Skip to main content

Bell’s Contributions and Quantum Non-locality

  • Chapter
Einstein’s Struggles with Quantum Theory
  • 1018 Accesses

Abstract

The question of whether it is possible to supplement the wave-function of a system with extra parameters, known as hidden variables, has been discussed at several points earlier in this book. In Chapters 3 and 4, we saw that, though hidden variables might seem to have the potential to solve many of the apparent problems of quantum theory, orthodox approaches made a major point of excluding them from consideration. In Chapter 5 we discussed why, fairly soon after discovery of (modern) quantum theory, Einstein rejected the idea of producing a simple hidden variable theory. Nevertheless, his project of producing a (itcomplete) quantum theory was likely to lead others in the direction of adding hidden variables, even though his own ideas were considerably more grandiose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohr N.(1939). The causality problem inatomic physics, In: New Theoriesin Physics. Paris: International Institute of Intellectual Cooperation, pp. 11–45.

    Google Scholar 

  2. Born M. (1949). Natural Philosophy of Cause and Chance. Oxford: Clarendon Press, pp. 108–9.

    Google Scholar 

  3. Pauli W. (1948). Editorial, Dialectica 2, 307–11.

    Article  Google Scholar 

  4. Cushing J. (1994). Quantum Mechanics. Chicago: University of Chicago Press, p. 131.

    MATH  Google Scholar 

  5. Jammer M. (1974). The Philosophy of Quantum Mechanics. New York: Wiley, pp. 272–7.

    Google Scholar 

  6. Nabl H. (1959). Die Pyramide 3, 96.

    Google Scholar 

  7. Bohm D. (1952). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables, Physical Review 85, 166–79, 180-93.

    Article  ADS  MathSciNet  Google Scholar 

  8. Bell J.S. (1966). On the problem of hidden variables in quantum mechanics, Reviews of Modern Physics 38, 447–52.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Bell J.S. (2004). Speakable and Unspeakable in Quantum Mechanics. (1st edn. 1987, 2nd edn. 2004) Cambridge: Cambridge University Press, pp. 1–13.

    Google Scholar 

  10. Von Neumann J. (1932). Die Mathematische Grundlagen der Quantenmechanik. Berlin: Springer-Verlag.

    Google Scholar 

  11. Selleri F. (1990). Quantum Paradoxes and Physical Reality. Dordrecht: Kluwer, pp. 48–51.

    Google Scholar 

  12. Cushing J.T. (1994). Quantum Mechanics—Historical Contingency and the Copenhagen Hegemony. Chicago: University of Chicago Press, pp. 140–3.

    MATH  Google Scholar 

  13. Bell J.S. (1964). On the Einstein-Podolsky-Rosen paradox, Physics 1, 195–200; also in Ref. [9], pp. 14-21.

    Google Scholar 

  14. Bohm D. (1951). Quantum Theory. Englewood Cliffs, New Jersey: Prentice-Hall, p. 614.

    Google Scholar 

  15. Einstein A. (1949). Autobiographical notes, In: Albert Einstein: Philosopher-Scientist. (Schilpp P.A., ed.) Evanston, Illinois: Library of Living Philosophers, p. 85.

    Google Scholar 

  16. Shimony A. (1989). Searching for a world view which will accommodate our knowledge of microphysics, In: Philosophical Consequences of Quantum Theory: Reflections on Bell’s Theorem. (Cushing J.T. and McMullin E., (eds.)) Notre Dame: Notre Dame University Press, pp. 25–37.

    Google Scholar 

  17. Clauser J.F. and Shimony A. (1978). Bell’s theorem: experimental tests and implications, Reports of Progress in Physics 41, 1881–1927.

    Article  ADS  Google Scholar 

  18. Selleri F. (ed) (1988). Quantum Mechanics versus Local Realism: The Einstein-Podolsky-Rosen Paradox. New York: Plenum.

    Google Scholar 

  19. Home D. and Selleri F. (1991). Bell’s theorem and the EPR paradox, Rivista del Nuovo Cimento 14(9), 1–95.

    Article  MathSciNet  Google Scholar 

  20. Eberhard P.H. (1977). Bell’s theorem without hidden variables, Nuovo Cimento B 38, 75–80.

    Article  ADS  MATH  Google Scholar 

  21. Peres A. (1978). Unperformed experiments have no results, American Journal of Physics 46, 745–7.

    Article  ADS  Google Scholar 

  22. Redhead M. (1987). Incompleteness, Nonlocality, and Realism. Oxford: Clarendon Press, Ch. 4.

    MATH  Google Scholar 

  23. Leggett A.J. (1987). Problems of Physics. Oxford: Oxford University Press, Ch. 5.

    MATH  Google Scholar 

  24. Clauser J.F. and Horne M.A. (1974). Experimental consequences of objective local theories, Physical Review D 10, 526–35.

    Article  ADS  Google Scholar 

  25. Ivanovic J.D. (1978). On complex Bell’s inequality, Lettere al Nuovo Cimento 22, 14–6.

    Google Scholar 

  26. Muckenheim W. (1982). A resolution of the Einstein-Podolsky-Rosen paradox, Lettere al Nuovo Cimento 35, 300–4.

    Google Scholar 

  27. Home D., Lepore V.L. and Selleri F. (1991). Local realistic models and non-physical probabilities, Physics Letter A 158, 357–60.

    Article  ADS  MathSciNet  Google Scholar 

  28. Agarwal G.S., Home D., and Schleich W. (1992). Einstein-Podolsky-Rosen correlation—parallelism between the Wigner function and the local hidden variable approaches, Physics Letters A 170, 359–62.

    Article  ADS  MathSciNet  Google Scholar 

  29. Gleason A.M. (1957). Measures on the closed subspaces of a Hilbert space, Journal of Mathematics and Mechanics 6, 885–93.

    MATH  MathSciNet  Google Scholar 

  30. Kochen S. and Specker E.P. (1967). The problem of hidden variables in quantum mechanics, Journal of Mathematics and Mechanics 17, 59–87.

    MATH  MathSciNet  Google Scholar 

  31. Penrose R. (1994). On Bell non-locality without probabilities: some curious geometry, In: Quantum Reflections (Ellis J. and Amati D., (eds.)) Cambridge: Cambridge University Press, pp. 1–22.

    Google Scholar 

  32. Roy S.M. and Singh V. (1993). Quantum violation of stochastic noncontextual hidden-variable theories, Physical Review A 48, 3379–81.

    Article  ADS  Google Scholar 

  33. Hasegawa Y., Liodl R., Badurek G., Baron M., and Rauch H. (2003). Violation of a Bell-like inequality in single-neutron interferometry, Nature 425, 45–8.

    Article  ADS  Google Scholar 

  34. Basu S., Bandyopadhyay S., Kar G., and Home D. (2001). Bell’s inequality for a single spin 1/2 particle and quantum contextuality, Physics Letters A 279, 281–6.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Jarrett J.P. (1984). On the physical significance of the locality conditions in the Bell arguments, Noûs 18, 569–89.

    Article  MathSciNet  Google Scholar 

  36. Shimony A. (1984). Controllable and uncontrollable non-locality, In: Proceedings of the 1st International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology (Kamefuchi S. et al., (eds.)), Tokyo: Physical Society of Japan, pp. 225–30.

    Google Scholar 

  37. Maudlin T. (1994). Quantum Nonlocality and Relativity. Oxford: Blackwell.

    Google Scholar 

  38. Helliwell T.M. and Konkowski D.A. (1983). Causality paradoxes and nonpara-doxes: classical superluminal signals and quantum measurements, American Journal of Physics 51, 996–1003.

    Article  ADS  Google Scholar 

  39. Roy S.M. and Singh V. (1991). Tests of signal locality and Einstein-Bell locality for multiparticle systems, Physical Review Letters 67, 2761–4.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Bell J.S. (1986). In: Ghost in the Atom (Davies P.C.W. and Brown J.R., (eds.)) Cambridge, UK: Cambridge University Press, p. 50.

    Google Scholar 

  41. Bohm D. (1951). Quantum Theory. Englewood Cliffs: Prentice-Hall, pp. 618–9.

    Google Scholar 

  42. Eberhard P.H. (1978). Bell’s theorem and the different concepts of locality, Nuovo Cimento B 46, 392–419.

    MathSciNet  ADS  Google Scholar 

  43. Eberhard P.H. and Ross R.R. (1989). Quantum field theory cannot provide faster-than-light communication, Foundations of Physics Letters 2, 127–49.

    Article  ADS  Google Scholar 

  44. Ghirardi G.C., Rimini A., and Weber T. (1980). A general argument against super-luminal transmission through the quantum mechanical measurement process, Lettere al Nuovo Cimento 27, 293–8.

    MathSciNet  Google Scholar 

  45. Page D.N. (1982). The Einstein-Podolsky-Rosen physical reality is completely described by quantum mechanics, Physics Letters A 91, 57–60.

    Article  ADS  MathSciNet  Google Scholar 

  46. Gisin N. (1991). Bell’s inequality holds for all non-product states, Physics Letters A 154, 201–2.

    Article  ADS  MathSciNet  Google Scholar 

  47. Roy S.M. and Singh V. (1978). Experimental tests of quantum mechanics versus local hidden variable theories, Journal of Physics A 11, 167–71.

    Article  Google Scholar 

  48. Roy S.M. and Singh V.(1979). Completeness of testsof local hidden variable theories, Journal of Physics A 12, 1003–9.

    Article  MathSciNet  Google Scholar 

  49. Garuccio A. and Selleri F. (1980). Systematic derivation of all the inequalities of Einstein locality, Foundations of Physics 10, 209–16.

    Article  ADS  Google Scholar 

  50. Garuccio A. (1980). All the inequalities of Einstein locality, In: Quantum Mechanics Versus Local Realism: The Einstein-Podolsky-Rosen Paradox. (Selleri F., ed.) New York: Plenum, pp. 87–113.

    Google Scholar 

  51. Lepore V.L. (1989). New inequalities from local realism, Foundations of Physics Letters 2, 15–26.

    Article  MathSciNet  ADS  Google Scholar 

  52. Garg A. and Mermin N.D. (1982). Correlation inequalities and hidden variables, Physical Review Letters 49, 1220–3.

    Article  ADS  MathSciNet  Google Scholar 

  53. Greenberger D.M., Horne M.A., and Zeilinger A. (1989). Going beyond Bell’s theorem, In: Bell’s Theorem, Quantum Theory and Conceptions of the Universe. (Kafatos M., ed.) Dordrecht: Kluwer, pp. 73–6.

    Google Scholar 

  54. Greenberger D.M., Horne M.A., Shimony A., and Zeilinger A. (1990). Bell’s theorem without inequalities, American Journal of Physics 58, 1131–43.

    Article  ADS  MathSciNet  Google Scholar 

  55. Mermin N.D. (1990). Quantum mysteries revisited, American Journal of Physics 58, 731–4.

    Article  ADS  MathSciNet  Google Scholar 

  56. Fine A. (1982). Hidden variables, joint probability, and the Bell inequalities, Physical Review Letters 48, 291–5.

    Article  ADS  MathSciNet  Google Scholar 

  57. Fine A.(1982). Joint distributions, quantum correlations, and commuting observables, Journal of Mathematical Physics 23, 1306–10.

    Google Scholar 

  58. Hardy L. (1991). A new way to obtain Bell inequalities, Physics Letters A 161, 21–5.

    Article  ADS  MathSciNet  Google Scholar 

  59. Hardy L. (1992). Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories, Physical Review Letters 68, 2981–4.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. Hardy L. (1993). Nonlocality for two particles without inequalities for almost all entangled states, Physical Review Letters 71, 1665–8.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. Stapp H.(1993). Mind, Matter, and Quantum Mechanics. New York: Springer-Verlag, pp. 5–8.

    Google Scholar 

  62. Mermin N.D. (1994). What’s wrong with this temptation? Physics Today 9(6), 9–11.

    Google Scholar 

  63. Jordan T.F. (1994). Testing Einstein-Podolsky-Rosen assumptions without inequalities with two photons or particles with spin1/2, Physical Review A 50, 62–6.

    Article  ADS  Google Scholar 

  64. Goldstein S. (1994). Nonlocality without inequalities for almost all entangled states for two particles, Physical Review Letters 72, 1951.

    Google Scholar 

  65. Selleri F. (1990). Quantum Paradoxes and Physical Reality. Dordrecht: Kluwer, Ch.6.

    Google Scholar 

  66. Ferrero M., Marshall T.W. and Santos E. (1990). Bell’s theorem: local realism versus quantum mechanics, American Journal of Physics 58, 683–8.

    Article  ADS  Google Scholar 

  67. Santos E. (1989). Relevance of detector efficiency in the optical tests of Bell inequalities, Physics Letters A 139, 431–6.

    Article  ADS  MathSciNet  Google Scholar 

  68. Santos E. (1991). Interpretation of the quantum formalism and Bell’s theorem, Foundations of Physics 21, 221–41.

    Article  ADS  MathSciNet  Google Scholar 

  69. Santos E.(1996). Unreliability ofperformed tests of Bell’s inequality using parametric down-converted photons, Physics Letters A 212, 10–14.

    Google Scholar 

  70. Marshall T.W., Santos E. and Selleri F. (1983). Local realism has not been refuted by atomic cascade experiments, Physics Letters A 98, 5–9.

    Article  ADS  Google Scholar 

  71. Home D. and Marshall T.W. (1985). A stochastic local realist model for the EPR atomic-cascade experiment which reproduces the quantum-mechanical coincidence rates, Physics Letters A 113, 183–6.

    Article  ADS  MathSciNet  Google Scholar 

  72. Clauser J.F., Horne M.A., Shimony A. and Holt R.A. (1969). Proposed experiment to test hidden-variable theories, Physical Review Letters 23, 880–4.

    Article  ADS  Google Scholar 

  73. Garg A. and Mermin N.D. (1987). Detector inefficiencies in the Einstein-Podolsky-Rosen experiment, Physical Review D 35, 3831–5.

    Article  ADS  Google Scholar 

  74. Eberhard P.H. (1993). Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment, Physical Review A 47, R747-50.

    Google Scholar 

  75. Bohm D. and Aharonov Y. (1957). Discussion of experimental proof for the paradox of Einstein, Rosen and Podolsky, Physical Review 108, 1070–6.

    Article  ADS  Google Scholar 

  76. Aspect A. Imbert C. and Roger G. (1980). Absolute measurement of an atomic cascade rate using a two photon coincidence technique: application to the 4p21S0— 4s4p1P1-4s21S0 cascade of calcium excited by a two photon absorpt, Optics Comminications 34, 46–52.

    Article  ADS  Google Scholar 

  77. Aspect A., Grangier P. and Roger G. (1981). Experimental tests of realistic local theories via Bell’s theorem, Physical Review Letters 47, 460–3.

    Article  ADS  Google Scholar 

  78. Aspect A., Grangier P. and Roger G. (1982). Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities, Physical Review Letters 49, 91–4.

    Article  ADS  Google Scholar 

  79. Aspect A., Dalibard J. and Roger G. (1982). Experimental tests of Bell’s inequalities using time-varying analysers, Physical Review Letters 49, 1804–7.

    Article  ADS  MathSciNet  Google Scholar 

  80. Aspect A. and Grangier P. (1985). Tests of Bell’s inequalities with pairs of low energy correlated photons: An experimental realization of Einstein-Podolsky-Rosentype correlations, In: Symposium on the Foundations of Modern Physics: 50 Years of the Einstein-Podolsky-Rosen Gedankenexperiment. (Lahti P. and Mittelstaedt P., (eds.)), Singapore: World Scientific pp. 51–71.

    Google Scholar 

  81. Shih Y.H.and Alley C.O.(1988). NewtypeofEinstein-Podolsky-Rosen-Bohmexper-iment using pairs of light quanta produced by optical parametric down conversion, Physical Review Letters 61, 2921–4.

    Google Scholar 

  82. Ou Z.Y. and Mandel L. (1988). Violation of Bell’s inequality and classical probability in a two-photon correlation experiment, Physical Review Letters 61, 50–3.

    Article  ADS  MathSciNet  Google Scholar 

  83. Rarity J.G. and Tapster P.R. (1990). Experimental violation of Bell’s inequality based on phase and momentum, Physical Review Letters 64, 2495–8.

    Article  ADS  Google Scholar 

  84. Horne M.A. and Zeilinger A. (1985). A Bell-type EPR experiment using linear momenta, In: Symposium on the Foundations of Modern Physics: 50 Years of the Einstein-Podolsky-Rosen Gedankenexperiment. (Lahti P. and Mittelstaedt P., (eds.)) Singapore: Worl Scientific, p. 435–9.

    Google Scholar 

  85. Horne M.A., Shimony A., and Zeilinger A. (1989). Two-particle interferometry, Physical Review Letters 62, [pp2209-12.

    Google Scholar 

  86. Tittel W., Brendel J., Gisin B., Herzog T., Zbinden H., and Gisin N. (1998). Experimental demonstration of quantum correlations over more than 10 km, Physical Review A 57, 3229–32.

    Article  ADS  Google Scholar 

  87. Tittel W., Brendel J., Zbinden H., and Gisin N. (1998). Violation of Bell inequalities by photons more than 10km apart, Physical Review Letters 81, 3563–6.

    Article  ADS  Google Scholar 

  88. Tittel W., Brendel J., Gisin N., and Zbinden H. (1999). Long-distance Bell-tests using energy-time entangled photons, Physical Review A 59, 4150–63.

    Article  ADS  MathSciNet  Google Scholar 

  89. Kwiat P.G., Mattle K., Weinfurter H., Zeilinger A., Sergienko A.V. and Shih Y.H. (1995). New high-intensity source of polarisation-entangled photon states, Physics Review Letters 75, 4337–40.

    Article  ADS  Google Scholar 

  90. Weihs G., Jennewein T., Simon C., Weinfurter H., and Zeilinger A. (1998). Violation of Bell’s inequality under strict Einstein locality conditions, Physical Review Letters 81, 5039–43.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  91. Kwiat P.G., Eberhard P.H., Steinberg A.M., and Chiao R.Y. (1994). Proposal for a loophole-free Bell inequality test, Physical Review A 49, 3209–20.

    Article  ADS  Google Scholar 

  92. Fry E.S., Walther T., and Li S. (1995). Proposal for a loophole-free test of the Bell inequalities, Physical Review A 52, 4381–95.

    Article  ADS  MathSciNet  Google Scholar 

  93. Hagley E., Maitre X., Nogues G., Wunderlich C., Brune M., Raimond J.M., and Haroche S. (1997). Generation of Einstein-Podolsky-Rosen pairs of atoms, Physical Review Letters 79, 1–5.

    Article  ADS  Google Scholar 

  94. Rowe M.A., Klepinski D., Meyer V., Sackett C.A., Itano W.M., Monroe C., and Wineland D.J. (2001). Experimental violation of a Bell’s inequality with efficient detection, Nature 409, 791–4.

    Article  ADS  Google Scholar 

  95. Bouwmeester D., Pan J.-W., Daniell M., Weinfurter H., and Zeilinger A. (1999).Observation of three-photon Greenberger-Horne-Zeilinger entanglement, Physical Review Letters 82, 1345–9.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  96. Togerson J.R., Branning D., Monken C.H., and Mandel L. (1995). Experimental demonstration of the violation of local realism without Bell inequalities, Physics Letters A 204, 323–8.

    Article  ADS  Google Scholar 

  97. Di Giuseppe G., de Martini F., and Boschi D. (1997). Experimental test of the violation of local realism in quantum mechanics without Bell inequalities, Physical Review A 56, 176–81.

