Skip to main content

The Cell-Cell Communication System of Agrobacterium Tumefaciens

  • Chapter

The Ti plasmids of Agrobacterium tumefaciens carry almost all of the genes required for the formation of crown gall tumors and for the utilization of opines that are produced by these tumors. These plasmids also encode a cell-cell signalling (quorum sensing) system that is homologous to the LuxR-LuxI system of Vibrio fischeri. The LuxI orthologue TraI synthesizes a specific N-acylhomoserine lactone (AHL). This AHL is a diffusible signalling molecule and, when it accumulates to a sufficiently high concentration, it interacts with the LuxR-type transcription activator TraR. The traR gene is induced by particular opines, causing quorum sensing in this bacterium to occur only in the presence of these compounds. TraR activates genes required for conjugal transfer and vegetative replication of the Ti plasmid. In this chapter, we discuss the quorum sensing system of A. tumefaciens from a molecular perspective, and speculate on the possible roles this system may have in virulence and plant colonization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  • Beck von Bodman S, Hayman GT, Farrand SK (1992) Opine catabolism and con-jugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proc Natl Acad Sci USA 89: 643-647

    PubMed  CAS  Google Scholar 

  • Bouzar H, Chilton WS, Nesme X, Dessaux Y, Vaudequin V, Petit A, Jones JB, Hodge NC (1995) A new Agrobacterium strain isolated from aerial tumors on Ficus benjamina L. Appl Environ Microbiol 61: 65-73

    PubMed  CAS  Google Scholar 

  • Brumbley SM, Carney BF, Denny TP (1993) Phenotype conversion in Pseudomo-nas solanacearum due to spontaneous inactivation of PhcA, a putative LysR transcriptional regulator. J Bacteriol 175: 5477-5487

    PubMed  CAS  Google Scholar 

  • Busby S, Ebright RH (1999) Transcription activation by catabolite activator pro-tein (CAP). J Mol Biol 293: 199-213

    PubMed  CAS  Google Scholar 

  • Carlier A, Chevrot R, Dessaux Y, Faure D (2004) The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumu-lation of the N-acyl-homoserine lactone signal. Mol Plant-Microbe Interact 17: 951-957

    PubMed  CAS  Google Scholar 

  • Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D (2003) The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl Environ Microbiol 69: 4989-4993

    PubMed  CAS  Google Scholar 

  • Chai Y, Winans SC (2004) Site-directed mutagenesis of a LuxR-type quorum-sensing transcription factor: alteration of autoinducer specificity. Mol Micro-biol 51: 765-776

    CAS  Google Scholar 

  • Chai Y, Winans SC (2005a) Amino-terminal protein fusions to the TraR quorum-sensing transcription factor enhance protein stability and autoinducer-independent activity. J Bacteriol 187: 1219-1226

    PubMed  CAS  Google Scholar 

  • Chai Y, Winans SC (2005b) RepB protein of an Agrobacterium tumefaciens Ti plasmid binds to two adjacent sites between repA and repB for plasmid parti-tioning and autorepression. Mol Microbiol 56: 1574-1585

    Article  PubMed  CAS  Google Scholar 

  • Chai Y, Winans SC (2005c) A small antisense RNA downregulates expression of an essential replicase protein of an Agrobacterium tumefaciens Ti plasmid. Mol Microbiol 56: 1574-1585

    PubMed  CAS  Google Scholar 

  • Chai Y, Zhu J, Winans SC (2001) TrlR, a defective TraR-like protein of Agrobac-terium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers. Mol Microbiol 40: 414-421

    PubMed  CAS  Google Scholar 

  • Chater KF, Horinouchi S (2003) Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48: 9-15

    PubMed  CAS  Google Scholar 

  • Chen G, Malenkos JW, Cha MR, Fuqua C, Chen L (2004) Quorum-sensing an-tiactivator TraM forms a dimer that dissociates to inhibit TraR. Mol Microbiol 52: 1641-1651

    PubMed  CAS  Google Scholar 

  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal con-taining boron. Nature 415: 545-549

    PubMed  CAS  Google Scholar 

  • Cho H, Winans SC (2005) VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical sig-nals. Proc Natl Acad Sci USA 102: 14843-14848

    PubMed  CAS  Google Scholar 

  • Choi SH, Greenberg EP (1991) The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc Natl Acad Sci USA 88: 11115-11119

    PubMed  CAS  Google Scholar 

  • Choi SH, Greenberg EP (1992a) Genetic dissection of DNA binding and lumines-cence gene activation by the Vibrio fischeri LuxR protein. J Bacteriol 174: 4064-4069

    PubMed  CAS  Google Scholar 

  • Choi SH, Greenberg EP (1992b) Genetic evidence for multimerization of LuxR, the transcriptional activator of Vibrio fischeri luminescence. Mol Mar Biol Biotechnol 1: 408-413

    CAS  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lacto-nase. Nature 411: 813-817

    PubMed  CAS  Google Scholar 

  • Ducros VM, Lewis RJ, Verma CS, Dodson EJ, Leonard G, Turkenburg JP, Mur-shudov GN, Wilkinson AJ, Brannigan JA (2001) Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis. J Mol Biol 306: 759-771

    PubMed  CAS  Google Scholar 

  • Dunny GM, Leonard BA (1997) Cell-cell communication in gram-positive bacte-ria. Annu Rev Microbiol 51: 527-564

    PubMed  CAS  Google Scholar 

  • Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12: 54-60

    PubMed  CAS  Google Scholar 

  • Eberl L, Winson MK, Sternberg C, Stewart GS, Christiansen G, Chhabra SR, By-croft B, Williams P, Molin S, Givskov M (1996) Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20: 127-136

    PubMed  CAS  Google Scholar 

  • Egland KA, Greenberg EP (2001) Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. J Bacteriol 183: 382-386

    PubMed  CAS  Google Scholar 

  • Ellis JG, Kerr A, Petit A, Tempé J (1982) Conjugal transfer of nopaline and agropine Ti-plasmids - the role of agrocinopines. Mol Gen Genet 186: 269-273

    CAS  Google Scholar 

  • Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isola-tion and genetic analysis of functions from Vibrio fischeri. Cell 32: 773-781

    PubMed  CAS  Google Scholar 

  • Engebrecht J, Silverman M (1984) Identification of genes and gene products nec-essary for bacterial bioluminescence. Proc Natl Acad Sci USA 81: 4154-4158

    PubMed  CAS  Google Scholar 

  • Engebrecht J, Silverman M (1987) Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucleic Acids Res 15: 10455-10467

    PubMed  CAS  Google Scholar 

  • Farrand SK (1998) Conjugal plasmids and their transfer. In HP Spaink, A Kon-dorosi, PJJ Hooykaas, eds, The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, The Neth-erlands, pp 199-233

    Google Scholar 

  • Farrand SK, Hwang I, Cook DM (1996) The tra region of the nopaline-type Ti plasmid is a chimera with elements related to the transfer systems of RSF1010, RP4, and F. J Bacteriol 178: 4233-4247

    PubMed  CAS  Google Scholar 

  • Flavier AB, Clough SJ, Schell MA, Denny TP (1997) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26: 251-259

    PubMed  CAS  Google Scholar 

  • Fray RG, Throup JP, Daykin M, Wallace A, Williams P, Stewart GS, Grierson D (1999) Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat Biotechnol 17: 1017-1020

    PubMed  CAS  Google Scholar 

  • Fuqua C, Burbea M, Winans SC (1995) Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. J Bacteriol 177: 1367-1373

    PubMed  CAS  Google Scholar 

  • Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3: 685-695

    PubMed  CAS  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35: 439-468

    PubMed  CAS  Google Scholar 

  • Fuqua C, Winans SC (1996a) Conserved cis-acting promoter elements are re-quired for density-dependent transcription of Agrobacterium tumefaciens con-jugal transfer genes. J Bacteriol 178: 435-440

    PubMed  CAS  Google Scholar 

  • Fuqua C, Winans SC (1996b) Localization of OccR-activated and TraR-activated promoters that express two ABC-type permeases and the traR gene of Ti plasmid pTiR10. Mol Microbiol 20: 1199-1210

    PubMed  CAS  Google Scholar 

  • Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176: 2796-2806

    PubMed  CAS  Google Scholar 

  • Genetello C, Van Larebeke N, Holsters M, De Picker A, Van Montagu M, Schell J (1977) Ti plasmids of Agrobacterium as conjugative plasmids. Nature 265: 561-563

    PubMed  CAS  Google Scholar 

  • Givskov M, Ostling J, Eberl L, Lindum PW, Christensen AB, Christiansen G, Molin S, Kjelleberg S (1998) Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180: 742-745

    PubMed  CAS  Google Scholar 

  • Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67: 574-592

    PubMed  CAS  Google Scholar 

  • Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling H, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328

    PubMed  CAS  Google Scholar 

  • He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C (2003) Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expres-sion and influences growth rate. J Bacteriol 185: 809-822

    PubMed  CAS  Google Scholar 

  • Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69: 5941-5949

    PubMed  CAS  Google Scholar 

  • Hwang I, Cook DM, Farrand SK (1995) A new regulatory element modulates ho-moserine lactone-mediated autoinduction of Ti plasmid conjugal transfer. J Bacteriol 177: 449-458

    PubMed  CAS  Google Scholar 

  • Hwang I, Li PL, Zhang L, Piper KR, Cook DM, Tate ME, Farrand SK (1994) TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc Natl Acad Sci USA 91: 4639-4643

    PubMed  CAS  Google Scholar 

  • Hwang I, Smyth AJ, Luo ZQ, Farrand SK (1999) Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of Ti plasmid conjugal transfer genes. Mol Microbiol 34: 282-294

    PubMed  CAS  Google Scholar 

  • Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regula-tion of the Vibrio fischeri luminescence system. J Bacteriol 163: 1210-1214

    PubMed  CAS  Google Scholar 

  • Kerr A, Manigault P, Tempé J (1977) Transfer of virulence in vivo and in vitro in Agrobacterium. Nature 265: 560-561

    PubMed  CAS  Google Scholar 

  • Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quo-rum-sensing signals by Variovorax paradoxus. J Bacteriol 182: 6921-6926

    PubMed  CAS  Google Scholar 

  • Lee KG, Shibamoto T (2000) Antioxidant properties of aroma compounds isolated from soybeans and mung beans. J Agric Food Chem 48: 4290-4293

    PubMed  CAS  Google Scholar 

  • Li PL, Everhart DM, Farrand SK (1998) Genetic and sequence analysis of the pTiC58 trb locus, encoding a mating-pair formation system related to mem-bers of the type IV secretion family. J Bacteriol 180: 6164-6172

    PubMed  CAS  Google Scholar 

  • Li PL, Farrand SK (2000) The replicator of the nopaline-type Ti plasmid pTiC58 is a member of the repABC family and is influenced by the TraR-dependent quorum-sensing regulatory system. J Bacteriol 182: 179-188

    PubMed  CAS  Google Scholar 

  • Li PL, Hwang I, Miyagi H, True H, Farrand SK (1999) Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J Bacteriol 181: 5033-5041

    PubMed  CAS  Google Scholar 

  • Luo ZQ, Farrand SK (1999) Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. Proc Natl Acad Sci USA 96: 9009-9014

    PubMed  CAS  Google Scholar 

  • Luo ZQ, Qin Y, Farrand SK (2000) The antiactivator TraM interferes with the autoinducer-dependent binding of TraR to DNA by interacting with the C-terminal region of the quorum-sensing activator. J Biol Chem 275: 7713-7722

    PubMed  CAS  Google Scholar 

  • Luo ZQ, Smyth AJ, Gao P, Qin Y, Farrand SK (2003) Mutational analysis of TraR. Correlating function with molecular structure of a quorum-sensing tran-scriptional activator. J Biol Chem 278: 13173-13182

    PubMed  CAS  Google Scholar 

  • Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25: 1389-1403

    PubMed  CAS  Google Scholar 

  • Maris AE, Sawaya MR, Kaczor-Grzeskowiak M, Jarvis MR, Bearson SM, Kopka ML, Schröder I, Gunsalus RP, Dickerson RE (2002) Dimerization allows DNA target site recognition by the NarL response regulator. Nat Struct Biol 9: 771-778

    PubMed  CAS  Google Scholar 

  • Marti R, Cubero J, Daza A, Piquer J, Salcedo CI, Morente C, Lopez MM (1999) Evidence of migration and endophytic presence of Agrobacterium tumefa-ciens in rose plants. Eur J Plant Pathol 105: 39-50

    Google Scholar 

  • Moller-Jensen J, Jensen RB, Gerdes K (2000) Plasmid and chromosome segrega-tion in prokaryotes. Trends Microbiol 8: 313-320

    PubMed  CAS  Google Scholar 

  • More MI, Finger LD, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996) Enzy-matic synthesis of a quorum-sensing autoinducer through use of defined sub-strates. Science 272: 1655-1658

    PubMed  CAS  Google Scholar 

  • Newton JA, Fray RG (2004) Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol 6: 213-224

    PubMed  CAS  Google Scholar 

  • Oger P, Farrand SK (2001) Co-evolution of the agrocinopine opines and the agro-cinopine-mediated control of TraR, the quorum-sensing activator of the Ti plasmid conjugation system. Mol Microbiol 41: 1173-1185

    PubMed  CAS  Google Scholar 

  • Oger P, Farrand SK (2002) Two opines control conjugal transfer of an Agrobacte-rium plasmid by regulating expression of separate copies of the quorum-sensing activator gene traR. J Bacteriol 184: 1121-1131

    PubMed  CAS  Google Scholar 

  • Oger P, Kim KS, Sackett RL, Piper KR, Farrand SK (1998) Octopine-type Ti plasmids code for a mannopine-inducible dominant-negative allele of traR, the quorum-sensing activator that regulates Ti plasmid conjugal transfer. Mol Microbiol 27: 277-288

    PubMed  CAS  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15: 369-372

    PubMed  CAS  Google Scholar 

  • Pappas KM, Winans SC (2003a) A LuxR-type regulator from Agrobacterium tu-mefaciens elevates Ti plasmid copy number by activating transcription of plasmid replication genes. Mol Microbiol 48: 1059-1073

    PubMed  CAS  Google Scholar 

  • Pappas KM, Winans SC (2003b) The RepA and RepB autorepressors and TraR play opposing roles in the regulation of a Ti plasmid repABC operon. Mol Microbiol 49: 441-455

    PubMed  CAS  Google Scholar 

  • Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13: 27-33

    PubMed  CAS  Google Scholar 

  • Perombelon MCM (2002) Potato diseases caused by soft rot erwinias: an over-view of pathogenesis. Plant Pathol 51: 1-12

    Google Scholar 

  • Piper KR, Beck von Bodman S, Farrand SK (1993) Conjugation factor of Agro-bacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362: 448-450

    PubMed  CAS  Google Scholar 

  • Piper KR, Beck Von Bodman S, Hwang I, Farrand SK (1999) Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quo-rum sensing by the opine regulon in Agrobacterium. Mol Microbiol 32: 1077-1089

    PubMed  CAS  Google Scholar 

  • Qin Y, Luo ZQ, Farrand SK (2004a) Domains formed within the N-terminal re-gion of the quorum-sensing activator TraR are required for transcriptional ac-tivation and direct interaction with RpoA from Agrobacterium. J Biol Chem 279: 40844-40851

    PubMed  CAS  Google Scholar 

  • Qin Y, Luo ZQ, Smyth AJ, Gao P, Beck von Bodman S, Farrand SK (2000) Quo-rum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. Embo J 19: 5212-5221

    PubMed  CAS  Google Scholar 

  • Qin Y, Smyth AJ, Su S, Farrand SK (2004b) Dimerization properties of TraM, the antiactivator that modulates TraR-mediated quorum-dependent expression of the Ti plasmid tra genes. Mol Microbiol 53: 1471-1485

    PubMed  CAS  Google Scholar 

  • Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10: 365-370

    PubMed  CAS  Google Scholar 

  • Rosen R, Matthysse AG, Becher D, Biran D, Yura T, Hecker M, Ron EZ (2003) Proteome analysis of plant-induced proteins of Agrobacterium tumefaciens. FEMS Microbiol Ecol 44: 355-360

    PubMed  CAS  Google Scholar 

  • Savka MA, Black RC, Binns AN, Farrand SK (1996) Translocation and exudation of tumor metabolites in crown galled plants. Mol Plant-Microbe Interact 9: 310-313

    PubMed  CAS  Google Scholar 

  • Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by en-gineering bacterium utilization of a novel plant-produced resource. Nat Bio-technol 15: 363-368

    CAS  Google Scholar 

  • Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci USA 97: 8868-8873

    PubMed  CAS  Google Scholar 

  • Smadja B, Latour X, Faure D, Chevalier S, Dessaux Y, Orange N (2004) In-volvement of N-acylhomoserine lactones throughout plant infection by Erwinia carotovora subsp. atroseptica (Pectobacterium atrosepticum). Mol Plant-Microbe Interact 17: 1269-1278

