Skip to main content

Chickpea, a Common Source of Protein and Starch in the Semi-Arid ropics

  • Chapter
Genomics of Tropical Crop Plants

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 1))

Abstract

Chickpea (Cicer arietinum L.) is an important food crop in the semi-arid tropics where it is grown during the cool winter season. Research has concentrated on the development of improved germplasm for resistance to diseases and pests and more recently has focused on the use of genetics and biotechnological tools to enhance the knowledge of the genomics of chickpea. The wild species (8 annuals and 34 perennials) are a potential source of genes for overcoming problems of diseases and pests, and work is underway toward overcoming barriers to interspecific hybridization. Bacterial artificial chromosome libraries are available for genomic research in chickpea and a targeted induced local lesion in genomes, also called TILLING, platform is under development that holds promise for identification of important genes and determination of their function. The chickpea plant is described and the tools for further exploitation of the crop are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad F (2000) A comparative study of chromosome morphology among the nine annual species of Cicer L. Cytobios 101:37–53

    PubMed  CAS  Google Scholar 

  • Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet—a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472

    Article  PubMed  CAS  Google Scholar 

  • Buhariwalla HK, Jayashree B, Eshwar K, Crouch JH (2003) Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol 17:5:16

    Google Scholar 

  • Ching ADA, Caldwell KS, Jung M, Dolan M, Smith OS, et al. (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetics 3:19

    Article  PubMed  Google Scholar 

  • Cho S, Muehlbauer FJ (2004) Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 64:57–66

    Article  CAS  Google Scholar 

  • Cho S, Kumar J, Shultz JL, Anupama K, Tefera F, et al. (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128:285–292

    Article  CAS  Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109:733–739

    Article  PubMed  Google Scholar 

  • Choi H-K, Mun JH, Kim DJ, Zhu H, Baek JM, et al. (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    Article  PubMed  CAS  Google Scholar 

  • Collard BC, Pang EC, Ades PK, Taylor PW (2003) Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107:719–729

    Article  PubMed  CAS  Google Scholar 

  • Corum T, Pang ECK (2005) Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiol Mol Plant Pathol 66:192–200

    Article  CAS  Google Scholar 

  • Croser JS, Ahmad F, Clarke HJ, Siddique KHM (2003) Utilization of wild Cicer in chickpea improvement - progress, constraints, and prospects.Austr J Agric Res 54:429–444

    Article  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, et al. (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 2004 108:414–422

    Article  CAS  Google Scholar 

  • FAO (2006) FAO Statistics at http://faostat.fao.org/

    Google Scholar 

  • Flandez-Galvez H, Ford R, Pang ECK, Taylor PWJ (2003) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106:1447–1456

    PubMed  CAS  Google Scholar 

  • Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, et al. (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217

    Article  PubMed  CAS  Google Scholar 

  • Huttel B, Winter P, Weising K, Choumane W, Weigand F et al. (1999) Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 42:210–217

    Article  PubMed  CAS  Google Scholar 

  • Ichinose Y, Tiemann K, Schwenger-Erger C, Toyoda K, Hein F, et al. (2000) Genes expressed in Ascochyta rabiei-inoculated chickpea plants and elicited cell cultures as detected by differential cDNA-hybridization. Z Naturforsch 55:44–54

    CAS  Google Scholar 

  • Jander G, Baerson SR, Hudak JA, Gonzalez KA, Gruys KJ, et al. (2003) Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol 131:139–146

    Article  PubMed  CAS  Google Scholar 

  • Jander G, Norris SR, Rounsley SD. Bush DF, Levin IM, et al. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    Article  PubMed  CAS  Google Scholar 

  • Kar S, Basu D, Das S, Ramkrishnan NA, Mukherjee P, et al. (1997) Expression of cryIA(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod-borer (Heliothis armigera) larvae. Transgenic Res 6:177–185

    Article  CAS  Google Scholar 

  • Ladizinsky G (1975) A new Cicer from Turkey. Notes of the Royal Botanic Garden Edinburgh 34:201–202

    Google Scholar 

  • Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110:492–510

    Article  PubMed  CAS  Google Scholar 

  • Lopez C, Pie’gu B, Cooke R, Delseny M, Tohme J, et al. (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet 110:425–431

    Article  PubMed  CAS  Google Scholar 

  • Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, et al. (2002) Search for and analysis of single nucleotide polymorphism (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res 9:163–171

    Article  PubMed  CAS  Google Scholar 

  • Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994) Rhizobium ciceri sp. Nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Intl J Syst Bacteriol 44:511–522

