Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 30))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas PJ, Sachs MB (1976) Two tone suppression in auditory nerve fibres: Extension of a stimulus-response relationship. J Acoust Soc Am 59:112–122.

    Article  PubMed  CAS  Google Scholar 

  • Allen JB, Fahey PF (1993) A second cochlear-frequency map that correlates distortion product and neural tuning measurements. J Acoust Soc Am 94:809–8016.

    Article  PubMed  CAS  Google Scholar 

  • Anderson SD, Kemp DT (1979) The evoked cochlear mechanical response in laboratory primates. A preliminary report. Arch Oto Laryngol 224:47–54.

    Article  CAS  Google Scholar 

  • Boege P, Janssen TH (2002) Pure tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears. J Acoust Soc Am 111:1810–1818.

    Article  PubMed  Google Scholar 

  • Brown AM, Kemp DT (1984) Suppressibility of the 2f1 − f2 stimulated acoustic emissions in gerbil and man. Hear Res 13:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Gaskill SA, Williams DM (1992) Mechanical filtering of sound in the inner ear. Proc Biol Sci 250:29–34.

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, Harris FP, Beveridge HA (1996) Two sources of acoustic distortion products from the human cochlea. J Acoust Soc Am 100:3260–3267.

    Article  PubMed  CAS  Google Scholar 

  • Brownell WE (1983) Observations on a motile response in isolated outer hair cells. In: Webster DB and Aitkin LM (eds) Neural Mechanisms of Hearing. Clayton, Australia: Monash U.P., pp. 5–10.

    Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear hair cells. Science 227:194–196.

    Article  PubMed  CAS  Google Scholar 

  • Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res 43:251–261.

    Article  PubMed  CAS  Google Scholar 

  • Cooper MA, Dultsev FN, Minson T, Ostanin VP, Abell C, Klenerman D (2001) Direct and sensitive detection of a human virus by rupture event scanning. Nat Biotechnol 19:833–837

    Article  PubMed  CAS  Google Scholar 

  • Dallos PJ (1966) On the generation of odd-fractional subharmonics. J Acoust Soc Am 40:1381–1391.

    Article  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    Article  PubMed  CAS  Google Scholar 

  • Elliot E (1958) A ripple effect on the audiogram. Nature (Lond) 181:1076.

    Article  Google Scholar 

  • Evans EF, Wilson JP (1975) Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements. Science 190:1218–1221.

    Article  PubMed  CAS  Google Scholar 

  • Evans EF, Wilson JP, Borerwe TA (1981) Animal models of tinnitus. In: Tinnitus. Evered D, Lawrenson G (eds) Ciba Foundation Symposium 85. London: Pitman Books, pp. 108–138.

    Google Scholar 

  • Fettiplace R, Crawford, AC (1980) The origin of tuning in turtle cochlear hair cells. Hear Res 2:447–454.

    Article  PubMed  CAS  Google Scholar 

  • Fettiplace R, Hackney CM (2006) The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 7:19–29.

    Article  PubMed  CAS  Google Scholar 

  • Flock A (1980) Contractile proteins in hair cells. Hear Res 2:411–412.

    Article  PubMed  CAS  Google Scholar 

  • Flottorp G (1953) Pure-tone tinnitus evoked by acoustic stimulation: the idiotone effect. Acta Oto Laryngol 43:396–415.

    Article  CAS  Google Scholar 

  • Glanville JD, Coles RR, Sullivan BM (1971) A family with high-tonal objective tinnitus. J Laryngol Otol 85:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Gold T (1948) Hearing II. The physical basis of the action of the cochlea. Proc R Soc Lond B135:492–498.

    Google Scholar 

  • Gold T (1980) Letter to D. J. Pye on recent developments in auditory science and Gold’s positive feedback theory. Unpublished private correspondence.

    Google Scholar 

  • Gold T (1989) Historical background to the proposal 40 years ago of an active model for cochlear frequency analysis. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms: Structure, Function and Models. London: Plenum Press, pp. 299–306.

    Google Scholar 

  • Gold T, Kemp DT (2003) Recorded discussion between Thomas Gold and David Kemp on the topic of Gold’s auditory and other technical research in the 1940s and 30s (unpublished).

    Google Scholar 

  • Gold T, Pumphrey RJ (1948) Hearing I. The cochlea as a frequency analyser. Proc R Soc B135: 462–491.

    Google Scholar 

  • Kanis LJ, Boer E de (1997) Frequency dependence of acoustic distortion products in a locally active model of the cochlea. J Acoust Soc Am 101:1527–1531.

