Skip to main content

Application of Rheology to Fluid Food Handling and Processing

  • Chapter
Rheology of Fluid and Semisolid Foods

Part of the book series: Food Engineering Series ((FSES))

Abstract

In this chapter, we consider application of rheology to handling and processing operations. However, it should be noted that there are many situations where rheology is applied. Earlier, sensory assessment and swallowing of foods were considered in Chapter 7. Table 8-1 contains some of the phenomena in which rheological behavior plays an important role and the typical shear rates encountered in them. The latter should also provide guidelines for obtaining the shear rate range over which rheological data should be obtained.

Typical Shear Rates of Foods and Pharmaceuticals in Practice*

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anantheswaran, R. C. and Rao, M. A. 1985a. Heat transfer to model Newtonian liquid foods in cans during end-over-end agitation. J. Food Eng. 4: 1–19.

    Article  Google Scholar 

  • Anantheswaran, R. C. and Rao, M. A. 1985b. Heat transfer to non-Newtonian liquid foods in cans during end-over-end rotation. J. Food Eng. 4: 21–35.

    Article  Google Scholar 

  • Ball, C. O. 1923. Thermal process time for canned food. Bull. 37. National Research Council, Washington, DC.

    Google Scholar 

  • Ball, C. O. 1927. Theory and practice in processing. The Canner 64: 27–32.

    Google Scholar 

  • Ball, C. O. 1928. Mathematical solution of problems on thermal processing of canned food. Univ. of Calif. (Berkeley) Publications in Public Health. 1(2): 15–245.

    Google Scholar 

  • Ball, C. O. and Olson, F. C. W. 1957. Sterilization in Food Technology, 1st ed., McGraw Hill Book Co., New York.

    Google Scholar 

  • Bird, R. B., Stewart, W. E. and Lightfoot, E. N. 1960. Transport Phenomena, John Wiley & Sons, New York.

    Google Scholar 

  • Brodkey, R. S. 1967. The Phenomena of Fluid Motions, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Charm, S. E. 1971. Fundamentals of Food Engineering, 2nd ed., AVI Publishing Co., Westport,CT.

    Google Scholar 

  • Christiansen, E. B. and Craig, S. E. 1962. Heat transfer to pseudoplastic fluids in laminar flow. AIChE J. 8: 154–160.

    Article  CAS  Google Scholar 

  • Danckwerts, P. V. 1953. Continuous flow systems. Chem. Eng. Sci. 2: 1–13.

    Article  CAS  Google Scholar 

  • Dodge, D. W. and Metzner, A. B. 1959. Turbulent flow of non-Newtonian systems. AIChE J. 5: 189–204.

    Article  Google Scholar 

  • Dolan, K. D. and Steffe, J. F. 1990. Modeling rheological behavior of gelatinizing starch solutions using mixer viscometry data. J. Texture Stud. 21: 265–294.

    Article  CAS  Google Scholar 

  • Dolan, K. D., Steffe, J. F. and Morgan, R. G. 1989. Back extrusion and simulation of viscosity development during starch gelatinization. J. Food Process Eng. 11: 79–101.

    Article  Google Scholar 

  • Feliciotti, E. and Esselen, W.B. 1957. Thermal destruction rates of thiamine in pureed meats and vegetables. Food Technol. 11:77–84.

    CAS  Google Scholar 

  • Ferry, J. D. 1980. Viscoelastic Properties of Polymers, 3rd ed., John Wiley, New York.

    Google Scholar 

  • Foust, A. S., Wenxel, L. A., Clump, C. W., Maus, L. and Andersen, B. 1980. Principles of Unit Operations, 2nd ed., John Wiley, New York.

    Google Scholar 

  • Garcia, E. J. and Steffe, J. F. 1987. Comparison of friction factor equations for non-Newtonian fluids in pipe flow. J. Food Process Eng. 9: 93–120.

    Article  Google Scholar 

  • Graetz, L. 1883. Uber die Warmeleitungsfahigkeit von Flussigkeiten (On the heat transfer in liquids) Annalen der Physik und Chemie, part. 1, 18: 79–94.

    Google Scholar 

  • Hanks, R. W. 1978. Low Reynolds number turbulent pipeline flow of pseudohomogeneous slurries, in Proceedings of the Fifth International Conference on the Hydraulic Transport of Solids in Pipes Hydrotransport. May 8–11. Paper C2, p. C2–23 to C2–34, Hanover, West Germany, cited in Garcia and Steffe 1987.

    Google Scholar 

  • Hanks, R. W. and Ricks, B. L. 1974. Laminar-turbulent transition in flow of pseudoplastic fluids with yield stress. J. Hydronautics 8: 163–166.

    Article  Google Scholar 

  • Harper, J. C. and El-Sahrigi, A. F. 1965. Viscometric behavior of tomato concentrates. J. Food Sci. 30: 470–476.

    Article  CAS  Google Scholar 

  • Heppell, N. J. 1985. Comparison of the residence time distributions of water and milk in an experimental UHT sterilizer. J. Food Eng. 4: 71–84.

    Article  Google Scholar 

  • Himmelblau, D. M. and Bischoff, K. B. 1968. Process Analysis and Simulation, John Wiley and Sons, New York.

    Google Scholar 

  • Kalkschmidt, -J. 1977. Ruehr- und Mischeinrichtungen—unter besonderer Berucksichtigung der Milchwirtschaft. [Stirring and mixing equipment for the dairy industry]. Fette,-Seifen,-Anstrichmittel 77 (9): 357-359. Food Science Technol. Abstract 76-04-P0664.

    Google Scholar 

  • Kokini, J. L., Lai, L.-S., and Chedid, L. L. 1992. Effect of starch structure on starch rheological properties. Food Technol. 46(6) 124–139.

    CAS  Google Scholar 

  • Kubota, K., Hosakawa, Y., Suzuki, K., and Hosaka, H. 1979. Studies on the gelatinization rate of rice and potato starches. J. Food Sci. 44: 1394–1397.

    Article  Google Scholar 

  • Kumar, A. and Bhattacharya, M. 1991. Numerical analysis of aseptic processing of a non-Newtonian liquid food in a tubular heat exchanger. Chem. Eng. Comm. 103: 27–51.

    Article  CAS  Google Scholar 

  • Kwant, P. B., Fierens, R. H. E., and Van Der Lee, A. 1973. Non-isothermal laminar pipe flow—I. Theoretical. Chem. Eng. Sci. 28: 1303–1316.

    Article  CAS  Google Scholar 

  • Ladeinde, F. 1988. Studies on thermal convection in self-gravitating and rotating horizontal cylinders in a vertical external gravity field. Ph.D. dissertation, Cornell University, Ithaca, New York.

    Google Scholar 

  • Levenspiel, O. 1972. Chemical Reaction Engineering, 2nd ed. John Wiley and Sons, New York.

    Google Scholar 

  • Liao, H.-J. 1998. Simulation of continuous sterilization of fluid food products: the role of thermorheological behavior of starch dispersion and process. Ph.D. thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Liao, H.-J., Tattiyakul, J., and Rao, M. A. 1999. Superposition of complex viscosity curves during gelatinization of starch dispersion and dough. J. Food Process Eng. 22: 215–234.

    Article  Google Scholar 

  • Liao, H.-J., Rao, M. A., and Datta, A. K. 2000. Role of thermorheological behavior in simulation of continuous sterilization of a starch dispersion. IChemE Trans. Part C—Food and Bioproducts Process. 78(C1): 48–56.

    CAS  Google Scholar 

  • Lin, S. H. 1979. Residence time distribution in continuous sterilization process. Process Biochem. 14(7): 23–25.

    Google Scholar 

  • Lopes da Silva, J. A., Gonçalves, M. P., and Rao, M. A. 1994. Influence of temperature on dynamic and steady shear rheology of pectin dispersions. Carbohydr. Polym. 23: 77–87.

    Article  CAS  Google Scholar 

  • Lopez, A. 1987. A Complete Courses in Canning and Related Processes: Book II—Packaging-Aseptic Processing Ingredients, The Canning Trade Inc., Baltimore, Maryland.

    Google Scholar 

  • Lyche, B. C. and Bird, R. B. 1956. The Graetz-Nusselt problem for a power-law non-Newtonian fluid. Chem. Eng. Sci. 6: 35–41.

    Article  CAS  Google Scholar 

  • Metzner, A. B. and Otto, R. E. 1957. Agitation of non-Newtonian fluids. AIChE J. 3: 3–10.

    Article  CAS  Google Scholar 

  • Miller, E. J. 1981. The design and operation of agitators for use in whole milk storage vessels. N.Z. J. Dairy Sci. Technol. 16(3): 221–229. Food Sci. Technol. Abstract 80-10-P1720.

    Google Scholar 

  • Okechukwu, P. E. and Rao, M. A. 1995. Influence of granule size on viscosity of corn starch suspension. J. Texture Stud. 26: 501–516.

    Article  Google Scholar 

  • Okechukwu, P. E. and Rao, M. A. 1996. Kinetics of cornstarch granule swelling in excess water, in Gums & Stabilisers for The Food Industry 8 (ed. G. O. Phillips, P. A. Williams, and D. J. Wedlock), pp. 49–57, The Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Osorio, F. A. and Steffe, J. F. 1984. Kinetic energy calculations for non-Newtonian fluids in circular tubes. J. Food Sci. 49: 1295–1296 and 1315.

    Article  Google Scholar 

  • Rao, M. A. 1992. Measurement of viscoelastic properties of fluid and semisolid foods, in Viscoelastic Properties of Food, eds. M. A. Rao and J. F. Steffe, pp. 207–232, Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Rao, M. A. 1995. Rheological properties of fluid foods, in Engineering Properties of Foods, eds. M. A. Rao and S. S. H. Rizvi, 2nd ed, pp. 1–53, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Rao, M. A. and Loncin, M. 1974a. Residence time distribution and its role in continuous pasteurization Part I. Journal Lebensmittel Wissenschaft und Technologie, 7: 5–13.

    Google Scholar 

  • Rao, M. A. and Loncin, M. 1974b. Residence time distribution and its role in continuous pasteurization Part II. Journal Lebensmittel Wissenschaft und Technologie, 7: 14–17.

    Google Scholar 

  • Rao, M. A. and Cooley, H. J. 1984. Determination of effective shear rates of complex geometries. J. Texture Stud. 15: 327–335.

    Article  Google Scholar 

  • Rao, M. A. and Anantheswaran, R. C. 1988. Convective heat transfer to fluid foods in cans. Adv. Food Res. 32: 39–84.

    Article  Google Scholar 

  • Rao, M. A. and Cooley, H. J. 1992. Rheology of tomato pastes in steady and dynamic shear. J. Texture Stud. 23: 415–425.

    Article  Google Scholar 

  • Rao, M. A., Bourne, M. C. and Cooley, H. J. 1981. Flow properties of tomato concentrates. J. Texture Stud. 12: 521–538.

    Article  Google Scholar 

  • Rao, M. A., Walter, R. H. and Cooley, H. J. 1981. Effect of heat treatment on the flow properties of aqueous guar gum and sodium carboxymethylcellulose CMC solutions. J. Food Sci. 46: 896–899 and 902.

    Article  CAS  Google Scholar 

  • Rao, M. A., Cooley, H. J., Anantheswaran, R. C. and Ennis, R. W. 1985. Convective heat transfer to canned liquid foods in a Steritort. J. Food Sci. 50: 150–154.

    Article  Google Scholar 

  • Rieger, F. and Novak, V. 1973. Power consumption of agitators in highly viscous non-Newtonian liquids. Trans. IChem. E. 51: 105–111.

    CAS  Google Scholar 

  • Roig, S. M., Vitali, A. A., Ortega Rodriguez, E. and Rao, M. A. 1976. Residence time distribution in the holding section of a plate heat exchanger. Journal Lebensmittel Wissenschaft und Technologie, 9: 255–256.

    Google Scholar 

  • Sancho, M. F., and Rao, M. A. 1992. Residence time distribution in a holding tube. J. Food Eng. 15: 1–19.

    Article  Google Scholar 

  • Sestak, J., Zitny, R., and Houska, M. 1983. Simple rheological models of food liquids for process design and quality assessment. J. Food Eng. 2(1): 35–49.

    Article  Google Scholar 

  • Sieder, E. N., and Tate, G. E. 1936. Heat transfer and pressure drop of liquids in tubes. Ind. Eng. Chem. 28: 1429–1435.