    Article  CAS  Google Scholar 

  • Ocampo B, Venora G, Errico A, Singh KB, Saccardo F (1992) Karyotype analysis in the genus Cicer. J Genet Plant Breed 46:229–240

    Google Scholar 

  • Pfaff T, Kahl G (2003) Mapping of gene-specific markers on the genetic map of chickpea (Cicer arietinum L.). Mol Genet Genom 269:243–251

    CAS  Google Scholar 

  • Rajesh PN, Meksem K, Coyne C, Lightfoot D, Muehlbauer FJ (2002). Construction of first BAC library in Chickpea. Intl Chickpea Pigeonpea Newslet 9:29–30

    Google Scholar 

  • Rajesh PN, Gupta VS, Ranjekar PK, Muehlbauer FJ (2003) Functional genome analysis using DDRT with respect to ascochyta blight disease in chickpea. Intl Chickpea Pigeonpea Newslet 10:35–37

    Google Scholar 

  • Rajesh PN, Coyne C, Meksem K, Sharma KD, Gupta VS, et al. (2004) Construction of a HindIII Bacterial Artificial Chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108:663–669

    Article  PubMed  CAS  Google Scholar 

  • Rajesh PN, McPhee K, Muehlbauer FJ (2005) Detection of polymorphism using CAPS and dCAPS markers in two chickpea genotypes. Intl Chickpea Pigeonpea Newslet 12:4–6

    Google Scholar 

  • Rajesh PN, Muehlbauer FJ, McPhee K (2007) Stability of chickpea large genomic DNA inserts in Agrobacterium. (In press)

    Google Scholar 

  • Ren C. Xu Z, Sun S, Lee M, Wu C, et al. (2005) Genomic DNA libraries and physical mapping. The handbook of plant genome mapping pp. 173–214 Wiley-VCH Verlag GmbH &Co. KGaA publishers

    Chapter  Google Scholar 

  • Santra DK, Tekeoglu M, Ratnaparkhe MB, Gupta VS, Ranjekar PK, et al. (2000) Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Sci 40:1606–1612

    Article  CAS  Google Scholar 

  • Sanyal I, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J. Biosci 31:339–345

    Article  Google Scholar 

  • Sanyal I, Singh AK, Amla DV (2003) Agrobacterium tumefaciens mediated transformation of chickpea (Cicer arietinum L.) using mature embryonic axes and cotyledonary nodes. Indian J Biotech 2:524–532

    CAS  Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, et al. (2004) Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82

    Article  CAS  Google Scholar 

  • Schneider K, Weisshaar B, Borchardt DC, Salamani F (2001) SNP frequency and allele haplotype structure of Beta vulgaris expressed genes. Mol Breed 8:63–74

    Article  CAS  Google Scholar 

  • Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and comparison with maps of pea and lentil. J Hered 88:115–119

    CAS  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  PubMed  CAS  Google Scholar 

  • Smithson JB, Thompson JA, Summerfield RJ (1985) Chickpea (Cicer arietinum L.). In: Summerfield RJ, Roberts EH (eds.) Grain Legume Crops. Collins, London, UK pp. 312–390

    Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  PubMed  CAS  Google Scholar 

  • Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged microsattellite sites to the chickpea genetic map. Theor Appl Genet 105:847–854

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, et al. (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 28:4:12

    Google Scholar 

  • Town CD (2005) Large-scale DNA sequencing The handbook of plant genome mapping. pp. 337–351 Wiley-VCH Verlag GmbH &Co. KGaA publishers

    Google Scholar 

  • Van der Maesen LJG (1972) Cicer L. a monograph of the genus, with special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. Mededlingen landbouwhogeschool (Communication Agricultural University) Wageningen 72–10. 342 p

    Google Scholar 

  • Vláčilová K. Ohri D, Vrána J, Cíhalíková J, Kubaláková M, et al. (2002) Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.), Chromosome Res 10:695–706

    Article  PubMed  Google Scholar 

  • Winter P, Benko-Iseppon HB, Ratnaparkhe M, Tullu A, Sonnante G, et al. (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum X C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    Article  CAS  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, et al. (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Muehlbauer, F.J., Rajesh, P. (2008). Chickpea, a Common Source of Protein and Starch in the Semi-Arid ropics. In: Moore, P.H., Ming, R. (eds) Genomics of Tropical Crop Plants. Plant Genetics and Genomics: Crops and Models, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71219-2_7

Download citation

Publish with us

Policies and ethics