep deprivation on visual evoked potentials in professional drivers. Sleep, 31(9), 1261–1269.

    PubMed  Google Scholar 

  193. Otmani, S., Pebayle, T., Roge, J., & Muzet, A. (2005). Effect of driving duration and partial sleep deprivation on subsequent alertness and performance of car drivers. Physiology & Behavior, 84(5), 715–724.

    Google Scholar 

  194. Iudice, A., Bonanni, E., Gelli, A., et al. (2005). Effects of prolonged wakefulness combined with alcohol and hands-free cell phone divided attention tasks on simulated driving. Human Psychopharmacology, 20(2), 125–132.

    PubMed  Google Scholar 

  195. Hockey, G. R. J., & Colquhoun, W. P. (1972). Diurnal variation in human performance: A review. In W. P. Colquhoun (Ed.), Aspects of human efficiency: Diurnal rhythm and loss of sleep. London: English Universities Press.

    Google Scholar 

  196. Folkard, S., & Greeman, A. L. (1974). Salience induced muscle tension, and the ability to ignore irrelevant information. Quarterly Journal of Experimental Psychology, 26, 360–367.

    PubMed  Google Scholar 

  197. Folkard, S. (1975). Diurnal variation in logical reasoning. British Journal of Psychology, 66(1), 1–8.

    PubMed  Google Scholar 

  198. Folkard, S. (1979). Changes in immediate memory strategy under induced muscle tension and with time of day. Quarterly Journal of Experimental Psychology, 31, 621–633.

    Google Scholar 

  199. Folkard, S. (1979). Time of day and level of processing. Memory & Cognition, 7, 247–252.

    Google Scholar 

  200. Folkard, S., Marks, M., Minors, D. S., & Waterhouse, J. M. (1985). Circadian rhythms in human performance and affective state. Acta Psychiatrica Belgica, 85(5), 568–581.

    PubMed  Google Scholar 

  201. Folkard, S., Totterdell, P., Minors, D., & Waterhouse, J. (1993). Dissecting circadian performance rhythms: Implications for shiftwork. Ergonomics, 36(1–3), 283–288.

    PubMed  Google Scholar 

  202. Folkard, S., & Monk, T. H. (1980). Circadian rhythms in human memory. British Journal of Psychology, 71, 295–307.

    Google Scholar 

  203. Lydic, R., Albers, H. E., Tepper, B., & Moore-Ede, M. C. (1982). Three- dimensional structure of the mammalian suprachiasmatic nuclei: A comparative study of five species. The Journal of Comparative Neurology, 204, 225–237.

    PubMed  Google Scholar 

  204. Albers, H. E., Lydic, R., Gander, P. H., & Moore-Ede, M. C. (1984). Role of the suprachiasmatic nuclei in the circadian timing system of the squirrel monkey. I. The generation of rhythmicity. Brain Research, 300, 275–284.

    PubMed  Google Scholar 

  205. Cohen, R. A., & Albers, H. E. (1991). Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: A case study. Neurology, 41(5), 726–729.

    PubMed  Google Scholar 

  206. Cohen, R. A., Barnes, H. J., Jenkins, M., & Albers, H. E. (1997). Disruption of short-duration timing associated with damage to the suprachiasmatic region of the hypothalamus. Neurology, 48(6), 1533–1539.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.A. (2014). Focused and Sustained Attention. In: The Neuropsychology of Attention. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72639-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72639-7_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72638-0

  • Online ISBN: 978-0-387-72639-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics