Skip to main content

(Super)paramagnetic Nanoparticles: Applications in Noninvasive MR Imaging of Stem Cell Transfer

  • Chapter

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 102))

Abstract

Common techniques to monitor muscle stem cell transplants typically rely on ex vivo genetic modification to allow expression of reporter genes. Specific reporter genes allow for graft identification during post-mortem analysis. The use of these invasive techniques makes even simple and practical questions difficult and labor intensive to answer. The design and improvement of the stem cell-based therapies will be greatly facilitated by the development of sensitive, noninvasive, and nondestructive techniques for tracking stem cells following implantation or infusion. MR offers such an opportunity, due to its ability to obtain high-resolution 3D images repeatedly and noninasively. Reliable tracking by MR imaging can be achieved by labeling cells with (super)paramagnetic nanoparticles. In this chapter, we discuss recent advances in the development and applications of (super)paramagnetic nanoparticles for in vivo cell tracking and targeting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghi, M., Chiocca, E.A., 2005. Contribution of bone marrow-derived cells to blood vessels in ischemic tissues and tumors. Mol Ther 12, 994–1005.

    Article  PubMed  CAS  Google Scholar 

  • Ahrens, E.T., Feili-Hariri, M., Xu, H., Genove, G., Morel, P.A., 2003. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med 49, 1006–1013.

    Article  PubMed  CAS  Google Scholar 

  • Aime, S., Barge, A., Delli Castelli, D., Fedeli, F., Mortillaro, A., Nielsen, F.U., Terreno, E., 2002a. Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 47, 639–648.

    Article  CAS  Google Scholar 

  • Aime, S., Calabi, L., Biondi, L., De Miranda, M., Ghelli, S., Paleari, L., Rebaudengo, C., Terreno, E., 2005a. Iopamidol: Exploring the potential use of a well-established x-ray contrast agent for MRI. Magn Reson Med 53, 830–834.

    Article  CAS  Google Scholar 

  • Aime, S., Delli Castelli, D., Fedeli, F., Terreno, E., 2002b. A paramagnetic MRI-CEST agent responsive to lactate concentration. J Am Chem Soc 124, 9364–9365.

    Article  CAS  Google Scholar 

  • Aime, S., Delli Castelli, D., Terreno, E., 2005b. Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew Chem Int Ed Engl 44, 5513–5515.

    Article  CAS  Google Scholar 

  • Alivisatos, A.P., 1996. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100, 13226–13239.

    Article  CAS  Google Scholar 

  • Allen, M.J., MacRenaris, K.W., Venkatasubramanian, P.N., Meade, T.J., 2004. Cellular delivery of MRI contrast agents. Chem Biol 11, 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Allport, J.R., Weissleder, R., 2001. In vivo imaging of gene and cell therapies. Exp Hematol 29, 1237–1246.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla, A., Herrera, D.G., Wichterle, H., 2000. The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res 127, 1–11.

    PubMed  CAS  Google Scholar 

  • Anderson, S.A., Glod, J., Arbab, A.S., Noel, M., Ashari, P., Fine, H.A., Frank, J.A., 2005. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105, 420–425.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, S.A., Lee, K.K., Frank, J.A., 2006. Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest Radiol 41, 332–338.

    Article  PubMed  Google Scholar 

  • Anversa, P., Kajstura, J., Leri, A., Bolli, R., 2006. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113, 1451–1463.

    Article  PubMed  Google Scholar 

  • Aoki, I., Takahashi, Y., Chuang, K.H., Silva, A.C., Igarashi, T., Tanaka, C., Childs, R.W., Koretsky, A.P., 2006. Cell labeling for magnetic resonance imaging with the T1 agent manganese chloride. NMR Biomed 19, 50–59.

    Article  PubMed  CAS  Google Scholar 

  • Arai, T., Kofidis, T., Bulte, J.W., de Bruin, J., Venook, R.D., Berry, G.J., McConnell, M.V., Quertermous, T., Robbins, R.C., Yang, P.C., 2006. Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 t. Magn Reson Med 55, 203–209.

    Article  PubMed  Google Scholar 

  • Arbab, A.S., Bashaw, L.A., Miller, B.R., Jordan, E.K., Bulte, J.W., Frank, J.A., 2003. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76, 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  • Arbab, A.S., Liu, W., Frank, J.A., 2006a. Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices 3, 427–439.

    Article  CAS  Google Scholar 

  • Arbab, A.S., Pandit, S.D., Anderson, S.A., Yocum, G.T., Bur, M., Frenkel, V., Khuu, H.M., Read, E.J., Frank, J.A., 2006b. Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells 24, 671–678.

    Article  CAS  Google Scholar 

  • Arbab, A.S., Yocum, G.T., Kalish, H., Jordan, E.K., Anderson, S.A., Khakoo, A.Y., Read, E.J., Frank, J.A., 2004a. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104, 1217–1223.

    Article  CAS  Google Scholar 

  • Arbab, A.S., Yocum, G.T., Rad, A.M., Khakoo, A.Y., Fellowes, V., Read, E.J., Frank, J.A., 2005. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18, 553–559.

    Article  PubMed  CAS  Google Scholar 

  • Arbab, A.S., Yocum, G.T., Wilson, L.B., Parwana, A., Jordan, E.K., Kalish, H., Frank, J.A., 2004b. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging 3, 24–32.

    Article  CAS  Google Scholar 

  • Arriagada, F.J., Osseo-Asare, K., 1999. Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interface Sci 211, 210–220.

    Article  PubMed  CAS  Google Scholar 

  • Arteaga, C., Revel, D., Zhao, S., Hadour, G., Forrat, R., Oksendal, A., Canet, E., 1999. Myocardial “low reflow” assessed by Dy-DTPA-BMA-enhanced first-pass MR imaging in a dog model. J Magn Reson Imaging 9, 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Artemov, D., Bhujwalla, Z.M., Bulte, J.W., 2004. Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr Pharm Biotechnol 5, 485–494.

    Article  PubMed  CAS  Google Scholar 

  • Beache, G.M., Kulke, S.F., Kantor, H.L., Niemi, P., Campbell, T.A., Chesler, D.A., Gewirtz, H., Rosen, B.R., Brady, T.J., Weisskoff, R.M., 1998. Imaging perfusion deficits in ischemic heart disease with susceptibility-enhanced T2-weighted MRI: preliminary human studies. Magn Reson Imaging 16, 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Beck, B., Plant, D.H., Grant, S.C., Thelwall, P.E., Silver, X., Mareci, T.H., Benveniste, H., Smith, M., Collins, C., Crozier, S., Blackband, S.J., 2002. Progress in high field MRI at the University of Florida. Magma 13, 152–157.

    Article  PubMed  CAS  Google Scholar 

  • Benedetti, S., Pirola, B., Pollo, B., Magrassi, L., Bruzzone, M.G., Rigamonti, D., Galli, R., Selleri, S., Di Meco, F., De Fraja, C., Vescovi, A., Cattaneo, E., Finocchiaro, G., 2000. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 6, 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, H., Blackband, S.J., 2006. Translational neuroscience and magnetic-resonance microscopy. Lancet Neurol 5, 536–544.

    Article  PubMed  Google Scholar 

  • Berens, S.A., Colvin, D.C., Yu, C.G., Yezierski, R.P., Mareci, T.H., 2005. Evaluation of the pathologic characteristics of excitotoxic spinal cord injury with MR imaging. AJNR Am J Neuroradiol 26, 1612–1622.

    PubMed  Google Scholar 

  • Bhorade, R., Weissleder, R., Nakakoshi, T., Moore, A., Tung, C.H., 2000. Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjug Chem 11, 301–305.

    Article  PubMed  CAS  Google Scholar 

  • Billotey, C., Wilhelm, C., Devaud, M., Bacri, J.C., Bittoun, J., Gazeau, F., 2003. Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 49, 646–654.

    Article  PubMed  CAS  Google Scholar 

  • Blau, H.M., Brazelton, T.R., Weimann, J.M., 2001. The evolving concept of a stem cell: entity or function? Cell 105, 829–841.

    Article  PubMed  CAS  Google Scholar 

  • Boockvar, J.A., Schouten, J., Royo, N., Millard, M., Spangler, Z., Castelbuono, D., Snyder, E., O’Rourke, D., McIntosh, T., 2005. Experimental traumatic brain injury modulates the survival, migration, and terminal phenotype of transplanted epidermal growth factor receptor-activated neural stem cells. Neurosurgery 56, 163–171; discussion 171.

    PubMed  Google Scholar 

  • Bos, C., Delmas, Y., Desmouliere, A., Solanilla, A., Hauger, O., Grosset, C., Dubus, I., Ivanovic, Z., Rosenbaum, J., Charbord, P., Combe, C., Bulte, J.W., Moonen, C.T., Ripoche, J., Grenier, N., 2004. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233, 781–789.

    Article  PubMed  Google Scholar 

  • Boushel, R., Langberg, H., Olesen, J., Nowak, M., Simonsen, L., Bulow, J., Kjaer, M., 2000. Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green. J Appl Physiol 89, 1868–1878.

    PubMed  CAS  Google Scholar 

  • Brazelton, T.R., Blau, H.M., 2005. Optimizing techniques for tracking transplanted stem cells in vivo. Stem Cells 23, 1251–1265.

    Article  PubMed  Google Scholar 

  • Brown, M.A., Semelka, R.C., NetLibrary Inc., 1999. MRI basic principles and applications, 2nd ed. Wiley-Liss, New York.

    Google Scholar 

  • Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016.

    Article  PubMed  CAS  Google Scholar 

  • Brussee, V., Merly, F., Tardif, F., Tremblay, J.P., 1998. Normal myoblast implantation in MDX mice prevents muscle damage by exercise. Biochem Biophys Res Commun 250, 321–327.

    Article  PubMed  CAS  Google Scholar 

  • Bullok, K.E., Gammon, S.T., Violini, S., Prantner, A.M., Villalobos, V.M., Sharma, V., Piwnic-Worms, D., 2006. Permeation peptide conjugates for in vivo molecular imaging applications. Mol Imaging 5, 1–15.

    PubMed  Google Scholar 

  • Bulte J.W.M., Ben-Hur T., Miller B.R., Mizrachi-Kol R., Einstein O., Reinhartz E., Zywicke H.A., Douglas T., Frank J.A. MR microscopy of magnetically labeled neurospheres transplanted into the LewisEAE rat brain. Magn. Reson. Med. 2003; 50: 201–205.

    Article  PubMed  Google Scholar 

  • Bulte, J.W., Douglas, T., Witwer, B., Zhang, S.C., Lewis, B.K., van Gelderen, P., Zywicke, H., Duncan, I.D., Frank, J.A., 2002a. Monitoring stem cell therapy in vivo using magnetodendrimers as a new class of cellular MR contrast agents. Acad Radiol 9 Suppl 2, S332–S335.

    Article  Google Scholar 

  • Bulte, J.W., Douglas, T., Witwer, B., Zhang, S.C., Strable, E., Lewis, B.K., Zywicke, H., Miller, B., van Gelderen, P., Moskowitz, B.M., Duncan, I.D., Frank, J.A., 2001. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19, 1141–1147.

    Article  PubMed  CAS  Google Scholar 

  • Bulte, J.W., Duncan, I.D., Frank, J.A., 2002b. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 22, 899–907.

    Article  Google Scholar 

  • Bulte, J.W., Kostura, L., Mackay, A., Karmarkar, P.V., Izbudak, I., Atalar, E., Fritzges, D., Rodriguez, E.R., Young, R.G., Marcelino, M., Pittenger, M.F., Kraitchman, D.L., 2005. Feridex-labeled mesenchymal stem cells: cellular differentiation and MR assessment in a canine myocardial infarction model. Acad Radiol 12 Suppl 1, S2–S6.

    Article  PubMed  Google Scholar 

  • Bulte, J.W., Kraitchman, D.L., 2004. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17, 484–499.

    Article  PubMed  CAS  Google Scholar 

  • Bulte, J.W., Wu, C., Brechbiel, M.W., Brooks, R.A., Vymazal, J., Holla, M., Frank, J.A., 1998. Dysprosium-DOTA-PAMAM dendrimers as macromolecular T2 contrast agents. Preparation and relaxometry. Invest Radiol 33, 841–845.

    Article  PubMed  CAS  Google Scholar 

  • Bulte, J.W.M., Zhang, S., van Gelderen, P., Herynek, V., Jordan, E.K., Duncan, I.D., Frank, J.A., 1999. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad SciUSA96, 15256–15261.

    Article  CAS  Google Scholar 

  • Cahill, K.S., Gaidosh, G., Huard, J., Silver, X., Byrne, B.J., Walter, G.A., 2004a. Noninvasive monitoring and tracking of muscle stem cell transplants. Transplantation 78, 1626–1633.

    Article  Google Scholar 

  • Cahill, K.S., Germain, S., Byrne, B.J., Walter, G.A., 2004b. Non-invasive analysis of myoblast transplants in rodent cardiac muscle. Int J Cardiovasc Imaging 20, 593–598.

    Article  Google Scholar 

  • Cao, B., Zheng, B., Jankowski, R.J., Kimura, S., Ikezawa, M., Deasy, B., Cummins, J., Epperly, M., Qu-Petersen, Z., Huard, J., 2003. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol 5, 640–646.

    Article  PubMed  CAS  Google Scholar 

  • Caravan, P., 2006. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35, 512–523.

    Article  PubMed  CAS  Google Scholar 

  • Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B., 1999. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem Rev 99, 2293–2352.

    Article  PubMed  CAS  Google Scholar 

  • Caravan, P., Greenfield, M.T., Bulte, J.W., 2001. Molecular factors that determine Curie spin relaxation in dysprosium complexes. Magn Reson Med 46, 917–922.

    Article  PubMed  CAS  Google Scholar 

  • Chakkalakal, J.V., Thompson, J., Parks, R.J., Jasmin, B.J., 2005. Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies. Faseb J 19, 880–891.

    Article  PubMed  CAS  Google Scholar 

  • Chan, W.C., Nie, S., 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.

    Article  PubMed  CAS  Google Scholar 

  • Chang, G.Y., Xie, X., Wu, J.C., 2006. Overview of stem cells and imaging modalities for cardiovascular diseases. J Nucl Cardiol 13, 554–569.

    Article  PubMed  Google Scholar 

  • Chen, J.C., Goldhamer, D.J., 2003. Skeletal muscle stem cells. Reprod Biol Endocrinol 1, 101–107.

    Article  PubMed  Google Scholar 

  • Chien, K.R., 2006. Lost and found: cardiac stem cell therapy revisited. J Clin Invest 116, 1838–1840.

    Article  PubMed  CAS  Google Scholar 

  • Ciobanu, L., Pennington, C.H., 2004. 3D micron-scale MRI of single biological cells. Solid State Nucl Magn Reson 25, 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Ciobanu, L., Seeber, D.A., Pennington, C.H., 2002. 3D MR microscopy with resolution 3.7 microm by 3.3 microm by 3.3 microm. J Magn Reson 158, 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Cogle, C.R., Yachnis, A.T., Laywell, E.D., Zander, D.S., Wingard, J.R., Steindler, D.A., Scott, E.W., 2004. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 363, 1432–1437.

    Article  PubMed  CAS  Google Scholar 

  • Contag, C.H., Ross, B.D., 2002. It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging 16, 378–387.

    Article  PubMed  Google Scholar 

  • Cossu, G., Mavilio, F., 2000. Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective? J Clin Invest 105, 1669–1674.

    PubMed  CAS  Google Scholar 

  • Crich, S.G., Biancone, L., Cantaluppi, V., Duo, D., Esposito, G., Russo, S., Camussi, G., Aime, S., 2004. Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn Reson Med 51, 938–944.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, B.J., Uchida, N., Tamaki, S.J., Salazar, D.L., Hooshmand, M., Summers, R., Gage, F.H., Anderson, A.J., 2005. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102, 14069–14074.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, C.H., Arai, T., Yang, P.C., McConnell, M.V., Pauly, J.M., Conolly, S.M., 2005. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53, 999–1005.

    Article  PubMed  CAS  Google Scholar 

  • Daldrup-Link, H.E., Rudelius, M., Metz, S., Piontek, G., Pichler, B., Settles, M., Heinzmann, U., Schlegel, J., Oostendorp, R.A., Rummeny, E.J., 2004. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging 31, 1312–1321.

    Article  PubMed  Google Scholar 

  • Daldrup-Link, H.E., Rudelius, M., Oostendorp, R.A., Jacobs, V.R., Simon, G.H., Gooding, C., Rummeny, E.J., 2005a. Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 12, 502–510.

    Article  Google Scholar 

  • Daldrup-Link, H.E., Rudelius, M., Piontek, G., Metz, S., Brauer, R., Debus, G., Corot, C., Schlegel, J., Link, T.M., Peschel, C., Rummeny, E.J., Oostendorp, R.A., 2005b. Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234, 197–205.

    Article  Google Scholar 

  • Deans, A.E., Wadghiri, Y.Z., Bernas, L.M., Yu, X., Rutt, B.K., Turnbull, D.H., 2006. Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med 56, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Deasy, B.M., Huard, J., 2002. Gene therapy and tissue engineering based on muscle-derived stem cells. Curr Opin Mol Ther 4, 382–389.

    PubMed  CAS  Google Scholar 

  • Dennig, J., Duncan, E., 2002. Gene transfer into eukaryotic cells using activated polyamidoamine dendrimers. J Biotechnol 90, 339–347.

    PubMed  CAS  Google Scholar 

  • Dick, A.J., Guttman, M.A., Raman, V.K., Peters, D.C., Pessanha, B.S., Hill, J.M., Smith, S., Scott, G., McVeigh, E.R., Lederman, R.J., 2003. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation 108, 2899–2904.

    Article  PubMed  Google Scholar 

  • Dimmeler, S., Zeiher, A.M., Schneider, M.D., 2005. Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115, 572–583.

    Article  PubMed  CAS  Google Scholar 

  • Dubois, J., Lethimonnier, F., Vaufrey, F., Robert, P., Le Bihan, D., 2005. Frequency-shift based detection of BMS contrast agents using SSFP: potential for MRA. Magn Reson Imaging 23, 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Dunning, M.D., Kettunen, M.I., Ffrench Constant, C., Franklin, R.J.M., Brindle, K.M., 2006. Magnetic resonance imaging of functional Schwann cell transplants labelled with magnetic microspheres. Neuroimage 31, 172–180.

    Article  PubMed  Google Scholar 

  • Empedocles, S., Bawendi, M., 1999. Spectroscopy of single CdSe nanocrystallites. Acc Chem Res 32, 389–396.

    Article  CAS  Google Scholar 

  • Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E., 2006. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689.

    Article  PubMed  CAS  Google Scholar 

  • Enzmann, G.U., Benton, R.L., Talbott, J.F., Cao, Q., Whittemore, S.R., 2006. Functional considerations of stem cell transplantation therapy for spinal cord repair. J Neurotrauma 23, 479–495.

    Article  PubMed  Google Scholar 

  • Frangioni, J.V., 2003. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7, 626–634.

    Article  PubMed  CAS  Google Scholar 

  • Frank, J.A., Miller, B.R., Arbab, A.S., Zywicke, H.A., Jordan, E.K., Lewis, B.K., Bryant, L.H., Jr., Bulte, J.W., 2003. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228, 480–487.

    Article  PubMed  Google Scholar 

  • Frank, J.A., Zywicke, H., Jordan, E.K., Mitchell, J., Lewis, B.K., Miller, B., Bryant, L.H., Jr., Bulte, J.W., 2002. Magnetic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9 Suppl 2, S484–S487.

    Google Scholar 

  • Franklin, R.J., Blaschuk, K.L., Bearchell, M.C., Prestoz, L.L., Setzu, A., Brindle, K.M., ffrench-Constant, C., 1999. Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. Neuroreport 10, 3961–3965.

    Article  PubMed  CAS  Google Scholar 

  • Fu, R., Brey, W.W., Shetty, K., Gor’kov, P., Saha, S., Long, J.R., Grant, S.C., Chekmenev, E.Y., Hu, J., Gan, Z., Sharma, M., Zhang, F., Logan, T.M., Bruschweller, R., Edison, A., Blue, A., Dixon, I.R., Markiewicz, W.D., Cross, T.A., 2005. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory. J Magn Reson 177, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Galvez, B.G., Sampaolesi, M., Brunelli, S., Covarello, D., Gavina, M., Rossi, B., Costantin, G., Torrente, Y., Cossu, G., 2006. Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol 174, 231–243.

    Article  PubMed  CAS  Google Scholar 

  • Gao, X., Chan, W.C., Nie, S., 2002. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7, 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Gao, X., Cui, Y., Levenson, R.M., Chung, L.W., Nie, S., 2004. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22, 969–976.

    Article  PubMed  CAS  Google Scholar 

  • Gao, X., Nie, S., 2003. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol 21, 371–373.

    Article  PubMed  CAS  Google Scholar 

  • Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S., 2005. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16, 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Gaponenko, S.V., 1998. Optical properties of semiconductor nanocrystals. Cambridge Unviersity Press, Cambridge, UK; New York, NY, USA.

    Google Scholar 

  • Garden, O.A., Reynolds, P.R., Yates, J., Larkman, D.J., Marelli-Berg, F.M., Haskard, D.O., Edwards, A.D., George, A.J., 2006. A rapid method for labelling CD4(+) T cells with ultrasmall paramagnetic iron oxide nanoparticles for magnetic resonance imaging that preserves proliferative, regulatory and migratory behaviour in vitro. J Immunol Methods 314, 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Garot, J., Unterseeh, T., Teiger, E., Champagne, S., Chazaud, B., Gherardi, R., Hittinger, L., Gueret, P., Rahmouni, A., 2003. Magnetic resonance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium. J Am Coll Cardiol 41, 1841–1846.

    Article  PubMed  Google Scholar 

  • Ghostine, S., Carrion, C., Souza, L.C., Richard, P., Bruneval, P., Vilquin, J.T., Pouzet, B., Schwartz, K., Menasche, P., Hagege, A.A., 2002. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 106, I131–136.

    PubMed  Google Scholar 

  • Gillies, R.J., Raghunand, N., Garcia-Martin, M.L., Gatenby, R.A., 2004. pH imaging. A review of pH measurement methods and applications in cancers. IEEE Eng Med Biol Mag 23, 57–64.

    Article  PubMed  Google Scholar 

  • Gilman, S., 2006. Pharmacologic management of ischemic stroke: Relevance to stem cell therapy. Exp Neurol 199, 28–36.

    Article  PubMed  CAS  Google Scholar 

  • Gimi, B., Mori, N., Ackerstaff, E., Frost, E.E., Bulte, J.W., Bhujwalla, Z.M., 2006. Noninvasive MRI of endothelial cell response to human breast cancer cells. Neoplasia 8, 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A.K., Gupta, M., 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021.

    Article  PubMed  CAS  Google Scholar 

  • Hadjantonakis, A.K., Dickinson, M.E., Fraser, S.E., Papaioannou, V.E., 2003. Technicolour transgenics: imaging tools for functional genomics in the mouse. Nat Rev Genet 4, 613–625.

    Article  PubMed  CAS  Google Scholar 

  • Haraldseth, O., Jones, R.A., Muller, T.B., Fahlvik, A.K., Oksendal, A.N., 1996. Comparison of dysprosium DTPA BMA and superparamagnetic iron oxide particles as susceptibility contrast agents for perfusion imaging of regional cerebral ischemia in the rat. J Magn Reson Imaging 6, 714–717.

    Article  PubMed  CAS  Google Scholar 

  • Hauger, O., Frost, E.E., van Heeswijk, R., Deminiere, C., Xue, R., Delmas, Y., Combe, C., Moonen, C.T., Grenier, N., Bulte, J.W., 2006. MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238, 200–210.

    Article  PubMed  Google Scholar 

  • He, G., Hao, Z., Wei, H., Yi, W., Zhang, X., Yue, T., Wei, Y., Hu, S., 2007. In vivo imaging of bone marrow mesenchymal stem cells transplanted into myocardium using magnetic resonance imaging: A novel method to trace the transplanted cells. Int J Cardiol 114, 4–10.

    Article  PubMed  Google Scholar 

  • Hekmatyar, S.K., Hopewell, P., Pakin, S.K., Babsky, A., Bansal, N., 2005. Noninvasive MR thermometry using paramagnetic lanthanide complexes of 1,4,7,10tetraazacyclodoecane-alpha,alpha,alpha,alpha-tetramethyl-1, 4,7,10-tetraacetic acid (DOTMA4-). Magn Reson Med 53, 294–303.

    Article  PubMed  CAS  Google Scholar 

  • Heyn, C., Ronald, J.A., Mackenzie, L.T., MacDonald, I.C., Chambers, A.F., Rutt, B.K., Foster, P.J., 2006. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55, 23–29.

    Article  PubMed  Google Scholar 

  • Himes, N., Min, J.Y., Lee, R., Brown, C., Shea, J., Huang, X., Xiao, Y.F., Morgan, J.P., Burstein, D., Oettgen, P., 2004. In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction. Magn Reson Med 52, 1214–1219.

    Article  PubMed  Google Scholar 

  • Himmelreich, U., Weber, R., Ramos-Cabrer, P., Wegener, S., Kandal, K., Shapiro, E.M., Koretsky, A.P., Hoehn, M., 2005. Improved stem cell MR detectability in animal models by modification of the inhalation gas. Mol Imaging 4, 104–109.

    PubMed  Google Scholar 

  • Hinds, K.A., Hill, J.M., Shapiro, E.M., Laukkanen, M.O., Silva, A.C., Combs, C.A., Varney, T.R., Balaban, R.S., Koretsky, A.P., Dunbar, C.E., 2003. Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102, 867–872.

    Article  PubMed  CAS  Google Scholar 

  • Hoehn, M., Kustermann, E., Blunk, J., Wiedermann, D., Trapp, T., Wecker, S., Focking, M., Arnold, H., Hescheler, J., Fleischmann, B.K., Schwindt, W., Buhrle, C., 2002. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A 99, 16267–16272.

    Article  PubMed  CAS  Google Scholar 

  • Honma, T., Honmou, O., Iihoshi, S., Harada, K., Houkin, K., Hamada, H., Kocsis, J.D., 2006. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol 199, 56–66.

    Article  PubMed  CAS  Google Scholar 

  • Huard, J., Acsadi, G., Jani, A., Massie, B., Karpati, G., 1994. Gene transfer into skeletal muscles by isogenic myoblasts. Hum Gene Ther 5, 949–958.

    PubMed  CAS  Google Scholar 

  • Huard, J., Cao, B., Qu-Petersen, Z., 2003. Muscle-derived stem cells: potential for muscle regeneration. Birth Defects Res Part C Embryo Today 69, 230–237.

    Article  CAS  Google Scholar 

  • Huber, M.M., Staubli, A.B., Kustedjo, K., Gray, M.H., Shih, J., Fraser, S.E., Jacobs, R.E., Meade, T.J., 1998. Fluorescently detectable magnetic resonance imaging agents. Bioconjug Chem 9, 242–249.

    Article  PubMed  CAS  Google Scholar 

  • Hudde, T., Rayner, S.A., Comer, R.M., Weber, M., Isaacs, J.D., Waldmann, H., Larkin, D.F., George, A.J., 1999. Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther 6, 939–943.

    Article  PubMed  CAS  Google Scholar 

  • Ikezawa, M., Cao, B., Qu, Z., Peng, H., Xiao, X., Pruchnic, R., Kimura, S., Miike, T., Huard, J., 2003. Dystrophin delivery in dystrophin-deficient DMDmdx skeletal muscle by isogenic muscle-derived stem cell transplantation. Hum Gene Ther 14, 1535–1546.

    Article  PubMed  CAS  Google Scholar 

  • Ittrich, H., Lange, C., Dahnke, H., Zander, A.R., Adam, G., Nolte-Ernsting, C., 2005. [Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T]. Rofo 177, 1151–1163.

    PubMed  CAS  Google Scholar 

  • Jankowski, R.J., Deasy, B.M., Huard, J., 2002. Muscle-derived stem cells. Gene Ther 9, 642–647.

    Article  PubMed  CAS  Google Scholar 

  • Jendelova, P., Herynek, V., DeCroos, J., Glogarova, K., Andersson, B., Hajek, M., Sykova, E., 2003. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 50, 767–776.

    Article  PubMed  CAS  Google Scholar 

  • Jendelova, P., Herynek, V., Urdzikova, L., Glogarova, K., Kroupova, J., Andersson, B., Bryja, V., Burian, M., Hajek, M., Sykova, E., 2004. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76, 232–243.

    Article  PubMed  CAS  Google Scholar 

  • Jendelova, P., Herynek, V., Urdzikova, L., Glogarova, K., Rahmatova, S., Fales, I., Andersson, B., Prochazka, P., Zamecnik, J., Eckschlager, T., Kobylka, P., Hajek, M., Sykova, E., 2005. Magnetic resonance tracking of human CD34+ progenitor cells separated by means of immunomagnetic selection and transplanted intoinjured rat brain. Cell Transplant 14, 173–182.

    PubMed  Google Scholar 

  • Jiang, Q., Zhang, Z.G., Ding, G.L., Silver, B., Zhang, L., Meng, H., Lu, M., Pourabdillah-Nejed, D.S., Wang, L., Savant-Bhonsale, S., Li, L., Bagher-Ebadian, H., Hu, J., Arbab, A.S., Vanguri, P., Ewing, J.R., Ledbetter, K.A., Chopp, M., 2006. MRI detects white matter reorganization after neural progenitor cell treatment of stroke. Neuroimage 32, 1080–1089.

    Article  PubMed  Google Scholar 

  • Jiang, Q., Zhang, Z.G., Ding, G.L., Zhang, L., Ewing, J.R., Wang, L., Zhang, R., Li, L., Lu, M., Meng, H., Arbab, A.S., Hu, J., Li, Q.J., Pourabdollah Nejad, D.S., Athiraman, H., Chopp, M., 2005. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28, 698–707.

    Article  PubMed  Google Scholar 

  • Jiang, W., Papa, E., Fischer, H., Mardyani, S., Chan, W.C., 2004. Semiconductor quantum dots as contrast agents for whole animal imaging. Trends Biotechnol 22, 607–609.

    Article  PubMed  CAS  Google Scholar 

  • Jobsis, F.F., 1977. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K.M., Tao, J.Z., Kennan, R.P., Gore, J.C., 2000. Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo. Magn Reson Med 44, 909–914.

    Article  PubMed  CAS  Google Scholar 

  • Ju, S., Teng, G., Zhang, Y., Ma, M., Chen, F., Ni, Y., 2006. In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magn Reson Imaging 24, 611–617.

    Article  PubMed  Google Scholar 

  • Kellar, K.E., Fossheim, S.L., Koenig, S.H., 1998. Magnetic field dependence of solvent proton relaxation by solute dysprosium (III) complexes. Invest Radiol 33, 835–840.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, P.D., Byrne, B.J., 1999. Myoblast cell grafting into heart muscle: cellular biology and potential applications. Annu Rev Physiol 61, 219–242.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama, A., Parker, J.A., Mihaljevic, T., Laurence, R.G., Dor, D.M., Cohn, L.H., Bawendi, M.G., Frangioni, J.V., 2004. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22, 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Kircher, M.F., Allport, J.R., Graves, E.E., Love, V., Josephson, L., Lichtman, A.H., Weissleder, R., 2003. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63, 6838–6846.

    PubMed  CAS  Google Scholar 

  • Kirik, D., Breysse, N., Bjorklund, T., Besret, L., Hantraye, P., 2005. Imaging in cell-based therapy for neurodegenerative diseases. Eur J Nucl Med Mol Imaging 32 Suppl 2, S417–S434.

    Article  PubMed  Google Scholar 

  • Kraitchman, D.L., Heldman, A.W., Atalar, E., Amado, L.C., Martin, B.J., Pittenger, M.F., Hare, J.M., Bulte, J.W., 2003. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107, 2290–2293.

    Article  PubMed  Google Scholar 

  • Kraitchman, D.L., Tatsumi, M., Gilson, W.D., Ishimori, T., Kedziorek, D., Walczak, P., Segars, W.P., Chen, H.H., Fritzges, D., Izbudak, I., Young, R.G., Marcelino, M., Pittenger, M.F., Solaiyappan, M., Boston, R.C., Tsui, B.M., Wahl, R.L., Bulte, J.W., 2005. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112, 1451–1461.

    Article  PubMed  Google Scholar 

  • Kukowska-Latallo, J.F., Bielinska, A.U., Johnson, J., Spindler, R., Tomalia, D.A., Baker, J.R., Jr., 1996. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad SciUSA93, 4897–4902.

    Article  CAS  Google Scholar 

  • Kustermann, E., Roell, W., Breitbach, M., Wecker, S., Wiedermann, D., Buehrle, C., Welz, A., Hescheler, J., Fleischmann, B.K., Hoehn, M., 2005. Stem cell implantation in ischemic mouse heart: a high-resolution magnetic resonance imaging investigation. NMR Biomed 18, 362–370.

    Article  PubMed  Google Scholar 

  • Laflamme, M.A., Murry, C.E., 2005. Regenerating the heart. Nat Biotechnol 23, 845–856.

    Article  PubMed  CAS  Google Scholar 

  • Lakshmipathy, U., Verfaillie, C., 2005. Stem cell plasticity. Blood Reviews 19, 29–38.

    Article  PubMed  Google Scholar 

  • Lanza, G.M., Winter, P., Caruthers, S., Schmeider, A., Crowder, K., Morawski, A., Zhang, H., Scott, M.J., Wickline, S.A., 2004a. Novel paramagnetic contrast agents for molecular imaging and targeted drug delivery. Curr Pharm Biotechnol 5, 495–507.

    Article  CAS  Google Scholar 

  • Lanza, G.M., Winter, P.M., Caruthers, S.D., Morawski, A.M., Schmieder, A.H., Crowder, K.C., Wickline, S.A., 2004b. Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 11, 733–743.

    Article  Google Scholar 

  • Lapidot, T., Dar, A., Kollet, O., 2005. How do stem cells find their way home? Blood 106, 1901–1910.

    Article  PubMed  CAS  Google Scholar 

  • Laywell, E.D., Kukekov, V.G., Steindler, D.A., 1999. Multipotent neurospheres can be derived from forebrain subependymal zone and spinal cord of adult mice after protracted postmortem intervals. Exp Neurol 156, 430–433.

    Article  PubMed  CAS  Google Scholar 

  • Laywell, E.D., Rakic, P., Kukekov, V.G., Holland, E.C., Steindler, D.A., 2000. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad SciUSA97, 13883–13888.

    Article  CAS  Google Scholar 

  • Laywell, E.D., Steindler, D.A., 2002. Glial stem-like cells: implications for ontogeny, phylogeny, and CNS regeneration. Prog Brain Res 138, 435–450.

    PubMed  CAS  Google Scholar 

  • Lee, I.H., Bulte, J.W., Schweinhardt, P., Douglas, T., Trifunovski, A., Hofstetter, C., Olson, L., Spenger, C., 2004. In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187, 509–516.

    Article  PubMed  Google Scholar 

  • Lee, J.Y., Qu-Petersen, Z., Cao, B., Kimura, S., Jankowski, R., Cummins, J., Usas, A., Gates, C., Robbins, P., Wernig, A., Huard, J., 2000. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 150, 1085–1100.

    Article  PubMed  CAS  Google Scholar 

  • Leor, J., Patterson, M., Quinones, M.J., Kedes, L.H., Kloner, R.A., 1996. Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation 94, II332–336.

    PubMed  CAS  Google Scholar 

  • Leor, J., Rozen, L., Zuloff-Shani, A., Feinberg, M.S., Amsalem, Y., Barbash, I.M., Kachel, E., Holbova, R., Mardor, Y., Daniels, D., Ocherashvilli, A., Orenstein, A., Danon, D., 2006. Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation 114, I94–100.

    Article  PubMed  Google Scholar 

  • Lepore, A.C., Walczak, P., Rao, M.S., Fischer, I., Bulte, J.W., 2006. MR imaging of lineage-restricted neural precursors following transplantation into the adult spinal cord. Exp Neurol 201, 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Leri, A., Kajstura, J., Anversa, P., 2005. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85, 1373–1416.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, M., Carlesso, N., Tung, C.H., Tang, X.W., Cory, D., Scadden, D.T., Weissleder, R., 2000. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18, 410–414.

    Article  PubMed  CAS  Google Scholar 

  • Lim, Y.T., Kim, S., Nakayama, A., Stott, N.E., Bawendi, M.G., Frangioni, J.V., 2003. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2, 50–64.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Z., Cui, S., Zhang, H., Chen, Q., Yang, B., Su, X., Zhang, J., Jin, Q., 2003. Studies on quantum dots synthesized in aqueous solution for biological labeling via electrostatic interaction. Anal Biochem 319, 239–243.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall, O., Kokaia, Z., 2006. Stem cells for the treatment of neurological disorders. Nature 441, 1094–1096.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M., Guo, Y.M., Wu, Q.F., Yang, J.L., Wang, P., Wang, S.C., Guo, X.J., Qiang, Y.Q., Duan, X.Y., 2006. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro. Biochem Biophys Res Commun 347, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Louie, A.Y., Huber, M.M., Ahrens, E.T., Rothbacher, U., Moats, R., Jacobs, R.E., Fraser, S.E., Meade, T.J., 2000. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18, 321–325.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, A.B., Parish, C.R., 1994. Determination of lymphocyte division by flow cytometry. J Immunol Methods 171, 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Magnitsky, S., Watson, D.J., Walton, R.M., Pickup, S., Bulte, J.W., Wolfe, J.H., Poptani, H., 2005. In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain. Neuroimage 26, 744–754.

    Article  PubMed  CAS  Google Scholar 

  • Mani, V., Briley-Saebo, K.C., Itskovich, V.V., Samber, D.D., Fayad, Z.A., 2006. Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn Reson Med 55, 126–135.

    Article  PubMed  CAS  Google Scholar 

  • Mantyla, T., Hakumaki, J.M., Huhtala, T., Narvanen, A., Yla-Herttuala, S., 2006. Targeted magnetic resonance imaging of Scavidin-receptor in human umbilical vein endothelial cells in vitro. Magn Reson Med 55, 800–804.

    Article  PubMed  CAS  Google Scholar 

  • Maronpot, R.R., Sills, R.C., Johnson, G.A., 2004. Applications of magnetic resonance microscopy. Toxicol Pathol 32 Suppl 2, 42–48.

    Article  Google Scholar 

  • Massoud, T.F., Gambhir, S.S., 2003. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17, 545–580.

    Article  PubMed  CAS  Google Scholar 

  • Masuda, C., Maki, Z., Morikawa, S., Morita, M., Inubushi, T., Matsusue, Y., Yamagata, S., Taguchi, H., Doi, Y., Shirai, N., Hirao, K., Tooyama, I., 2006. MR tracking of transplanted glial cells using poly-l-lysine-CF(3). Neurosci Res.

    Google Scholar 

  • Mathur, A., Martin, J.F., 2004. Stem cells and repair of the heart. The Lancet 364, 183–192.

    Article  CAS  Google Scholar 

  • Matuszewski, L., Persigehl, T., Wall, A., Schwindt, W., Tombach, B., Fobker, M., Poremba, C., Ebert, W., Heindel, W., Bremer, C., 2005. Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235, 155–161.

    Article  PubMed  Google Scholar 

  • Mayer-Kuckuk, P., Gade, T.P., Buchanan, I.M., Doubrovin, M., Ageyeva, L., Bertino, J.R., Boskey, A.L., Blasberg, R.G., Koutcher, J.A., Banerjee, D., 2005. High-resolution imaging of bone precursor cells within the intact bone marrow cavity of living mice. Mol Ther 12, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., 2005. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4, 435–446.

    Article  PubMed  CAS  Google Scholar 

  • Menasche, P., Hagege, A.A., Scorsin, M., Pouzet, B., Desnos, M., Duboc, D., Schwartz, K., Vilquin, J.T., Marolleau, J.P., 2001. Myoblast transplantation for heart failure. Lancet 357, 279–280.

    Article  PubMed  CAS  Google Scholar 

  • Metz, S., Bonaterra, G., Rudelius, M., Settles, M., Rummeny, E.J., Daldrup-Link, H.E., 2004. Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14, 1851–1858.

    Article  PubMed  Google Scholar 

  • Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S., 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Min, J.J., Gambhir, S.S., 2004. Gene therapy progress and prospects. Gene Ther 11, 115–125.

    PubMed  CAS  Google Scholar 

  • Mintz-Hittner, H.A., Semina, E.V., Frishman, L.J., Prager, T.C., Murray, J.C., 2004. VSX1 (RINX) mutation with craniofacial anomalies, empty sella, corneal endothelial changes, and abnormal retinal and auditory bipolar cells. Ophthalmology 111, 828–836.

    Article  PubMed  Google Scholar 

  • Miyoshi, S., Flexman, J.A., Cross, D.J., Maravilla, K.R., Kim, Y., Anzai, Y., Oshima, J., Minoshima, S., 2005. Transfection of neuroprogenitor cells with iron nanoparticles for magnetic resonance imaging tracking: cell viability, differentiation, and intracellular localization. Mol Imaging Biol 7, 286–295.

    Article  PubMed  Google Scholar 

  • Modo, M., Cash, D., Mellodew, K., Williams, S.C., Fraser, S.E., Meade, T.J., Price, J., Hodges, H., 2002. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17, 803–811.

    Article  PubMed  Google Scholar 

  • Modo, M., Hoehn, M., Bulte, J.W., 2005. Cellular MR imaging. Mol Imaging 4, 143–164.

    PubMed  Google Scholar 

  • Modo, M., Mellodew, K., Cash, D., Fraser, S.E., Meade, T.J., Price, J., Williams, S.C., 2004. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21, 311–317.

    Article  PubMed  Google Scholar 

  • Montet-Abou, K., Montet, X., Weissleder, R., Josephson, L., 2005. Transfection agent induced nanoparticle cell loading. Mol Imaging 4, 165–171.

    PubMed  Google Scholar 

  • Moore, K.A., Lemischka, I.R., 2006. Stem cells and their niches. Science 311, 1880–1885.

    Article  PubMed  CAS  Google Scholar 

  • Morawski, A.M., Lanza, G.A., Wickline, S.A., 2005. Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 16, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Morawski, A.M., Winter, P.M., Crowder, K.C., Caruthers, S.D., Fuhrhop, R.W., Scott, M.J., Robertson, J.D., Abendschein, D.R., Lanza, G.M., Wickline, S.A., 2004. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51, 480–486.

    Article  PubMed  CAS  Google Scholar 

  • Mulder, W.J., Koole, R., Brandwijk, R.J., Storm, G., Chin, P.T., Strijkers, G.J., de Mello Donega, C., Nicolay, K., Griffioen, A.W., 2006a. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6, 1–6.

    Article  CAS  Google Scholar 

  • Mulder, W.J., Strijkers, G.J., van Tilborg, G.A., Griffioen, A.W., Nicolay, K., 2006b. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19, 142–164.

    Article  CAS  Google Scholar 

  • Muller, F.J., Snyder, E.Y., Loring, J.F., 2006. Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7, 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Ntziachristos, V., Ripoll, J., Wang, L.V., Weissleder, R., 2005. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23, 313–320.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, H., Payne, T.R., Urish, K.L., Sakai, T., Ling, Y., Gharaibeh, B., Tobita, K., Keller, B.B., Cummins, J.H., Huard, J., 2005. Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Mol Ther 12, 1130–1141.

    Article  PubMed  CAS  Google Scholar 

  • Othman, S.F., Xu, H., Royston, T.J., Magin, R.L., 2005. Microscopic magnetic resonance elastography (microMRE). Magn Reson Med 54, 605–615.

    Article  PubMed  Google Scholar 

  • Palmer, G.D., Steinert, A., Pascher, A., Gouze, E., Gouze, J.N., Betz, O., Johnstone, B., Evans, C.H., Ghivizzani, S.C., 2005. Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol Ther 12, 219–228.

    Article  PubMed  CAS  Google Scholar 

  • Parungo, C.P., Colson, Y.L., Kim, S.W., Kim, S., Cohn, L.H., Bawendi, M.G., Frangioni, J.V., 2005. Sentinel lymph node mapping of the pleural space. Chest 127, 1799–1804.

    Article  PubMed  Google Scholar 

  • Payne, T.R., Oshima, H., Sakai, T., Ling, Y., Gharaibeh, B., Cummins, J., Huard, J., 2005. Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells. Gene Ther 12, 1264–1274.

    Article  PubMed  CAS  Google Scholar 

  • Pearse, D.D., Bunge, M.B., 2006. Designing cell-and gene-based regeneration strategies to repair the injured spinal cord. J Neurotrauma 23, 438–452.

    Article  PubMed  CAS  Google Scholar 

  • Pinaud, F., Michalet, X., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Iyer, G., Weiss, S., 2006. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27, 1679–1687.

    Article  PubMed  CAS  Google Scholar 

  • Pirko, I., Fricke, S.T., Johnson, A.J., Rodriguez, M., Macura, S.I., 2005. Magnetic resonance imaging, microscopy, and spectroscopy of the central nervous system in experimental animals. NeuroRx 2, 250–264.

    Article  PubMed  Google Scholar 

  • Pittenger, M.F., Mosca, J.D., McIntosh, K.R., 2000. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 251, 3–11.

    PubMed  CAS  Google Scholar 

  • Qhobosheane, M., Santra, S., Zhang, P., Tan, W., 2001. Biochemically functionalized silica nanoparticles. Analyst 126, 1274–1278.

    Article  PubMed  CAS  Google Scholar 

  • Qu-Petersen, Z., Deasy, B., Jankowski, R., Ikezawa, M., Cummins, J., Pruchnic, R., Mytinger, J., Cao, B., Gates, C., Wernig, A., Huard, J., 2002. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157, 851–864.

    Article  PubMed  CAS  Google Scholar 

  • Quesenberry, P.J., Abedi, M., Aliotta, J., Colvin, G., Demers, D., Dooner, M., Greer, D., Hebert, H., Menon, M.K., Pimentel, J., Paggioli, D., 2004. Stem cell plasticity: an overview. Blood Cells, Molecules, and Diseases 32, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Rando, T.A., 2006. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086.

    Article  PubMed  CAS  Google Scholar 

  • Renshaw, P.F., Owen, C.S., Evans, A.E., Leigh, J.S., Jr., 1986. Immunospecific NMR contrast agents. Magn Reson Imaging 4, 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Riviere, C., Boudghene, F.P., Gazeau, F., Roger, J., Pons, J.-N., Laissy, J.-P., Allaire, E., Michel, J.-B., Letourneur, D., Deux, J.-F., 2005. Iron Oxide Nanoparticle-labeled Rat Smooth Muscle Cells: Cardiac MR Imaging for Cell Graft Monitoring and Quantitation. Radiology 235, 959–967.

    Article  PubMed  Google Scholar 

  • Robinson, S.W., Cho, P.W., Levitsky, H.I., Olson, J.L., Hruban, R.H., Acker, M.A., Kessler, P.D., 1996. Arterial delivery of genetically labelled skeletal myoblasts to the murine heart: long-term survival and phenotypic modification of implanted myoblasts. Cell Transplant 5, 77–91.

    Article  PubMed  CAS  Google Scholar 

  • Rudin, M., Weissleder, R., 2003. Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2, 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Saeed, M., Saloner, D., Weber, O., Martin, A., Henk, C., Higgins, C., 2005. MRI in guiding and assessing intramyocardial therapy. Eur Radiol 15, 851–863.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, T., Ling, Y., Payne, T.R., Huard, J., 2002. The use of ex vivo gene transfer based on muscle-derived stem cells for cardiovascular medicine. Trends Cardiovasc Med 12, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Sampaolesi, M., Torrente, Y., Innocenzi, A., Tonlorenzi, R., D’Antona, G., Pellegrino, M.A., Barresi, R., Bresolin, N., De Angelis, M.G., Campbell, K.P., Bottinelli, R., Cossu, G., 2003. Cell therapy of alpha-sarcoglycan null dystrophic mice through intraarterial delivery of mesoangioblasts. Science 301, 487–492.

    Article  PubMed  CAS  Google Scholar 

  • Santra, S., Bagwe, R.P., Dutta, D., Stanley, J.T., Walter, G., Tan, W., Moudgil, B., Mericle, R.A., 2005a. Synthesis and Characterization of Fluorescent, Radio-Opaque, and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications. Adv Mater 17, 2165–2169.

    Article  CAS  Google Scholar 

  • Santra, S., Dutta, D., Walter, G.A., Moudgil, B.M., 2005b. Fluorescent nanoparticle probes for cancer imaging. Technol Cancer Res Treat 4, 593–602.

    CAS  Google Scholar 

  • Santra, S., Wang, K., Tapec, R., Tan, W., 2001a. Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Opt 6, 160–166.

    Article  CAS  Google Scholar 

  • Santra, S., Yang, H., Dutta, D., Stanley, J.T., Holloway, P.H., Tan, W., Moudgil, B.M., Mericle, R.A., 2004. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun (Camb), 2810–2811.

    Google Scholar 

  • Santra, S., Yang, H., Stanley, J.T., Holloway, P.H., Moudgil, B.M., Walter, G., Mericle, R.A., 2005c. Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem Commun (Camb), 3144–3146.

    Google Scholar 

  • Santra, S., Zhang, P., Wang, K., Tapec, R., Tan, W., 2001b. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73, 4988–4993.

    Article  CAS  Google Scholar 

  • Scheffler, B., Horn, M., Blumcke, I., Laywell, E.D., Coomes, D., Kukekov, V.G., Steindler, D.A., 1999. Marrow-mindedness: a perspective on neuropoiesis. Trends Neurosci 22, 348–357.

    Article  PubMed  CAS  Google Scholar 

  • Scheffler, B., Walton, N.M., Lin, D.D., Goetz, A.K., Enikolopov, G., Roper, S.N., Steindler, D.A., 2005. Phenotypic and functional characterization of adult brain neuropoiesis. Proc Natl Acad SciUSA 102, 9353–9358.

    Article  CAS  Google Scholar 

  • Schmieder, A.H., Winter, P.M., Caruthers, S.D., Harris, T.D., Williams, T.A., Allen, J.S., Lacy, E.K., Zhang, H., Scott, M.J., Hu, G., Robertson, J.D., Wickline, S.A., Lanza, G.M., 2005. Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles. Magn Reson Med 53, 621–627.

    Article  PubMed  CAS  Google Scholar 

  • Scorsin, M., Hagege, A.A., Marotte, F., Mirochnik, N., Copin, H., Barnoux, M., Sabri, A., Samuel, J.L., Rappaport, L., Menasche, P., 1997. Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation 96, II-188–193.

    Google Scholar 

  • Scorsin, M., Hagege, A., Vilquin, J.T., Fiszman, M., Marotte, F., Samuel, J.L., Rappaport, L., Schwartz, K., Menasche, P., 2000. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg 119, 1169–1175.

    Article  PubMed  CAS  Google Scholar 

  • Scorsin, M., Marotte, F., Sabri, A., Le Dref, O., Demirag, M., Samuel, J.L., Rappaport, L., Menasche, P., 1996. Can grafted cardiomyocytes colonize peri-infarct myocardial areas? Circulation 94, II337–340.

    PubMed  CAS  Google Scholar 

  • Sevick-Muraca, E.M., Houston, J.P., Gurfinkel, M., 2002. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol 6, 642–650.

    Article  PubMed  CAS  Google Scholar 

  • Shah, D.S., Sakthivel, T., Toth, I., Florence, A.T., Wilderspin, A.F., 2000. DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. Int J Pharm 208, 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, E.M., Gonzalez-Perez, O., Manuel Garcia-Verdugo, J., Alvarez-Buylla, A., Koretsky, A.P., 2006a. Magnetic resonance imaging of the migration of neuronal precursors generated in the adult rodent brain. Neuroimage 32:1150–1157.

    Article  Google Scholar 

  • Shapiro, E.M., Sharer, K., Skrtic, S., Koretsky, A.P., 2006b. In vivo detection of single cells by MRI. Magn Reson Med 55, 242–249.

    Article  Google Scholar 

  • Shapiro, E.M., Skrtic, S., Koretsky, A.P., 2005. Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53, 329–338.

    Article  PubMed  Google Scholar 

  • Sharma, P., Brown, S., Walter, G., Santra, S., Moudgil, B., 2006. Nanoparticles for bioimaging. Adv Colloid Interface Sci 16:123–126.

    Google Scholar 

  • Sitharaman, B., Kissell, K.R., Hartman, K.B., Tran, L.A., Baikalov, A., Rusakova, I., Sun, Y., Khant, H.A., Ludtke, S.J., Chiu, W., Laus, S., Toth, E., Helm, L., Merbach, A.E., Wilson, L.J., 2005. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem Commun (Camb), 3915–3917.

    Google Scholar 

  • Skuk, D., Tremblay, J.P., 2003. Cell therapies for inherited myopathies. Curr Opin Rheumatol 15, 723–729.

    Article  PubMed  Google Scholar 

  • Smirnov, P., Gazeau, F., Beloeil, J.-C., Doan, B.T., Wilhelm, C., Gillet, B., 2006. Single-cell detection by gradient echo 9.4 T MRI: a parametric study. Contrast Media & Molecular Imaging 1, 165–174.

    Article  CAS  Google Scholar 

  • Smith, A.M., Gao, X., Nie, S., 2004. Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80, 377–385.

    PubMed  CAS  Google Scholar 

  • Smythe, G.M., Hodgetts, S.I., Grounds, M.D., 2000. Immunobiology and the future of myoblast transfer therapy. Mol Ther 1, 304–313.

    Article  PubMed  CAS  Google Scholar 

  • Smythe, G.M., Hodgetts, S.I., Grounds, M.D., 2001. Problems and solutions in myoblast transfer therapy. J Cell Mol Med 5, 33–47.

    Article  PubMed  CAS  Google Scholar 

  • Snoussi, K., Bulte, J.W., Gueron, M., van Zijl, P.C., 2003. Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimerpoly(rU) model for nucleic acid delivery and pharmacology. Magn Reson Med 49, 998–1005.

    Article  PubMed  CAS  Google Scholar 

  • Sosnovik, D.E., Schellenberger, E.A., Nahrendorf, M., Novikov, M.S., Matsui, T., Dai, G., Reynolds, F., Grazette, L., Rosenzweig, A., Weissleder, R., Josephson, L., 2005. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 54, 718–724.

    Article  PubMed  Google Scholar 

  • Steigerwald, M.L., Brus, L.E., 1990. Semiconductor Crystallites – a Class of Large Molecules. Accounts of Chemical Research 23, 183–188.

    Article  CAS  Google Scholar 

  • Steindler, D.A., 2002. Neural stem cells, scaffolds, and chaperones. Nat Biotechnol 20, 1091–1093.

    Article  PubMed  CAS  Google Scholar 

  • Steindler, D.A., Kadrie, T., Fillmore, H., Thomas, L.B., 1996. The subependymal zone: “brain marrow”. Prog Brain Res 108, 349–363.

    Article  PubMed  CAS  Google Scholar 

  • Steindler, D.A., Pincus, D.W., 2002. Stem cells and neuropoiesis in the adult human brain. Lancet 359, 1047–1054.

    Article  PubMed  CAS  Google Scholar 

  • Stroh, A., Faber, C., Neuberger, T., Lorenz, P., Sieland, K., Jakob, P.M., Webb, A., Pilgrimm, H., Schober, R., Pohl, E.E., Zimmer, C., 2005a. In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. Neuroimage 24, 635–645.

    Article  Google Scholar 

  • Stroh, M., Zimmer, J.P., Duda, D.G., Levchenko, T.S., Cohen, K.S., Brown, E.B., Scadden, D.T., Torchilin, V.P., Bawendi, M.G., Fukumura, D., Jain, R.K., 2005b. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11, 678–682.

    Article  CAS  Google Scholar 

  • Stuckey, D.J., Carr, C.A., Martin-Rendon, E., Tyler, D.J., Willmott, C., Cassidy, P.J., Hale, S.J., Schneider, J.E., Tatton, L., Harding, S.E., Radda, G.K., Watt, S., Clarke, K., 2006. Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells 24, 1968–1975.

    Article  PubMed  CAS  Google Scholar 

  • Sun, R., Dittrich, J., Le-Huu, M., Mueller, M.M., Bedke, J., Kartenbeck, J., Lehmann, W.D., Krueger, R., Bock, M., Huss, R., Seliger, C., Grone, H.J., Misselwitz, B., Semmler, W., Kiessling, F., 2005. Physical and biological characterization of super-paramagnetic iron oxide-and ultrasmall superparamagnetic iron oxide-labeled cells:a comparison. Invest Radio l40, 504–513.

    Article  Google Scholar 

  • Sykova, E., Jendelova, P., 2005. Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord. Ann N Y Acad Sci 1049, 146–160.

    Article  PubMed  Google Scholar 

  • Sykova, E., Jendelova, P., 2006. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Neurodegener Dis 3, 62–67.

    Article  PubMed  Google Scholar 

  • Sykova, E., Jendelova, P., Urdzikova, L., Lesny, P., Hejcl, A., 2006. Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cell Mol Neurobiol 26:1113–1129.

    Article  PubMed  CAS  Google Scholar 

  • Tallheden, T., Nannmark, U., Lorentzon, M., Rakotonirainy, O., Soussi, B., Waagstein, F., Jeppsson, A., Sjogren-Jansson, E., Lindahl, A., Omerovic, E., 2006. In vivo MR imaging of magnetically labeled human embryonic stem cells. Life Sci 79, 999–1006.

    Article  PubMed  CAS  Google Scholar 

  • Tan, W.B., Zhang, Y., 2005. Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J Biomed Mater Res A 75, 56–62.

    PubMed  Google Scholar 

  • Terreno, E., Castelli, D.D., Cravotto, G., Milone, L., Aime, S., 2004. Ln(III)-DOTAMGly complexes: a versatile series to assess the determinants of the efficacy of paramagnetic chemical exchange saturation transfer agents for magnetic resonance imaging applications. Invest Radiol 39, 235–243.

    Article  PubMed  Google Scholar 

  • Terreno, E., Geninatti Crich, S., Belfiore, S., Biancone, L., Cabella, C., Esposito, G., Manazza, A.D., Aime, S., 2006. Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn Reson Med 55, 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., Jones, J.M., 1998. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Thorek, D.L., Chen, A.K., Czupryna, J., Tsourkas, A., 2006. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34, 23–38.

    Article  PubMed  Google Scholar 

  • Tomita, S., Li, R.K., Weisel, R.D., Mickle, D.A., Kim, E.J., Sakai, T., Jia, Z.Q., 1999. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100, II247–256.

    PubMed  CAS  Google Scholar 

  • Torrente, Y., Camirand, G., Pisati, F., Belicchi, M., Rossi, B., Colombo, F., El Fahime, M., Caron, N.J., Issekutz, A.C., Constantin, G., Tremblay, J.P., Bresolin, N., 2003. Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model. J Cell Biol 162, 511–520.

    Article  PubMed  CAS  Google Scholar 

  • Torrente, Y., Tremblay, J.P., Pisati, F., Belicchi, M., Rossi, B., Sironi, M., Fortunato, F., ElFahime, M., D’Angelo, M.G., Caron, N.J., Constantin, G., Paulin, D., Scarlato, G., Bresolin, N., 2001. Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stemcells restores dystrophin in mdx mice. J Cell Biol1 52, 335–348.

    Article  Google Scholar 

  • Toyoda, K., Tooyama, I., Kato, M., Sato, H., Morikawa, S., Hisa, Y., Inubushi, T., 2004. Effective magnetic labeling of transplanted cells with HVJ-E for magnetic resonance imaging. Neuroreport 15, 589–593.

    Article  PubMed  CAS  Google Scholar 

  • Trokowski, R., Zhang, S., Sherry, A.D., 2004. Cyclen-based phenylboronate ligands and their Eu3+ complexes for sensing glucose by MRI. Bioconjug Chem 15, 1431–1440.

    Article  PubMed  CAS  Google Scholar 

  • Tyszka, J.M., Fraser, S.E., Jacobs, R.E., 2005. Magnetic resonance microscopy: recent advances and applications. Curr Opin Biotechnol 16, 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Vander Elst, L., Roch, A., Gillis, P., Laurent, S., Botteman, F., Bulte, J.W., Muller, R.N., 2002a. Dy-DTPA derivatives as relaxation agents for very high field MRI: the beneficial effect of slow water exchange on the transverse relaxivities. Magn Reson Med 47, 1121–1130.

    Article  Google Scholar 

  • Vander Elst, L., Zhang, S., Sherry, A.D., Laurent, S., Botteman, F., Muller, R.N., 2002b. Dy-complexes as high field T2 contrast agents: influence of water exchange rates. Acad Radiol 9 Suppl 2, S297–S299.

    Article  Google Scholar 

  • van Tilborg, G.A., Mulder, W.J., Chin, P.T., Storm, G., Reutelingsperger, C.P., Nicolay, K., Strijkers, G.J., 2006. Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells. Bioconjug Chem 17, 865–868.

    Article  PubMed  CAS  Google Scholar 

  • Veiseh, O., Sun, C., Gunn, J., Kohler, N., Gabikian, P., Lee, D., Bhattarai, N., Ellenbogen, R., Sze, R., Hallahan, A., Olson, J., Zhang, M., 2005. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5, 1003–1008.

    Article  PubMed  CAS  Google Scholar 

  • Velardo, M.J., Burger, C., Williams, P.R., Baker, H.V., Lopez, M.C., Mareci, T.H., White, T.E., Muzyczka, N., Reier, P.J., 2004. Patterns of gene expression reveal a temporally orchestrated wound healing response in the injured spinal cord. J Neurosci 24, 8562–8576.

    Article  PubMed  CAS  Google Scholar 

  • Villringer, A., Rosen, B.R., Belliveau, J.W., Ackerman, J.L., Lauffer, R.B., Buxton, R.B., Chao, Y.S., Wedeen, V.J., Brady, T.J., 1988. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6, 164–174.