    Article  PubMed  CAS  Google Scholar 

  • Kashar B, Brownell WE, Altschuler R, Fex J (1986) Electrokinetic shape changes of cochlear outer hair cells. Nature 322:356–368.

    Article  Google Scholar 

  • Kemp DT (1971) A new technique for the analysis of transient ELF electromagnetic disturbances within the Earth-ionosphere cavity. J Atmos Terr Pys 33:567–572.

    Article  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391.

    Article  PubMed  CAS  Google Scholar 

  • Kemp DT (1979) The evoked cochlear mechanical response and the auditory microstructure—evidence for a new element in cochlear mechanics. Scand Audiol Suppl 9:35–47.

    PubMed  Google Scholar 

  • Kemp DT (1980) Towards a model for the origin of cochlear echoes. Hear Res 2:533–548.

    Article  PubMed  CAS  Google Scholar 

  • Kemp DT (1981) Physiologically active cochlear micromechanics-one source of tinnitus. In: Tinnitus. Ciba Foundation Symp, D Evered, G Lawrenson (Eds), London: Pitman Books Ltd. pp. 54–81

    Google Scholar 

  • Kemp DT (1982) Cochlear echoes: Implications for noise-induced hearing loss. In: Hamernik RP, Henderson D, Salvi R (eds) New Perspectives on Noise-Induced Hearing Loss. New York: Raven Press, pp. 189–207.

    Google Scholar 

  • Kemp DT (1986) Otoacoustic emissions, travelling waves and cochlear mechanisms. Hear Res 22:95–104.

    Article  PubMed  CAS  Google Scholar 

  • Kemp DT (1998) Otoacoustic emissions:distorted echoes of the cochlea’s traveling wave. In: Berlin C (ed), Otoacoustic Emissions—Basic Science and Clinical Applications. San Diego: Singular Press, pp. 1–59.

    Google Scholar 

  • Kemp DT (2001) Exploring Cochlear Status with OAE—the potential for new clinical applications. In: Robinette M and Glattke TJ (eds), Otoacoustic Emissions: Clinical Applications, 2nd ed. New York: Theime, pp. 1–47.

    Google Scholar 

  • Kemp DT (2003) The OAE Story. Hatfield, UK: Otodynamics.

    Google Scholar 

  • Kemp DT (2007) Otoacoustic emissions—the basics, the science and the future potential. In: Robinette M and Glattke TJ (eds) Otoacoustic Emisions: Clinical Applications, 3rd ed. New York: Theime, Chapter 1.

    Google Scholar 

  • Kemp DT, Anderson SD (eds) (1980) Proceedings of the symposium on Active and Nonlinear Mechanical processes in the Cochlea. Hear Res 2:533–548.

    Article  PubMed  CAS  Google Scholar 

  • Kemp DT, Brown AM (1983a) A comparison of mechanical nonlinearities in the cochleae of man and gerbil from ear canal measurements. In: Klinke R, Hartmann R (eds) Hearing—Physiological Bases and Psychophysics. Berlin: Springer-Verlag, pp. 82–88.

    Google Scholar 

  • Kemp DT, Brown AM (1983b) An integrated view of cochlear mechanical nonlinearities observable from the ear canal. In: Boer E de, Viergever MA (eds), Mechanics of Hearing. Delft: Delft University Press, pp. 75–82.

    Google Scholar 

  • Kemp DT, Brown AM (1986) Wideband analysis of otoacoustic intermodulation. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 306–313.

    Google Scholar 

  • Kemp DT, Brill O (2007) Slow oscillatory cochlear adaptation to brief low frequency over stimulation: the human OAE “bounce” effect revisited. Midwinter meeting of the Association for Research in Otolaryngology, Abstract No. 412.

    Google Scholar 

  • Kemp DT, Chum R (1980a) Properties of the generator of stimulated acoustic emissions. Hear Res 2:213–232.

    Article  CAS  Google Scholar 

  • Kemp DT, Chum R (1980b) Observations on the generator mechanism of stimulus frequency acoustic emissions, two-tone suppression. In: Psychophysical, Physiological and Behavioural Studies in Hearing, van den Brink G, Bilsen FA (eds), Delft: Delft University Press, pp. 34–41.

    Google Scholar 

  • Kemp DT, Knight RD (1999) Virtual reflectors explains DPOAE wave and place fixed dichotomy. Midwinter meeting of the Association for Research in Otolaryngology, Abstract No. 396.

    Google Scholar 

  • Kemp DT, Martin JA (1976) Active Resonant Systems in Audition. Abstracts of XIII International Congress of Audiology Firenze 1976. International Society of Audiology, Geneva. pp. 64–65

    Google Scholar 

  • Kemp DT, Tooman PF (2006) DPOAE Micro and Macrostructure—their origin and significance. In: Nuttall A, Ren, T, Gillespie, P, Grosh, K, de Boer E. (eds) Auditory Mechanisms: Processes and Models. Proceedings of the Ninth International Symposium. Hackensack, NJ: World Scientific, pp. 308–314.

    Google Scholar 

  • Kemp DT, Bray P, Alexander L, Brown AM (1986) Acoustic emission cochleography-practical aspects. Scand Audiol Suppl 25:71–95.

    PubMed  CAS  Google Scholar 

  • Khanna SM, Leonard DGB (1982) Basilar membrane tuning in the cat cochlea. Science 215:305–306

    Article  PubMed  CAS  Google Scholar 

  • Kim DO (1980a) Cochlear mechanics: implications of electrophysiological and acoustical observations. Hear Res 2:297–317.

    Article  CAS  Google Scholar 

  • Kim DO (1980b) Transcript of the mid-symposium discussion of the symposium on nonlinear and active mechanical processes in the cochlea. Hear Res 2:581–587.

    Article  Google Scholar 

  • Kim DO, Seigel JH, Molnar CE (1977) Cochlear distortion product: Inconsistency with linear motion of the cochlear partition. J Acoust Soc Am 61:S2(A)

    Google Scholar 

  • Kim DO, Molnar, CE, Matthews, JW (1979) Cochlear mechanics: nonlinear behaviour in two-tone responses as reflected in ear-canal pressure and cochlear-nerve-fiber responses J Acoust Soc Am 65:S28(A)

    Google Scholar 

  • Kim DO, Neely, ST Molnar CE, Matthews JW (1980) An active cochlear model with negative damping in the partition; comparison with Rhode’s ante- and post-mortem observations. In: Brink G van den, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft: Delft University Press, pp. 7–14.

    Google Scholar 

  • Kirk DL, Moleirinho A, Patuzzi RB (1997) Microphonic and DPOAE measurements suggest a micromechanical mechanism for the “bounce” phenomenon following low frequency tones. Hear Res 112:69–86

    Article  PubMed  CAS  Google Scholar 

  • Knight RD, Kemp DT (2001) Wave and Place fixed DPOAE maps of the human ear. J Acoust Soc Am 109:1513–1525.

    Article  PubMed  CAS  Google Scholar 

  • LePage EL, Johnstone BM (1980) Nonlinear mechanical behaviour of the basilar membrane in the basal turn of the guinea pig cochlea. Hear Res 2:183–189.

    Article  CAS  Google Scholar 

  • Long G, Tubis A (1982) Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84(4):1343–1353.

    Article  Google Scholar 

  • Lukashkin AN, Russell IJ (2005) Dependence of the DPOAE amplitude pattern on acoustical biasing of the cochlear partition. Hear Res 203:45–53.

    Article  PubMed  Google Scholar 

  • Mahoney CF, Kemp DT (1995) Distortion product otoacoustic emission delay measurement in human ears. J Acoust Soc Am 97:3721–3735.

    Article  PubMed  CAS  Google Scholar 

  • Maison SF, Liberman MC (2000) Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci 20:4701–4707.

    PubMed  CAS  Google Scholar 

  • Manley GA (1983) Frequency spacing of acoustic emissions: a possible explanation. In: Webster W R, Aitken L M (eds), Mechanisms of Hearing. Melbourne, Australia pp. 36–39.

    Google Scholar 

  • Manley GA (2001) Evidence for an active process and a cochlear amplifier in nonmammals. J Neurophysiol 86:541–549.

    PubMed  CAS  Google Scholar 

  • Møller AR (1960) Improved technique for detailed measurement of the middle ear impedance. J.Acoust Soc Am 32:250–258.

    Article  Google Scholar 

  • Neely ST Kim DO (1986) A model for active elements in cochlear biomechanics. J Acoust Soc Am 79:1472–1480.

    Article  PubMed  CAS  Google Scholar 

  • O’Beirne GA, Patuzzi RB (2002) Modelling the role of outer hair cells in cochlear regulation and tinnitus. In: Patuzzi R (ed), Proceedings of the Seventh International Tinnitus Seminar Perth: University of Western Australia, pp. 62–67.

    Google Scholar 

  • Pye JD (1980) The nonlinear spiral. Nature 283:137–138.

    Article  PubMed  CAS  Google Scholar 

  • Ren T (2004). Reverse propagation of sound in the gerbil cochlea. Nat Neurosci 7: 333–334.

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkey using the Mossbauer technique. J Acoust Soc Am 49:1218–1231.

    Article  PubMed  Google Scholar 

  • Ruggero MA (1980) Systematic errors in the direct estimates of basilar membrane travel times. J Acoust Soc Am 67:707–710.