    PubMed  CAS  Google Scholar 

  • Stevens AM, Dolan KM, Greenberg EP (1994) Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc Natl Acad Sci USA 91: 12619-12623

    PubMed  CAS  Google Scholar 

  • Suit RF, Eardley EA (1935) Secondary tumor formation on herbaceous hosts in-duced by Pseudomonas tumefaciens. Scientific Agriculture 15: 345-357

    Google Scholar 

  • Swiderska A, Berndtson AK, Cha MR, Li L, Beaudoin GM, 3rd, Zhu J, Fuqua C (2001) Inhibition of the Agrobacterium tumefaciens TraR quorum-sensing regulator. Interactions with the TraM anti-activator. J Biol Chem 276: 49449-49458

    PubMed  CAS  Google Scholar 

  • Tarbah FA, Goodman RN (1987) Systemic spread of Agrobacterium tumefaciens biovar 3 in the vascular system of grapes. Phytopathology 77: 915-920

    Google Scholar 

  • Vannini A, Volpari C, Di Marco S (2004) Crystal structure of the quorum-sensing protein TraM and its interaction with the transcriptional regulator TraR. J Biol Chem 279: 24291-24296

    PubMed  CAS  Google Scholar 

  • Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R, De Francesco R, Neddermann P, Marco SD (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. Embo J 21: 4393-4401

    PubMed  CAS  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41: 455-482

    Google Scholar 

  • Wang L, Helmann JD, Winans SC (1992) The A. tumefaciens transcriptional acti-vator OccR causes a bend at a target promoter, which is partially relaxed by a plant tumor metabolite. Cell 69: 659-667

    PubMed  CAS  Google Scholar 

  • White CE, Winans SC (2005) Identification of amino acid residues of the Agro-bacterium tumefaciens quorum-sensing regulator TraR that are critical for positive control of transcription. Mol Microbiol 55: 1473-1486

    PubMed  CAS  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quo-rum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25: 365-404

    PubMed  CAS  Google Scholar 

  • Williams DR, Thomas CM (1992) Active partitioning of bacterial plasmids. J Gen Microbiol 138: 1-16

    PubMed  CAS  Google Scholar 

  • Wisniewski-Dye F, Downie JA (2002) Quorum-sensing in Rhizobium. Antonie Van Leeuwenhoek 81: 397-407

    PubMed  CAS  Google Scholar 

  • Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida Jr. NF, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee Sr. D, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri P, Raymond C, Rouse R, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317-2323

    PubMed  CAS  Google Scholar 

  • Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6: 191-197

    PubMed  CAS  Google Scholar 

  • Zhang HB, Wang C, Zhang LH (2004) The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. Mol Microbiol 52: 1389-1401

    PubMed  CAS  Google Scholar 

  • Zhang HB, Wang LH, Zhang LH (2002a) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 99: 4638-4643

    PubMed  CAS  Google Scholar 

  • Zhang L, Murphy PJ, Kerr A, Tate ME (1993) Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362: 446-448

    PubMed  CAS  Google Scholar 

  • Zhang RG, Pappas T, Brace JL, Miller PC, Oulmassov T, Molyneaux JM, Anderson JC, Bashkin JK, Winans SC, Joachimiak A (2002b) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417: 971-974

    PubMed  CAS  Google Scholar 

  • Zhu J, Beaber JW, More MI, Fuqua C, Eberhard A, Winans SC (1998) Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol 180: 5398-5405

    PubMed  CAS  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182: 3885-3895

    PubMed  CAS  Google Scholar 

  • Zhu J, Winans SC (1998) Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein. Mol Microbiol 27: 289-297

    PubMed  CAS  Google Scholar 

  • Zhu J, Winans SC (1999) Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc Natl Acad Sci USA 96: 4832-4837

    PubMed  CAS  Google Scholar 

  • Zhu J, Winans SC (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci USA 98: 1507-1512

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

White, C.E., Winans, S.C. (2008). The Cell-Cell Communication System of Agrobacterium Tumefaciens. In: Tzfira, T., Citovsky, V. (eds) Agrobacterium: From Biology to Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72290-0_16

Download citation

Publish with us

Policies and ethics