Skip to main content

Otoacoustic Emissions: Basic Studies in Mammalian Models

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 30))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdala C (2004) Distortion product otoacoustic emission (2f 1f 2) suppression in 3-month-old infants: evidence for postnatal maturation of human cochlear function. J Acoust Soc Am 116:3572–3580.

    PubMed  Google Scholar 

  • Abdala C, Sininger YS, Ekelid M, Zeng F-G (1996) Distortion product otoacoustic emission suppression tuning curves in human adults and neonates. Hear Res 98:38–53.

    PubMed  CAS  Google Scholar 

  • Anderson SD, Kemp, DT (1979) The evoked cochlear mechanical response in laboratory primates. Arch Otorhinolaryngol 224:47–54.

    PubMed  CAS  Google Scholar 

  • Avan P, Loth D, Menguy C, Teyssou M (1990) Evoked otoacoustic emissions in guinea pig: basic characteristics. Hear Res 44:151–160.

    PubMed  CAS  Google Scholar 

  • Avan P, Lemaire JJ, Dordain M, Chazal J, Buki B, Ribari O (1998) Otoacoustic emissions and monitoring of intracranial hypertension. J Audiolog Med 7:46–57.

    Google Scholar 

  • Avan P, Bonfils P, Mom T (2001) Correlations among distortion product otoacoustic emissions, thresholds and sensory cell impairments. Noise Health 3:1–17.

    PubMed  Google Scholar 

  • Berlin CI, Hood LJ, Hurley A, Wen H (1994) Contralateral suppression of otoacoustic emissions: an index of the function of the medial olivocochlear system. Otolaryngol Head Neck Surg 110:3–21.

    PubMed  CAS  Google Scholar 

  • Brown AM (1987) Acoustic distortion from rodent ears: a comparison of responses from rats, guinea pigs and gerbils. Hear Res 31:25–38.

    PubMed  CAS  Google Scholar 

  • Brown AM, Gaskill SA (1990) Measurement of acoustic distortion reveals underlying similarities between human and rodent mechanical responses. J Acoust Soc Am 88:840–849.

    PubMed  CAS  Google Scholar 

  • Brown AM, Kemp DT (1984) Suppressibility of the 2f 1f 2 stimulated acoustic emissions in gerbil and man. Hear Res 13:29–37.

    PubMed  CAS  Google Scholar 

  • Brown MC, Nuttall AL (1984) Efferent control of cochlear inner hair cell responses in the guinea pig. J Physiol 354:625–646.

    PubMed  CAS  Google Scholar 

  • Brown AM, McDowell B, Forge A (1989) Acoustic distortion products can be used to monitor the effects of chronic gentamicin treatment. Hear Res 42:143–156.

    PubMed  CAS  Google Scholar 

  • Brown AM, Woodward S, Gaskill SJ (1990) Frequency variations in spontaneous sound emissions from guinea pig and human ears. Eur Arch Otorhinolaryngol 247:24–28.

    PubMed  CAS  Google Scholar 

  • Brownell WE (1990) Outer hair cell electromotility and otoacoustic emissions. Ear Hear 11:82–92.

    PubMed  CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, De Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear hair cells. Science 227:194–196.

    PubMed  CAS  Google Scholar 

  • Candreia C, Martin GK, Stagner BB, Lonsbury-Martin BL (2004) Distortion product otoacoustic emissions show exceptional resistance to noise exposure in MOLF/Ei mice. Hear Res 194:109–117.

    PubMed  Google Scholar 

  • Canlon B, Borg E, Flock A (1988) Protection against noise trauma by pre-exposure to a low level acoustic stimulus. Hear Res 34:197–200.

    PubMed  CAS  Google Scholar 

  • Cappaert NL, Klis SF, Baretta AB, Juijser H, Smoorenburg GF (2000) Ethyl benzene-induced ototoxicity in rats: a dose-dependent mid-frequency hearing loss. J Assoc Res Otolaryngol 1:292–299.

    PubMed  CAS  Google Scholar 

  • Cevette MJ, Robinette MS, Carter J, Knops JL (1995) Otoacoustic emissions in sudden unilateral hearing loss associated with multiple sclerosis. J Am Acad Audiol 6:197–202.

    PubMed  CAS  Google Scholar 

  • Cilento B, Norton SJ, Gates GA (2003) The effects of aging and hearing loss on distortion product otoacoustic emissions. Otolaryngol Head Neck Surg 129:382–389.

    PubMed  Google Scholar 

  • Clark WW, Bohne BA (1978) Animal model for the 4-kHz tonal dip. Ann Otol Rhinol Laryngol 87 (Suppl 51):1–16.