    Article  PubMed  CAS  Google Scholar 

  • Ruggero M, Temchin AN (2005) Unexceptional sharpness of frequency tuning in the human cochlea. Proc Natl Acad Sci USA 102:18614–1869.

    Article  PubMed  CAS  Google Scholar 

  • Ruggero M, Temchin AN (2006) Traveling-wave delays in the human cochlea are not exceptionally long. Midwinter meeting of the Association for Research in Otolaryngology, Abstract No. 1175.

    Google Scholar 

  • Rutten WLC (1980) Evoked acoustic emissions from within normal and abnormal human ears: comparison with audiometric and electrocochleographic findings. Hear Res 2: 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Sellick PM, Russel IJ (1979) Two-tone suppression in cochlear hair cells. Hear Res 1:227–236

    Article  Google Scholar 

  • Sellick PM, Patuzzi RB, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. J Acoust Soc Am 72(1):131–141.

    Article  PubMed  CAS  Google Scholar 

  • Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262.

    Article  PubMed  Google Scholar 

  • Shera CA, Guinnan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms. J Acoust Soc Am 105:782–798.

    Article  PubMed  CAS  Google Scholar 

  • Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear mechanical nonlinearity. Hear Res 6:171–182.

    Article  PubMed  CAS  Google Scholar 

  • Siegel JH, Cerka AJ, Recio-Spinosa A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus frequency emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443.

    Article  PubMed  Google Scholar 

  • Strube HW (1989) Evoked otoacoustic emissions as cochlear Bragg reflections. Hear Res 38:35–45.

    Article  PubMed  CAS  Google Scholar 

  • Thomas LB (1975) Microstructure of the pure tone threshold. J Acoust Soc Am 57:26–27.

    Article  Google Scholar 

  • van den Brink G (1970) Experiments in binaural diplacusis and tonal perception. In: Plomp R, Smoorenburg GF (eds), Frequency Analysis and Periodicitiy Detection in Hearing. Leiden: A.W. Sijthoff, pp. 362–374.

    Google Scholar 

  • van Dijk P, Wit HP, (1990) Amplitude and frequency fluctuations of spontaneous otoacoustic emissions. J Acoust Soc Am 88:1779–1793

    Article  PubMed  Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. Wever EG (ed). New York: McGraw-Hill.

    Google Scholar 

  • Ward WD (1955) Tonal monaural diplacusis. J Acoust Soc Am 27:365–372.

    Article  Google Scholar 

  • Wegel RL (1931) A study of tinnitus. Arch Oto Laryngol 14:158–165.

    Google Scholar 

  • Wilson JP (1980a) Recording of the Kemp Echo and tinnitus from the ear canal without averaging. J Physiol 298:8–9P.

    Google Scholar 

  • Wilson JP (1980b) Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus. Hear Res 2:233–252.

    Article  CAS  Google Scholar 

  • Wilson JP (1980c) Model for cochlear echoes and tinnitus based on an observed electrical correlate. Hear Res 2: 527–532.

    Article  CAS  Google Scholar 

  • Wilson JP, Sutton GJ (1981) Acoustic correlates of tonal tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus. Ciba Foundation Symposium 85. London: Pitman Books, pp. 82–107.

    Google Scholar 

  • Wit HP, Ritsma RJ (1979) Stimulated acoustic emissions from the human ear. J Acoust Soc Am 66:911–913.

    Article  Google Scholar 

  • Wit HP, Ritsma RJ (1980) Evoked acoustical responses from the human ear: some experimental results. Hear Res 2:253–261.

    Article  PubMed  CAS  Google Scholar 

  • Yates GK, Withnel RH (1999) The role of intermodulation distortion in transient-evoked otoacoustic emissions. Hear Res 136:49–64.

    Article  PubMed  CAS  Google Scholar 

  • Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker E (1979) A model describing nonlinearities in hearing by active processes with saturation at 40 dB. Biol Cybern 35:243–250.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker E (1981) Masking period patterns and cochlear acoustic responses. Hear Res 4(2):195–202.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker E, Manley G (1981) Acoustic responses and suppression- period patterns in guinea pigs. Hear Res 4:43–52

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki JJ (1983) Sharp vibration maximum in the cochlea without wave reflection. Hear Res 9:103–111.

    Article  PubMed  CAS  Google Scholar 

  • Zurek PM (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69:514–523.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kemp, D.T. (2008). Otoacoustic Emissions: Concepts and Origins. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Active Processes and Otoacoustic Emissions in Hearing. Springer Handbook of Auditory Research, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71469-1_1

Download citation

Publish with us

Policies and ethics