    Article  CAS  Google Scholar 

  • Simpson, S. G. and Williams, M. C. 1974. An analysis of high temperature/short time sterilization during laminar flow. J. Food Sci. 39: 1047–1054.

    Article  Google Scholar 

  • Skelland, A. H. P. 1967. Non-Newtonian Flow and Heat Transfer, John Wiley, New York.

    Google Scholar 

  • Steffe, J. F. 1996. Rheological Methods in Food Process Engineering, 2 nd ed., Freeman Press. East Lansing, MI, USA.

    Google Scholar 

  • Steffe, J. F. and Morgan, R. G. 1986. Pipeline design and pump selection for non-Newtonian fluid foods. Food Technol. 40(12): 78–85.

    Google Scholar 

  • Steffe, J. F., Mohamed, I. O., and Ford, E. W. 1984. Pressure drop across valves and fittings for pseudoplastic fluids in laminar flow. Trans. Am. Soc. Agric. Engrs. 27: 616–619.

    Google Scholar 

  • Stevens, P. M. 1972. Lethality calculations, including effects of product movement, for convection heating and broken heating foods in still-cook retorts. Ph.D. dissertation, Univ. of Massachusetts, Amherst, MA.

    Google Scholar 

  • Tattiyakul, J. 2001. Heat transfer to a canned starch dispersion under agitation: Numerical simulation and experiment. Ph.D. Thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Tattiyakul, J. and Rao, M. A. 2000. Rheological behavior of cross-linked waxy maize starch dispersions during and after heating. Carbohydr. Polym. 43: 215–222.

    Article  CAS  Google Scholar 

  • Tattiyakul, J., Rao, M. A., and Datta, A. K. 2002a. Heat transfer to a canned corn starch dispersion under intermittent agitation. J. Food Eng. 54(4): 321–329.

    Article  Google Scholar 

  • Tattiyakul, J., Rao, M. A., and Datta, A. K. 2002b. Heat transfer to three canned fluids of different thermo-rheological behavior under intermittent agitation. IChemE Trans. Part C—Food and Bioproducts Process 80: 20–27.

    Google Scholar 

  • Veerkamp, C. H., Romijn, A. J. M., and Pol, J. C. 1974. Influence of varying residence time distribution on inactivation of microorganisms during pasteurization of egg products. Lebensm.-Wiss. u.-Technol. 7:306–310.

    Google Scholar 

  • Vitali, A. A. and Rao, M. A. 1984a. Flow properties of low-pulp concentrated orange juice: serum viscosity and effect of pulp content. J. Food Sci. 49: 876–881.

    Article  Google Scholar 

  • Vitali, A. A. and Rao, M. A. 1984b. Flow properties of low-pulp concentrated orange juice: effect of temperature and concentration. J. Food Sci. 49: 882–888.

    Article  Google Scholar 

  • Wilkens, R. J., Henry, C., and Gates, L. E. 2003. How to scale-up mixing processes in non-Newtonian fluids. Chem. Eng. Progress 99(5): 44–52.

    CAS  Google Scholar 

  • Wissler, E. H. and Schechter, R. S. 1959. The Graetz-Nusselt problem with extension for a Bingham plastic. Chem. Eng. Prog. Symp. Ser. 29–34.

    Google Scholar 

  • Yang, W. H. 1997. Rheological behavior and heat transfer to a canned starch dispersion: computer simulation and experiment. Ph.D. thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Yang, W. H. and Rao, M. A. 1998a. Complex viscosity-temperature master curve of cornstarch dispersion during gelatinization. J. Food Proc. Eng. 21: 191–207.

    Article  Google Scholar 

  • Yang, W. H. and Rao, M. A. 1998b. Transient natural convection heat transfer to starch dispersion in a cylindrical container: numerical solution and experiment J. Food Eng. 36: 395–415.

    Article  Google Scholar 

  • Yang, W. H. and Rao, M. A. 1998c. Numerical study of parameters affecting broken heating curve. J. Food Eng. 36-37:43–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rao, M.A. (2007). Application of Rheology to Fluid Food Handling and Processing. In: Rheology of Fluid and Semisolid Foods. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-70930-7_8

Download citation

Publish with us

Policies and ethics