    Article  PubMed  CAS  Google Scholar 

  • Voura, E.B., Jaiswal, J.K., Mattoussi, H., Simon, S.M., 2004. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10, 993–998.

    Article  PubMed  CAS  Google Scholar 

  • Walczak, P., Kedziorek, D.A., Gilad, A.A., Lin, S., Bulte, J.W., 2005. Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54, 769–774.

    Article  PubMed  CAS  Google Scholar 

  • Walter, G.A., Cahill, K.S., Huard, J., Feng, H., Douglas, T., Sweeney, H.L., Bulte, J.W., 2004. Noninvasive monitoring of stem cell transfer for muscle disorders. Magn Reson Med 51, 273–277.

    Article  PubMed  Google Scholar 

  • Wang, J.F., Yang, Y., Wang, G., Min, J., Sullivan, M.F., Ping, P., Xiao, Y.F., Morgan, J.P., 2002. Embryonic stem cells attenuate viral myocarditis in murine model. Cell Transplant 11, 753–758.

    PubMed  Google Scholar 

  • Wang, X., Ku, G., Wegiel, M.A., Bornhop, D.J., Stoica, G., Wang, L.V., 2004a. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt Lett 29, 730–732.

    Article  Google Scholar 

  • Wang, Y., Xing, D., Zeng, Y., Chen, Q., 2004b. Photoacoustic imaging with deconvolution algorithm. Phys Med Biol 49, 3117–3124.

    Article  Google Scholar 

  • Ward, K.M., Aletras, A.H., Balaban, R.S., 2000. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143, 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Ward, K.M., Balaban, R.S., 2000. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 44, 799–802.

    Article  PubMed  CAS  Google Scholar 

  • Warlow, C., Sudlow, C., Dennis, M., Wardlaw, J., Sandercock, P., 2003. Stroke. The Lancet 362, 1211–1224.

    Article  Google Scholar 

  • Watanabe, E., Smith, D.M., Jr., Delcarpio, J.B., Sun, J., Smart, F.W., Van Meter, C.H., Jr., Claycomb, W.C., 1998. Cardiomyocyte transplantation in a porcine myocardial infarction model. Cell Transplant 7, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Watson, D.J., Walton, R.M., Magnitsky, S.G., Bulte, J.W., Poptani, H., Wolfe, J.H., 2006. Structure-specific patterns of neural stem cell engraftment after transplantation in the adult mouse brain. Hum Gene Ther 17, 693–704.

    Article  PubMed  CAS  Google Scholar 

  • Weber, A., Pedrosa, I., Kawamoto, A., Himes, N., Munasinghe, J., Asahara, T., Rofsky, N.M., Losordo, D.W., 2004a. Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease. Eur J Cardiothorac Surg 26, 137–143.

    Article  Google Scholar 

  • Weber, A., Pedrosa, I., Kawamoto, A., Himes, N., Munasinghe, J., Asahara, T., Rofsky, N.M., Losordo, D.W., 2004b. Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease. Eur J Cardiothorac Surg 26, 137–143.

    Article  Google Scholar 

  • Weber, R., Ramos-Cabrer, P., Hoehn, M., 2006. Present status of magnetic resonance imaging and spectroscopy in animal stroke models. J Cereb Blood Flow Metab 26, 591–604.

    Article  PubMed  Google Scholar 

  • Weissleder, R., Ntziachristos, V., 2003. Shedding light onto live molecular targets. Nat Med 9, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Weller, H., 1993a. Colloidal semiconductor Q-particles – chemistry in the transition region between solid-state and molecules. Angewandte Chemie-International Edition in English 32, 41–53.

    Article  Google Scholar 

  • Weller, H., 1993b. Quantized semiconductor particles – a novel state of matter for materials science. Adv Mater 5, 88–95.

    Article  CAS  Google Scholar 

  • Weller, H., 1998. Quantum size colloids: from size-dependent properties of discrete particles to self-organized superstructures. Current Opinion in Colloid & Interface Science 3, 194–199.

    Article  CAS  Google Scholar 

  • Wernig, A., Zweyer, M., Irintchev, A., 2000. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles. J Physiol 522 Pt 2, 333–345.

    Google Scholar 

  • Weston, S.A., Parish, C.R., 1990. New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy. J Immunol Methods 133, 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Wirth, E.D., 3rd, Theele, D.P., Mareci, T.H., Anderson, D.K., Brown, S.A., Reier, P.J., 1992. In vivo magnetic resonance imaging of fetal cat neural tissue transplants in the adult cat spinal cord. J Neurosurg 76, 261–274.

    PubMed  Google Scholar 

  • Woessner, D.E., Zhang, S., Merritt, M.E., Sherry, A.D., 2005. Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn Reson Med 53, 790–799.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J.C., Chen, I.Y., Sundaresan, G., Min, J.J., De, A., Qiao, J.H., Fishbein, M.C., Gambhir, S.S., 2003. Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108, 1302–1305.

    Article  PubMed  Google Scholar 

  • Xiao, D., Xi, L., Yang, W., Fu, H., Shuai, Z., Fang, Y., Yao, J., 2003. Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. J Am Chem Soc 125, 6740–6745.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Othman, S.F., Hong, L., Peptan, I.A., Magin, R.L., 2006. Magnetic resonance microscopy for monitoring osteogenesis in tissue-engineered construct in vitro. Phys Med Biol 51, 719–732.

    Article  PubMed  Google Scholar 

  • Yang, H., Holloway, P.H., Santra, S., 2004. Water-soluble silica-overcoated CdS:Mn/ZnS semiconductor quantum dots. J Chem Phys 121, 7421–7426.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H.I., Santra, S., Walter, G., Holloway, P.H., 2006. GdIII-functionalized fluorescent quantum dots as multimodal imaging probes. Advanced Materials 18: 2890–2894.

    Article  CAS  Google Scholar 

  • Yin, T., Li, L., 2006. The stem cell niches in bone. J Clin Invest 116, 1195–1201.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, H., Juliano, R.L., 2000. Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res 28, 4225–4231.

    Article  PubMed  CAS  Google Scholar 

  • Zaheer, A., Lenkinski, R.E., Mahmood, A., Jones, A.G., Cantley, L.C., Frangioni, J.V., 2001. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 19, 1148–1154.

    Article  PubMed  CAS  Google Scholar 

  • Zelivyanskaya, M.L., Nelson, J.A., Poluektova, L., Uberti, M., Mellon, M., Gendelman, H.E., Boska, M.D., 2003. Tracking superparamagnetic iron oxide labeled monocytes in brain by high-field magnetic resonance imaging. J Neurosci Res 73, 284–295.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H.F., Maslov, K., Stoica, G., Wang, L.V., 2006. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 24, 848–851.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.Z., 1997. Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Acc Chem Res 30, 423–429.

    Article  CAS  Google Scholar 

  • Zhang, R.L., Zhang, Z.G., Chopp, M., 2005. Neurogenesis in the adult ischemic brain: generation, migration, survival, and restorative therapy. Neuroscientist 11, 408–416.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Merritt, M., Woessner, D.E., Lenkinski, R.E., Sherry, A.D., 2003a. PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 36, 783–790.

    Article  CAS  Google Scholar 

  • Zhang, S., Trokowski, R., Sherry, A.D., 2003b. A paramagnetic CEST agent for imaging glucose by MRI. J Am Chem Soc 125, 15288–15289.

    Article  CAS  Google Scholar 

  • Zhang, Z., Jiang, Q., Jiang, F., Ding, G., Zhang, R., Wang, L., Zhang, L., Robin, A.M., Katakowski, M., Chopp, M., 2004. In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage 23, 281–287.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z.G., Jiang, Q., Zhang, R., Zhang, L., Wang, L., Zhang, L., Arniego, P., Ho, K.L., Chopp, M., 2003c. Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol 53, 259–263.

    Article  Google Scholar 

  • Zhang, Z.G., Zhang, L., Jiang, Q., Chopp, M., 2002. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90, 284–288.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M., Kircher, M.F., Josephson, L., Weissleder, R., 2002. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13, 840–844.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M., Weissleder, R., 2004. Intracellular cargo delivery using tat peptide and derivatives. Med Res Rev 24, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Q., Dai, H., Merritt, M.E., Malloy, C., Pan, C.Y., Li, W.H., 2005. A new class of macrocyclic lanthanide complexes for cell labeling and magnetic resonance imaging applications. J Am Chem Soc 127, 16178–16188.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., Wilson, D.A., Sun, P.Z., Klaus, J.A., Van Zijl, P.C., 2004. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med 51, 945–952.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Walter, G.A., Santra, S., Thattaliyath, B., Grant, S.C. (2008). (Super)paramagnetic Nanoparticles: Applications in Noninvasive MR Imaging of Stem Cell Transfer. In: Bulte, J.W., Modo, M.M. (eds) Nanoparticles in Biomedical Imaging. Fundamental Biomedical Technologies, vol 102. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72027-2_6

Download citation

Publish with us

Policies and ethics