    CAS  Google Scholar 

  • Clark WW, Kim DO, Zurek PM, Bohne B.A. (1984) Spontaneous otoacoustic emissions in chinchilla ear canals: correlation with histopathology and suppression by external tones. Hear Res 16:299–314.

    PubMed  CAS  Google Scholar 

  • Cohn ES, Kelley PM, Fowler TW, Gorga MP, Lefkowitz DM, Kuehn JH, Schaefer GB, Gobar L, Hahn FJ, Harris DJ, Kimberling WJ (1999) Clinical studies of families with hearing loss attributable to mutations in the connexin 26 gene. Pediatrics 103:546–550.

    PubMed  CAS  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    PubMed  CAS  Google Scholar 

  • de Kleine E, Wit HP, Avan P, van Dijk P (2001) The behavior of evoked otoacoustic emissions during and after postural changes. J Acoust Soc Am 220:973–980.

    Google Scholar 

  • Dhar S, Talmadge CL, Long GR, Tubis A (2002) Multiple internal reflections in the cochlea and their effect on DPOAE fine structure. J Acoust Soc Am 112:2882–2897.

    PubMed  Google Scholar 

  • Dieler R, Shehata-Deiler WE, Brownell WE (1991) Concomitant salicylate-induced alterations of outer hair cell subsurface cisternae and electromotility. J Neurocytol 20:637–653.

    PubMed  CAS  Google Scholar 

  • Dolan DF, Guo MH, Nuttall AF (1997) Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J Acoust Soc Am 102:3587–3596.

    PubMed  CAS  Google Scholar 

  • Douek EE, Dodson HC, Bannister LH (1983) The effects of sodium salicylates on the cochlea of the guinea pig. J Laryngol Otol 93:793–799.

    Google Scholar 

  • Ehret G (1974) Age-dependent hearing loss in normal hearing mice. Naturwissenschaften 11:506.

    Google Scholar 

  • Engdahl B, Kemp DT (1996) The effect of noise exposure on the details of distortion product otoacoustic emissions in humans. J Acoust Soc Am 99:1573–1587.

    PubMed  CAS  Google Scholar 

  • Evans EF, Borerwe TA (1982) Ototoxic effects of salicylates on the responses of single cochlear nerve fibres. Br J Audiol 16:101–108.

    PubMed  CAS  Google Scholar 

  • Evans EF, Wilson JP, Borerwe TA (1981) Animal models of tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus. London: Pitman Books, pp. 108–138.

    Google Scholar 

  • Fahey PF, Stagner BB, Lonsbury-Martin BL, Martin GK (2000) Nonlinear interactions that could explain distortion product interference response areas. J Acoust Soc Am 108:1786–1802.

    PubMed  CAS  Google Scholar 

  • Franklin DJ, Lonsbury-Martin BL, Stagner BB, Martin GK (1991) Altered susceptibility of 2f 1f 2 acoustic distortion products to the effects of repeated noise exposure in rabbits. Hear Res 53:185–208.

    PubMed  CAS  Google Scholar 

  • Gates GA, Karzon RK, Garcia P, Peterein J, Storandt M, Morris JC, Miller P (1995) Auditory dysfunction in aging and senile dementia of the Alzheimer’s type. Arch Neurol 52:626–634.

    PubMed  CAS  Google Scholar 

  • Gorga MA, Neely ST, Bergman BM, Beauchaine KL, Kaminski JR, Peters J, Schulte L, Jesteadt W (1993) A comparison of transient-evoked and distortion product otoacoustic emissions in normal-hearing and hearing-impaired subjects. J Acoust Soc Am 94:2639–2648.

    PubMed  CAS  Google Scholar 

  • Grewe TSD, Danhauer LJ, Danhauer KJ, Thornton ARD (1994) Clinical use of otoacoustic emissions in children with autism. Int J Ped Otorhinolaryngol 30:133–142.

    Google Scholar 

  • Guinan JJ Jr (1986) Effect of efferent neural activity on cochlear mechanics. Scand Audiol Suppl 25:53–62.

    PubMed  Google Scholar 

  • Guinan JJ Jr (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589–607.

    PubMed  Google Scholar 

  • Harding GW, Bohn BA, Ahmad M (2002) DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise. Hear Res 174:158–171.

    PubMed  Google Scholar 

  • Harris FP, Probst R (1992) Transiently evoked otoacoustic emissions in patients with Ménière’s disease. Acta Otolaryngol 112:36–44.