    Article  ADS  Google Scholar 

  98. Boschi D., Branca S., de Martini F., and Hardy L. (1997). Ladder proof of nonlocality without inequalities: theoretical and experimental results, Physical Review Letters 79, 2755–8.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  99. Cabello A. (2001). Bell’s theorem without inequalities and without probabilities for two observers, Physical Review Letters 86, 1911–4.

    Article  ADS  MathSciNet  Google Scholar 

  100. Cabello A. (2001). ‘All versus nothing’ inseparability for two observers, Physical Review Letters 87, 010403.

    Article  ADS  MathSciNet  Google Scholar 

  101. Wootters W.K. and Zurek W.H. (1982). A single quantum cannot be cloned, Nature 299, 802–3.

    Article  ADS  Google Scholar 

  102. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., and Wootters W.K. (1993). Teleporting an unknown quantum state via dual classical and Einstein Podolsky-Rosen channels, Physical Review Letters 70, 1895–9.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  103. Bouwmeester D., Pan J.-W., Mattle K., Eibl M., Weinfurter H., and Zeilinger A. (1997). Experimental quantum teleportation, Nature 390, 575.

    Article  ADS  Google Scholar 

  104. Bouwmeester D., Pan J.-W., Daniell M., Weinfurter H., Zukowski M. and Zeilinger A. (1998). A posteriori teleportation—reply, Nature 394, 841.

    Article  ADS  Google Scholar 

  105. Boschi D., Branca S., de Martini F., Hardy L., and Popescu S. (1998). Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters 80, 1121–5.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  106. Furusawa A., Sorensen J.L., Braunstein S.L., Fuchs C.A., Kimble H.J., and Polzik E.S. (1998). Unconditional quantum teleportation, Science 282, 706–9.

    Article  ADS  Google Scholar 

  107. Bose S. and Home D. (2002). Generic entanglement generation, quantum statistics, and complementarity, Physical Review Letters 88, 050401.

    Article  ADS  MathSciNet  Google Scholar 

  108. Braunstein S.L. (1996). Quantum teleportation without irreversible detection, Physical Review A 53, 1900–2.

    Article  ADS  Google Scholar 

  109. Jozsa R.O. (1998). Entanglement and quantum computation, In: The Geometric Universe: Science, Geometry and the Work of Roger Penrose. (Huggett S.A., Mason L.J., Tod K.P. and Woodhouse N.M.J., (eds.)) Oxford: Oxford University Press, pp. 369–79.

    Google Scholar 

  110. Penrose R. (1998). Quantum computation, entanglement and state reduction, Philosophical Transactions of the Royal Society A 356, 1927–39.

    ADS  MathSciNet  MATH  Google Scholar 

  111. Deutsch D. and Hayden P. (2000). Information flow in entangled quantum systems, Proceedings of the Royal Society A 456, 1759–74.

    Article  MATH  MathSciNet  Google Scholar 

  112. Zukowski M. (2000). Bell’s theorem for the nonclassical part of the quantum teleportation process, Physical Review A 62, 032101.

    Article  ADS  MathSciNet  Google Scholar 

  113. Clifton R. and Pope D. (2001). On the non-locality of the quantum channel in the standard teleportation protocol, Physics Letters A 292, 1–11.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  114. Zeilinger A. (2000). Quantum teleportation, Scientific American 282(4), 50–9.

    Article  MathSciNet  Google Scholar 

  115. Corbett J.V. and Home D. (2000). Quantum effects involving interplay between unitary dynamics and kinematic entanglement, Physics Review A 62, 062103.

    Article  ADS  Google Scholar 

  116. Corbett J.V. and Home D. (2004). Information transfer and non-locality for a tripartite entanglement using dynamics, Physics Letters A 333, 382–8.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. Bell J.S. (1981). Bertlmann’s socks and the nature of reality, Journal de Physique Colloque C2, 42, 41–61; also in Speakable and Unspeakable in Quantum Mechanics. (1st edn. 1987, 2nd edn. 2004) Cambridge: Cambridge University Press, pp. 139–58.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Bell’s Contributions and Quantum Non-locality. In: Einstein’s Struggles with Quantum Theory. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71520-9_9

Download citation

Publish with us

Policies and ethics