Skip to main content

Use of Acoustically Active Contrast Agents in Imaging of Inflammation and Atherosclerosis

  • Chapter

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 102))

Abstract

Inflammation plays an important role in the development of atherosclerosis. The endothelium is an active organ that forms a barrier between the circulation and the arterial wall. In response to pro-atherogenic factors, the endothelium is induced to become an adhesive and pro-thrombotic surface. A range of molecular markers associated with early and late changes in atherogenesis have been identified in the endothelium. Those pathological changes in the endothelium are potential targets for early detection of atherosclerosis and may precede advanced changes that can be detected by conventional imaging modalities, such as coronary angiography. Acoustically active contrast agents have been widely used for clinical applications such as enhancing cardiac chamber definition and measuring myocardial perfusion in diagnostic ultrasound imaging. In the context of molecular imaging, those agents are pure intravascular tracers and are ideally suited for interrogating the expression of molecular markers on the endothelium. Studies have demonstrated how microbubbles can detect inflammation by means of the interactions between their lipid shell components and leukocytes that co-localize on the surface of inflamed endothelium. More sophisticated acoustically active targeting agents, however, involve the incorporation of high-affinity peptides or antibodies into their lipid shell that highlight inflammatory markers, thrombosis, and neovascularization in the arterial wall in atherosclerotic animal models. Before those agents can be widely used in clinical practice, they will require further refinements to reduce immunogenicity of targeting ligands, minimize toxicity of lipid shell components, and improve acoustic stability after intravenous administration. The most challenging aspect of this research is, however, the identification of clinically relevant markers that can accurately predict the presence and progression of atherosclerosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkan-Onyuksel, H., Demos, S. M., et al., 1996. Development of inherently echogenic liposomes as an ultrasonic contrast agent. J Pharm Sci 85,5, 486–490.

    Article  PubMed  CAS  Google Scholar 

  • Barker, S.G., Talbert, A., et al., 1993. Arterial intimal hyperplasia after occlusion of the adventitial vasa vasorum in the pig. Arterioscler Thromb 13,1, 70–77.

    PubMed  CAS  Google Scholar 

  • Basalyga, D.M., Wagner, W.R., et al., 1998. Albumin microbubbles adhere to exposed extracellular matrix of perfused whole vessels. Circulation 98, I-290.

    Google Scholar 

  • Booth, R.F., Martin, J.F., et al., 1989. Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis 76,2–3, 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Bredehorst, R., Ligler, F.S., et al., 1986. Effect of covalent attachment of immunoglobulin fragments on liposomal integrity. Biochemistry 25,19, 5693–5698.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., Masaki, T., et al., 2002. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 95,1, 89–100.

    Article  PubMed  CAS  Google Scholar 

  • Cybulsky, M.I., Gimbrone, M.A., Jr., 1991. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251,4995, 788–791.

    Article  PubMed  CAS  Google Scholar 

  • Demos, S.M., Alkan-Onyuksel, H., et al., 1999. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol 33,3, 867–875.

    Article  PubMed  CAS  Google Scholar 

  • Demos, S.M., Dagar, S., et al., 1998. In vitro targeting of acoustically reflective immunoliposomes to fibrin under various flow conditions. J Drug Target 5,6, 507–518.

    Article  PubMed  CAS  Google Scholar 

  • Demos, S.M., Onyuksel, H., et al., 1997. In vitro targeting of antibody-conjugated echogenic liposomes for site-specific ultrasonic image enhancement. J Pharm Sci 86,2, 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Demos, S.M., Ramani, K., et al., 1996. Targeted acoustic liposomes for atherosclerotic enhancement during intravascular and transvascular ultrasonic imaging. Circulation 94, I-209.

    Google Scholar 

  • Fadok, V.A., Voelker, D.R., et al., 1992. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148,7, 2207–2216.

    PubMed  CAS  Google Scholar 

  • Fisher, N.G., Christiansen, J.P., et al., 2002. Influence of microbubble surface charge on capillary transit and myocardial contrast enhancement. J Am Coll Cardiol 40,4, 811–819.

    Article  PubMed  CAS  Google Scholar 

  • Fu, X., Kassim, S.Y., et al., 2001. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 276,44, 41279–41287.

    Article  PubMed  CAS  Google Scholar 

  • Galis, Z.S., Khatri, J.J. 2002. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90,3, 251–262.

    PubMed  CAS  Google Scholar 

  • Geng, Y.J., Henderson, L.E., et al., 1997. Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 17,10, 2200–2208.

    PubMed  CAS  Google Scholar 

  • Glagov, S., Weisenberg, E., et al., 1987. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316,22, 1371–1375.

    Article  PubMed  CAS  Google Scholar 

  • Gradus-Pizio, I., Bigelow, B., et al., 2002. The role of adventitia in coronary atherosclerosis: results of echocardiographic imaging of the left anterior descending coronary artery. J Am Coll Cardiol 39, 246A.

    Article  Google Scholar 

  • Hamilton, A., Benzuly, K., et al., 2002a. Adventitial thickening in non-occlusive atherosclerosis determined by high resolution echocardiographic imaging of the left anterior descending coronary artery. J Invest Med 50, 235A.

    Google Scholar 

  • Hamilton, A., Rabbat, M., et al., 2002b. A physiologic flow chamber model to define intravascular ultrasound enhancement of fibrin using echogenic liposomes. Invest Radiol 37,4, 215–221.

    Article  Google Scholar 

  • Hamilton, A.J., Huang, S.L., et al., 2004. Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 43,3, 453–460.

    Article  PubMed  Google Scholar 

  • Heath, T.D., Montgomery, J.A., et al., 1983. Antibody-targeted liposomes: increase in specific toxicity of methotrexate-gamma-aspartate. Proc Natl Acad Sci U S A 80,5, 1377–1381.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, J., Lerman, L.O., et al., 2001. Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc Res 51,4, 762–766.

    Article  PubMed  CAS  Google Scholar 

  • Houston, P., Goodman, J., et al., 2001. Homing markers for atherosclerosis: applications for drug delivery, gene delivery and vascular imaging. FEBS Lett 492,1–2, 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S.L., Hamilton, A.J., et al., 2001. Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents. J Pharm Sci 90,12, 1917–1926.

    Article  PubMed  CAS  Google Scholar 

  • Kasper, H.U., Schmidt, A., et al., 1996. Expression of the adhesion molecules ICAM, VCAM, and ELAM in the arteriosclerotic plaque. Gen Diagn Pathol 141,5–6, 289–294.

    PubMed  CAS  Google Scholar 

  • Klibanov, A., Gu, H., et al., 1999. Attachment of ligands to gas-filled microbubbles via PEG spacer and lipid residues anchored at the interface. Controlled Release Society, Boston.

    Google Scholar 

  • Klibanov, A.L., 1999. Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv Drug Deliv Rev 37,1–3, 139–157.

    Article  PubMed  CAS  Google Scholar 

  • Klibanov, A.L., Hughes, M.S., et al., 1997. Targeting of ultrasound contrast material. An in vitro feasibility study. Acta Radiol Suppl 412, 113–120.

    CAS  Google Scholar 

  • Klibanov, A.L., Hughes, M.S., et al., 1998. Targeting of ultrasound contrast material: selective imaging of microbubbles in vitro. Acad Radiol 5,Suppl 1, S243–S246.

    Article  PubMed  Google Scholar 

  • Klibanov, A.L., Rasche, P.T., et al., 2002. Detection of individual microbubbles of an ultrasound contrast agent: fundamental and pulse inversion imaging. Acad Radiol 9,Suppl 2, S279–S281.

    Article  PubMed  Google Scholar 

  • Klibanov, A.L., Rasche, P.T., et al., 2004. Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles. Invest Radiol 39,3 187–195.

    Article  PubMed  Google Scholar 

  • Kolodgie, F.D., Petrov, A., et al., 2003. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 108,25, 3134–3139.

    Article  PubMed  CAS  Google Scholar 

  • Korpanty, G., Grayburn, P.A., et al., 2005. Targeting vascular endothelium with avidin microbubbles. Ultrasound Med Biol 31,9, 1279–1283.

    Article  PubMed  Google Scholar 

  • Kranzhofer, R., Clinton, S.K., et al., 1996. Thrombin potently stimulates cytokine production in human vascular smooth muscle cells but not in mononuclear phagocytes. Circ Res 79,2, 286–294.

    PubMed  CAS  Google Scholar 

  • Kunjathoor, V.V., Febbraio, M., et al., 2002. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277,51, 49982–49988.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, H.M., Sangiorgi, G., et al., 1998. Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest 101,8, 1551–1556.

    PubMed  CAS  Google Scholar 

  • Lanza, G.M., Wallace, K.D., et al., 1996. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 94,12, 3334–3340.

    PubMed  CAS  Google Scholar 

  • Leong-Poi, H., Christiansen, J., et al., 2003. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 107,3, 455–460.

    Article  PubMed  CAS  Google Scholar 

  • Lindner, J.R., Coggins, M.P., et al., 2000a. Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin-and complement-mediated adherence to activated leukocytes. Circulation 101,6, 668–675.

    CAS  Google Scholar 

  • Lindner, J.R., Dayton, P.A., et al., 2000b. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation 102,5, 531–538.

    CAS  Google Scholar 

  • Lindner, J.R., Ismail, S., et al., 1998. Albumin microbubble persistence during myocardial contrast echocardiography is associated with microvascular endothelial glycocalyx damage. Circulation 98,20, 2187–2194.

    PubMed  CAS  Google Scholar 

  • Lindner, J.R., Song, J., et al., 2001. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104,17, 2107–2112.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C., Bhattacharjee, G., et al., 2003. In vivo interrogation of the molecular display of atherosclerotic lesion surfaces. Am J Pathol 163,5, 1859–1871.

    PubMed  CAS  Google Scholar 

  • Martin, F.J., Heath, T.D., et al., 1990. Covalent attachment of proteins to liposomes. New York, IRL Press.

    Google Scholar 

  • McPherson, D.D., Sirna, S.J., et al., 1991. Coronary arterial remodeling studied by high-frequency epicardial echocardiography: an early compensatory mechanism in patients with obstructive coronary atherosclerosis. J Am Coll Cardiol 17,1, 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, P.R., Purushothaman, K.R., et al., 2002. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Circulation 105,21, 2504–2511.

    Article  PubMed  Google Scholar 

  • O’Rourke, R., O’Gara, P., et al., 2004. Diagnosis and management of patients with chronic ischemic heart disease. Hurst’s the heart. V. Fuster, R. Alexander and R. O’Rourke. New York, McGraw-Hill, 1465–1494.

    Google Scholar 

  • Schumann, P.A., Christiansen, J.P., et al., 2002. Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Invest Radiol 37,11, 587–593.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, P.X., Horkko, S., et al., 2001. Human-derived anti-oxidized LDL autoantibody blocks uptake of oxidized LDL by macrophages and localizes to atherosclerotic lesions in vivo. Arterioscler Thromb Vasc Biol 21,8, 1333–1339.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, M., Ogunyankin, K., et al., 1999. Enhanced visualization of intravascular and left atrial appendage thrombus with the use of a thrombus-targeting ultrasonographic contrast agent (MRX-408A1): In vivo experimental echocardiographic studies. J Am Soc Echocardiogr 12,12, 1015–1021.

    Article  PubMed  CAS  Google Scholar 

  • Unger, E.C., Lund, P.J., et al., 1992. Nitrogen-filled liposomes as a vascular US contrast agent: preliminary evaluation. Radiology 185,2, 453–456.

    PubMed  CAS  Google Scholar 

  • Unger, E.C., McCreery, T., et al., 1998a. MRX 501: a novel ultrasound contrast agent with therapeutic properties. Acad Radiol 5,Suppl 1, S247–S249.

    Article  Google Scholar 

  • Unger, E.C., McCreery, T.P., et al., 1998b. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 33,12, 886–892.

    Article  CAS  Google Scholar 

  • Unger, E.C., McCreery, T.P., et al., 1998c. In vitro studies of a new thrombus-specific ultrasound contrast agent. Am J Cardiol 81,12A, 58G-61G.

    Article  CAS  Google Scholar 

  • van der Loo, B., Martin J.F., 1997. The adventitia, endothelium and atherosclerosis. Int J Microcirc Clin Exp 17,5, 280–288.

    PubMed  Google Scholar 

  • van der Wal, A.C., Becker, A.E., et al., 1993. Medial thinning and atherosclerosis– evidence for involvement of a local inflammatory effect. Atherosclerosis 103,1, 55–64.

    Article  PubMed  Google Scholar 

  • Villanueva, F.S., Jankowski, R.J., et al., 1998. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98,1, 1–5.

    PubMed  CAS  Google Scholar 

  • Weller, G.E., Lu, E., et al., 2003. Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation 108,2, 218–224.

    Article  PubMed  Google Scholar 

  • Wu, Y., Unger, E.C., et al., 1998. Binding and lysing of blood clots using MRX-408. Invest Radiol 33,12, 880–885.

    Article  PubMed  CAS  Google Scholar 

  • Yasu, T., Greener, Y., et al., 2005. Activated leukocytes and endothelial cells enhance retention of ultrasound contrast microspheres containing perfluoropropane in inflamed venules. Int J Cardiol 98,2, 245–252.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kee, P.H., McPherson, D.D. (2008). Use of Acoustically Active Contrast Agents in Imaging of Inflammation and Atherosclerosis. In: Bulte, J.W., Modo, M.M. (eds) Nanoparticles in Biomedical Imaging. Fundamental Biomedical Technologies, vol 102. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72027-2_17

Download citation

Publish with us

Policies and ethics