    PubMed  CAS  Google Scholar 

  • Harris FP, Lonsbury-Martin BL, Stagner BB, Coats AC,. Martin GK (1989) Acoustic distortion products in humans: systematic changes in amplitude as a function of f 2/f 1 ratio. J Acoust Soc Am 85:220–229.

    PubMed  CAS  Google Scholar 

  • Hatzopoulos S, Di Stefano M, Campbell KC, Falgione D, Ricci D, Rosignoli M, Finesso M, Albertin A, Previati M, Capitani S, Martini A (2001) Cisplatin ototoxicity in the Sprague-Dawley rat evaluated by distortion product otoacoustic emissions. Audiology 40:253–264.

    PubMed  CAS  Google Scholar 

  • Hatzopoulos S, Petruccelli J, Laurell G, Avan P, Finesso M, Martini A (2002) Ototoxic effects of cisplatin in a Sprague-Dawley rat model as revealed by ABR and transiently evoked otoacoustic emission measures. Hear Res 170:70–82.

    PubMed  CAS  Google Scholar 

  • Hauser R, Probst R, Harris FP, Frei F (1992) Influence of general anesthesia on transiently evoked otoacoustic emissions in humans. Ann Otol Rhinol Laryngol 101:994–999.

    PubMed  CAS  Google Scholar 

  • Hayashida T, Hiel H, Dulon D, Erre J-P, Guilhaume A, Aran J-M (1989) Dynamic changes following combined treatment with gentamicin and ethacrynic acid with and without acoustic stimulation. Acta Otolaryngol 108:404–413.

    PubMed  CAS  Google Scholar 

  • He N-J, Schmiedt RA (1993) Fine structure of the 2f 1f 2 acoustic distortion product: Changes with primary level. J Acoust Soc Am 94:2659–2669.

    PubMed  CAS  Google Scholar 

  • Henley CM, Owings MH, Stagner BB, Martin GK, Lonsbury-Martin BL (1989) Postnatal development of 2f 1f 2 otoacoustic emissions in pigmented rat. Hear Res 43:141–148.

    Google Scholar 

  • Henley C, Wheatherly RA, Martin GK, Lonsbury-Martin B (1996) Sensitive developmental periods for kanamycin ototoxic effects on distortion-product otoacoustic emissions. Hear Res 98:93–103.

    PubMed  CAS  Google Scholar 

  • Horner KC, Lenoir M, Bock GR (1985) Distortion product otoacoustic emissions in hearing-impaired mutant mice. J Acoust Soc Am 78:1603–1611.

    PubMed  CAS  Google Scholar 

  • Howard MA, Stagner BB, Lonsbury-Martin BL, Martin GK (2002) Effects of reversible noise exposure on the suppression tuning of rabbit distortion-product otoacoustic emissions. J Acoust Soc Am 111:285–296.

    PubMed  Google Scholar 

  • Howard MA, Stagner BB, Foster PK, Lonsbury-Martin BL, Martin GK (2003) Suppression tuning in noise-exposed rabbits. J Acoust Soc Am 114:279–293.

    PubMed  Google Scholar 

  • Huang J-M, Money MK, Berlin CI, Keats BJB (1995) Auditory phenotyping of heterozygous sound-responsive (+/dn) and deafness (dn/dn) mice. Hear Res 88:61–64.

    PubMed  CAS  Google Scholar 

  • Hultcrantz M, Stenberg AE, Fransson A, Canlon B (2000) Characterization of hearing in an X,O “Turner mouse.” Hear Res 143:182–188.

    PubMed  CAS  Google Scholar 

  • Jimenez AM, Stagner BB, Martin GK, Lonsbury-Martin BL (1999) Age-related loss of distortion-product otoacoustic emissions in four mouse strains. Hear Res 138:91–105.

    PubMed  CAS  Google Scholar 

  • Jimenez AM, Stagner BB, Martin GK, Lonsbury-Martin BL (2001) Susceptibility of DPOAEs to sound overexposure in inbred mice with AHL. J Assoc Res Otolaryngol 2:233–245.

    PubMed  CAS  Google Scholar 

  • Johnson A-C, Canlon, B (1994) Toluene exposure affects the functional activity of the outer hair cells. Hear Res 72:189–196.

    PubMed  CAS  Google Scholar 

  • Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanisms model for DPOAE generation. J Acoust Soc Am 109:622–637.

    PubMed  CAS  Google Scholar 

  • Katbamna B, Homnick DN, Marks JH (1999) Effects of chronic tobramycin treatment on distortion product otoacoustic emissions. Ear Hear 20:393–402.

    PubMed  CAS  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391.

    PubMed  CAS  Google Scholar 

  • Kemp DT (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45.

    PubMed  CAS  Google Scholar 

  • Kemp DT (1981) Physiologically active cochlear micromechanics-one source of tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus. London: Pitman Books Ltd., pp. 54–81.

    Google Scholar 

  • Kemp DT, Brown AM (1983) A comparison of mechanical nonlinearities in the cochleae of man and gerbil from ear canal measurements. In: Klinke R, Hartmann R (eds), Hearing—Physiological Bases and Psychophysics. Berlin: Springer-Verlag, pp. 82–88.

    Google Scholar 

  • Kemp DT, Brown AM (1984) Ear canal acoustic and round window correlates of 2f 1f 2 distortion generated in the cochlea. Hear Res 13:39–46.

    PubMed  CAS  Google Scholar 

  • Kemp DT, Chum R (1980) Properties of the generator of stimulated acoustic emissions. Hear Res 2:213–232.

    PubMed  CAS  Google Scholar 

  • Kemp DT, Bray P, Alexander L, Brown AM (1986) Acoustic emission cochleography—practical aspects. In: Cianfrone G, Grandori F (eds), Cochlear Mechanics and Otoacoustic Emissions. Scand Audiol Suppl 25, pp. 71–96.

    Google Scholar 

  • Kim DO (1980) Cochlear mechanics: implications of electrophysiological and acoustical observations. Hear Res 2:297–317.

    PubMed  CAS  Google Scholar 

  • Kim DO, Molnar CE, Matthews JW (1980) Cochlear mechanics: nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in ear-canal sound pressure. J Acoust Soc Am 67:1704–1721.

    PubMed  CAS  Google Scholar 

  • Knight RD, Kemp DT (2001) Wave and place fixed DPOAE maps of the human ear. J Acoust Soc Am 109:1513–1525.

    PubMed  CAS  Google Scholar 

  • Konrad-Martin D, Norton SJ, Mascher KE, Tempel BL (2001) Effects of PMCA2 mutation on DPOAE amplitudes and latencies in deafwaddler mice. Hear Res 151:205–220.

    PubMed  CAS  Google Scholar 

  • Kössl M, Vater M (2000) Consequences of outer hair cell damage for otoacoustic emissions and audio-vocal feedback in the mustached bat. J Assoc Res Otolaryngology 1:300–314.

    Google Scholar 

  • Kujawa SG, Fallon M, Bobbin RP (1992) Intracochlear salicylate reduces low-intensity acoustic and cochlear microphonic distortion products. Hear Res 64:73–80.

    PubMed  CAS  Google Scholar 

  • Laskey RE, Widholm JJ, Crofton KM, Schantz SL (2002) Prenatal exposure to Arocolor 1254 impairs distortion product otoacoustic emissions (DPOAEs) in rats. Toxicol Sci 68:458–464.

    Google Scholar 

  • Le Calvez S, Avan P, Gilain L, Romand R (1998) CD1 hearing-impaired mice. I. Distortion product otoacoustic emission levels, cochlear function and morphology. Hear Res 120:37–50.

    PubMed  CAS  Google Scholar 

  • Li D, Henley CM, O’Malley BW Jr (1999) Distortion product otoacoustic emissions and outer hair cell defects in the hyt/hyt mutant mouse. Hear Res 138:65–72.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Zuo J, Guinan JJ Jr (2004) Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea? J Acoust Soc Am 116:1649–1655.

    PubMed  CAS  Google Scholar 

  • Liu XZ, Newton VE (1997) Distortion product emissions in normal-hearing and low-frequency hearing loss carriers of genes for Waardenburg’s syndrome. Ann Otol Rhinol Laryngol 106:220–225.

    PubMed  CAS  Google Scholar 

  • Long GR, Tubis A (1988) Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84:1343–1353.

    PubMed  CAS  Google Scholar 

  • Lonsbury-Martin BL, Martin GK (1988) Incidence of spontaneous otoacoustic emissions in macaque monkeys: a replication. Hear Res 34:13–317.

    Google Scholar 

  • Lonsbury-Martin BL, Martin GK, Probst R, Coats AC (1988) Spontaneous otoacoustic emissions in a nonhuman primate: II. Cochlear anatomy. Hear Res 33:69–93.

    CAS  Google Scholar 

  • Lonsbury-Martin BL, Harris FP, Hawkins MD., Stagner BB, Martin GK (1990) Distortion-product emissions in humans: I. Basic properties in normally hearing subjects. Ann Otol Rhinol Laryngol, Suppl 236:3–13.

    Google Scholar 

  • Lonsbury-Martin BL, Whitehead ML, Martin GK (1991) Clinical applications of otoacoustic emissions. J Speech Hear Res 34:964–981.

    PubMed  CAS  Google Scholar 

  • Lonsbury-Martin BL, Martin GK, McCoy MJ, Whitehead ML (1994) Testing young children with otoacoustic emissions: middle-ear influence. Am J Otol 15, Suppl 1:13–20.

    Google Scholar 

  • Maison SF, Liberman MC (2000) Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci 20:4701–4707.

    PubMed  CAS  Google Scholar 

  • Manley GA (1983) Frequency spacing of acoustic emissions: A possible explanation. In: Webster WR, Aitkin LM (eds), Mechanisms of Hearing. Clayton, Australia: Monash University Press, pp. 36–39.

    Google Scholar 

  • Martin GK, Shaw DWW, Dobie RA, Lonsbury-Martin BL (1983) Endolymphatic hydrops in the rabbit: auditory brainstem responses and cochlear morphology. Hear Res12:65–87.

    PubMed  CAS  Google Scholar 

  • Martin GK, Probst R, Scheinin SA, Coats AC, Lonsbury-Martin BL (1987) Acoustic distortion products in rabbits. II. Sites of origin revealed by suppression and pure-tone exposures. Hear Res 28:191–208.

    PubMed  CAS  Google Scholar 

  • Martin GK, Lonsbury-Martin BL, Probst R, Coats AC (1988) Spontaneous otoacoustic emissions in a nonhuman primate. I. Basic features and relations to other emissions. Hear Res 33:49–68.

    PubMed  CAS  Google Scholar 

  • Martin GK, Stagner BB, Coats AC, Lonsbury-Martin BL (1989) Endolymphatic hydrops in rabbits: behavioral thresholds, acoustic distortion products, and cochlear pathology. In: Nadol JB (ed) Ménière’s Disease: Pathogenesis, Pathophysiology, Diagnosis and Treatment, Amsterdam: Kugler and Ghedini Publications,pp. 205–219.

    Google Scholar 

  • Martin GK, Franklin DJ, Harris FP, Ohlms LA, Lonsbury-Martin BL (1990) Distortion-product emissions in humans: III. Influence of hearing pathology. Ann Otol Rhinol Laryngol (Suppl) 236:29–44.

    Google Scholar 

  • Martin GK, Jassir D, Stagner BB, Whitehead ML, Lonsbury-Martin BL (1998a) Locus of generation for the 2f 1f 2 vs 2f 2f 1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations. J Acoust Soc Am 103:1957–1971.

    CAS  Google Scholar 

  • Martin GK, Jassir D, Stagner BB, Lonsbury-Martin BL (1998b) Effects of loop diureics on the suppression tuning of distortion-product otoacoustic emissions in rabbits. J Acoust Soc Am 104:972–983.

    CAS  Google Scholar 

  • Martin GK, Stagner BB, Jassir D, Telischi FF, Lonsbury-Martin BL (1999) Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f2: I. Basic findings in rabbits. Hear Res 136:105–123.

    PubMed  CAS  Google Scholar 

  • Martin GK, Candreia C, Bohne BA, Harding GW, Stagner BB, Lonsbury-Martin BL (2002) An augmented acoustic environment delays age-related hearing loss in C57BL/6J mice as revealed by DPOAEs and cochlear histopathology. Assoc Res Otolaryngol Abstr 25:265, pp. 69–70.

    Google Scholar 

  • Martin GK, De La Garza AN, Stagner BB, Lonsbury-Martin BL (2005) Detailed DPOAE level/phase maps in normal and noise-damaged rabbit ears: insights into generation processes. Assoc Res Otolaryngol Abstr 28:141, p. 52.

    Google Scholar 

  • Martin GK, Stagner BB, Lonsbury-Martin BL (2006) Assessment of cochlear function in mice: distortion-product otoacoustic emissions. Curr Protocols Neurosci 34:8.21C.1–8.21C.18.

    Google Scholar 

  • Mathis A, Probst R, De Min N, Hauser R (1991) A child with an unusually high-level spontaneous otoacoustic emission. Arch Otolaryngol Head Neck Surg 117:674–676.

    PubMed  CAS  Google Scholar 

  • McFadden D (2002) Masculinization effects in the auditory system. Arch Sex Behav 31:99–111.

    PubMed  Google Scholar 

  • McFadden D, Pasanen EG (1994) Otoacoustic emissions and quinine sulfate. J Acoust Soc Am 95:3460–3474.

    PubMed  CAS  Google Scholar 

  • McFadden D, Plattsmier HS, Pasanen E (1984) Aspirin-induced hearing loss as a model of sensorineural hearing loss. Hear Res 16:251–260.

    PubMed  CAS  Google Scholar 

  • McWilliams ML, Chen GD, Fechter LD (2000) Low-level toluene disrupts auditory function in guinea pigs. Toxicol Appl Pharmacol 167:18–29.

    PubMed  CAS  Google Scholar 

  • Mensh BD, Patterson MC, Whitehead ML, Lonsbury-Martin BL, Martin GK (1993) Distortion-product otoacoustic emissions in rabbit: I. Altered susceptibility to repeated pure-tone exposures. Hear Res 70:50–64.

    PubMed  CAS  Google Scholar 

  • Mills DM (1998) Interpretation of distortion product otoacoustic emission measurements. II. Estimating tuning characteristics using three stimulus tones. J Acoust Soc Am 103:507–523.

    PubMed  CAS  Google Scholar 

  • Mills DM, Norton SJ, Rubel EW (1993) Vulnerability and adaptation of distortion-product otoacoustic emissions to endocochlear potential variation. J Acoust Soc Am 94:2108–2122.

    PubMed  CAS  Google Scholar 

  • Moulin A (2000) Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interactions between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs. J Acoust Soc Am 107:1471–1481.

    PubMed  CAS  Google Scholar 

  • Moulin A, Kemp DT (1996) Multicomponent acoustic distortion product otoacoustic emission phase in humans. II. Implications for distortion product otoacoustic emissions generation. J Acoust Soc Am 100:1640–1662.

    PubMed  CAS  Google Scholar 

  • Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72.

    PubMed  CAS  Google Scholar 

  • Murphy WJ, Johnson JL (1999) Spontaneous otoacoustic emissions in chinchillas. Assoc Res Otolaryngol Abstr 22:372, p. 94.

    Google Scholar 

  • Naeve SL, Margolis RH, Levine SC, Fournier EM (1992) Effect of ear-canal air pressure on evoked otoacoustic emissions. J Acoust Soc Am 91:2091–2095.

    PubMed  CAS  Google Scholar 

  • Norton SJ, Rubel EW (1990) Active and passive ADP components in mammalian and avian ears. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 219–226.

    Google Scholar 

  • Ohyama K, Wada H, Kobayashi T, Takasaka T (1991) Spontaneous otoacoustic emissions in the guinea pig. Hear Res 56:111–121.

    PubMed  CAS  Google Scholar 

  • O Mahoney CF, Kemp DT (1995) Distortion product otoacoustic emission delay measurement in human ears. J Acoust Soc Am 97:3721–3735.

    Google Scholar 

  • Parham K (1997) Distortion product otoacoustic emissions in the C57BL/6J mouse model of age-related hearing loss. Hear Res 112:216–234.

    PubMed  CAS  Google Scholar 

  • Pasic TR, Dobie RA (1991) Cis-platinum ototoxicity in children. Laryngoscope 101:985–991.

    PubMed  CAS  Google Scholar 

  • Penner MJ, Zhang T (1997) Prevalence of spontaneous otoacoustic emissions in adults revisited. Hear Res 103:28–34.

    PubMed  CAS  Google Scholar 

  • Perez N, Espinosa JM, Fernandez S, Garcia-Tapia R (1997) Use of distortion-product otoacoustic emissions for auditory evaluation in Ménière’s disease. Eur Arch Otorhinolaryngol 254:329–342.

    PubMed  CAS  Google Scholar 

  • Porter CA, Martin GK, Stagner BB, Lonsbury-Martin BL (2006) Distortion-product otoacoustic emission suppression growth in normal and noise-exposed rabbits. J Acoust Soc Am 120:884–900.

    PubMed  Google Scholar 

  • Pouyatos B, Campo P, Lataye R (2002) Use of DPOAEs for assessing hearing loss caused by styrene in the rat. Hear Res 165:156–164.

    PubMed  Google Scholar 

  • Probst R, Lonsbury-Martin BL, Martin GK, Coats AC (1987). Otoacoustic emissions in ears with hearing loss. Am J Otol 8:73–81.

    CAS  Google Scholar 

  • Puel J-L, Bledsoe SC Jr, Bobbin RP, Caesar G, Fallon M. (1989) Comparative actions of salicylate on the amphibian lateral line and guinea pig cochlea. Comp Biochem Physiol 93C:73–80.

    CAS  Google Scholar 

  • Rebillard G, Lavigne-Rebillard M (1992) Effect of reversible hypoxia on the compared time courses of endocochlear potential and 2f 1 - f 2 distortion products. Hear Res 62:142–148.

    PubMed  CAS  Google Scholar 

  • Ress BD, Sridhar KS, Balkany TJ, Waxman GM, Stagner BB, Lonsbury-Martin BL (1999) Effects of cis-platinum chemotherapy on otoacoustic emissions. The development of an objective screening protocol. Otolaryngol Head Neck Surg 121:693–701.

    PubMed  CAS  Google Scholar 

  • Robertson D, Johnstone BM, McGill TJ (1980) Effects of loud tones on the inner ear: a combined electrophysiological and ultrastructural study. Hear Res 2:39–43.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Kramek B, Rich NC (1984) Spontaneous otoacoustic emissions in a dog. Hear Res 13:293–296.

    PubMed  CAS  Google Scholar 

  • Rybak LP (1986) Drug ototoxicity. Ann Rev Pharmacol Toxicol 26:79–99.

    CAS  Google Scholar 

  • Sakashita T, Minowa Y, Hachikawa K, Kubo T, Nakai Y (1991) Evoked otoacoustic emissions from ears with idiopathic sudden deafness. Acta Otolaryngol Suppl 486:66–72.

    PubMed  CAS  Google Scholar 

  • Schmiedt RA (1986) Acoustic distortion in the ear canal: I. Cubic difference tones: Effects of acute noise injury. J Acoust Soc Am 79:1481–1490.

    PubMed  CAS  Google Scholar 

  • Schmiedt RA, Adams JC (1981) Stimulated acoustic emissions in the ear canal of the gerbil. Hear Res 5:295–305.

    PubMed  CAS  Google Scholar 

  • Schrott A, Puel J-L, Rebillard G (1991) Cochlear origin of 2f1f 2 distortion products assessed by using 2 types of mutant mice. Hear Res 52:245–254.

    PubMed  CAS  Google Scholar 

  • Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol 111:707–718.

    PubMed  CAS  Google Scholar 

  • Shera CA (2004) Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions. Ear Hear 25:86–97.

    PubMed  Google Scholar 

  • Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798.

    PubMed  CAS  Google Scholar 

  • Shera CA, Tubis A, Talmadge CL (2004) Do forward- and backward-travel waves occur with the cochlea? Countering the critique of Nobili et al. J Assoc Res Otolaryngol 5:349–359.

    PubMed  Google Scholar 

  • Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin N, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443.

    PubMed  Google Scholar 

  • Stover L, Norton SJ (1993) The effects of aging on otoacoustic emissions. J Acoust Soc Am 94:2670–2681.

    PubMed  CAS  Google Scholar 

  • Stypulkowski PH (1990) Mechanisms of salicylate ototoxicity. Hear Res 46:113–146.

    PubMed  CAS  Google Scholar 

  • Subramaniam M, Salvi RJ, Spongr VP, Henderson D, Powers NL (1994) Changes in distortion-product otoacoustic emissions and outer hair cells following interrupted noise exposures. Hear Res 74:204–216.

    PubMed  CAS  Google Scholar 

  • Sutton LA, Lonsbury-Martin B.L, Martin GK, Whitehead ML (1994) Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: time course of recovery and effects of lowering L_2. Hear Res 75:161–174.

    PubMed  CAS  Google Scholar 

  • Telischi FF, Roth J, Lonsbury-Martin BL, Balkany TJ (1995) Patterns of evoked otoacoustic emissions associated with acoustic neuromas. Laryngoscope 105:675–682, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Telischi FF, Mom T, Agrama M, Stagner BB, Ozdamar O, Bustillo A, Martin GK (1999) Comparison of the auditory-evoked brainstem response wave I to distortion-product otoacoustic emissions resulting from changes to inner ear blood flow. Laryngoscope 109:186–191.

    PubMed  CAS  Google Scholar 

  • Torre P 3rd, Fowler CG (2000) Age-related changes in auditory function of rhesus monkeys (Macaca mulatta). Hear Res 142:131–140.

    PubMed  Google Scholar 

  • Ueda H, Hattori T, Sawaki M, Niwa H, Yanagita, N (1992) The effect of furosemide on evoked otoacoustic emissions in guinea pigs. Hear Res 62:199–205.

    PubMed  CAS  Google Scholar 

  • Vazquez AE, Jimenez AM, Martin GK, Luebke AE, Lonsbury-Martin BL (2004) Evaluating cochlear function and the effects of noise exposure in the B6.CAST+ahl mouse with distortion product otoacoustic emissions. Hear Res 194:87–96.

    PubMed  Google Scholar 

  • West BA, Brummett RE, Himes DL (1973) Interaction of kanamycin and ethacrynic acid. Arch Otolaryngol 98:32–37.

    PubMed  CAS  Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK (1991) Effects of the crossed acoustic reflex on distortion-product otoacoustic emissions in rabbits. Hear Res 51:55–72.

    PubMed  CAS  Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK (1992a) Evidence for two discrete sources of 2f 1 - f 2 distortion-product otoacoustic emission in rabbit: I. Differential dependence on stimulus parameters. J Acoust Soc Am 91:1587–1607.

    CAS  Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK (1992b) Evidence for two discrete sources of 2f 1 - f 2 distortion-product otoacoustic emission in rabbit: II. Differential physiological vulnerability. J Acoust Soc Am 92:2662–2682.

    CAS  Google Scholar 

  • Whitehead ML, McCoy MJ, Martin GK, Lonsbury-Martin BL (1993) Click-evoked and distortion-product otoacoustic emissions in adults: detection of high-frequency sensorineural hearing loss. Assoc Res Otolaryngol Abstr 16:397, p. 100.

    Google Scholar 

  • Whitehead ML, Stagner BB, Martin GK, Lonsbury-Martin BL (1996) Visualization of the onset of distortion-product otoacoustic emissions, and measurement of their latency. J Acoust Soc Am 100:1663–1679.

    PubMed  CAS  Google Scholar 

  • Wier CC, Pasanen EG, McFadden D (1988) Partial dissociation of spontaneous otoacoustic emissions and distortion products during aspirin use in humans. J Acoust Soc Am 84:230–237.

    PubMed  CAS  Google Scholar 

  • Wilson JP (1980) Model for cochlear echoes and tinnitus based on an observed electrical correlate. Hear Res 2:527–532.

    PubMed  CAS  Google Scholar 

  • Wilson JP, Evans EF (1983) Effects of furosemide, flaxedil, noise and tone over-stimulation on the evoked otoacoustic emission in cat. Proc Cong Int Union Phys Sci 15:100.

    Google Scholar 

  • Wilson JP, Sutton GJ (1983) “A family with high-tonal objective tinnitus”—An update. In: Klinke R, Hartmann R (eds) Hearing—Physiological Bases and Psychophysics. Berlin: Springer-Verlag, pp. 97–103.

    Google Scholar 

  • Wit HP, Ritsma RJ (1980) Evoked acoustical responses from the human ear: some experimental results. Hear Res 2:253–261.

    PubMed  CAS  Google Scholar 

  • Withnell RH, McKinley S (2005) Delay dependence for the origin of the nonlinear derived transient evoked otoacoustic emission. J Acoust Soc Am 117:281–291.

    PubMed  Google Scholar 

  • Withnell RH, Yates GK, Kirk DL (2000) Changes to low-frequency components of the TEOAE following acoustic trauma to the base of the cochlea. Hear Res 139:1–12.

    PubMed  CAS  Google Scholar 

  • Yates GK, Kirk DL (1997) Electrically evoked otoacoustic emissions—Implications for the reverse transduction process. In: Palmer A, Rees A, Summerfield A, Meddis R (eds) Psychophysical and Physiological Advances in Hearing. London: Whurr Publishers, pp. 39–45.

    Google Scholar 

  • Yoshida N, Liberman MC (2000) Sound conditioning reduces noise-induced permanent threshold shift in mice. Hear Res 148:213–219.

    PubMed  CAS  Google Scholar 

  • Yoshida N, Hequembourg SJ, Atencio CA, Rosowski JJ, Liberman MC (2000) Acoustic injury in mice: 129/SvEv is exceptionally resistant to noise-induced hearing loss. Hear Res 141:97–106.

    PubMed  CAS  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    PubMed  CAS  Google Scholar 

  • Zurek PM, Clark WW (1981) Narrow-band acoustic signals emitted by chinchilla ears after noise exposure. J Acoust Soc Am 70:446–450.

    Google Scholar 

  • Zwicker E, Manley G (1981) Acoustical responses and suppression-period patterns in guinea pigs. Hear Res 4:43–52.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lonsbury-Martin, B.L., Martin, G.K. (2008). Otoacoustic Emissions: Basic Studies in Mammalian Models. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Active Processes and Otoacoustic Emissions in Hearing. Springer Handbook of Auditory Research, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71469-1_8

Download citation

Publish with us

Policies and ethics