Skip to main content

Genetics and Cytology of Meiotic Chromosome Behavior in Plants

  • Chapter
  • First Online:
Book cover Plant Cytogenetics

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 4))

Abstract

Meiosis is the process by which sexually reproducing organisms reduce their genomes from diploid (2n) to haploid (n) during the formation of gametes. It requires that homologous chromosomes pair, synapse, recombine, and finally segregate. These widely conserved processes are under genetic control, yet the exact details of many of the underlying molecular mechanisms remain under active investigation. The initial pairing and subsequent synapsis events are immediately preceded by the clustering of telomeres on the nuclear envelope in a widely conserved structure referred to as the bouquet arrangement of meiotic chromosomes. In animals and plants, genes required for genome reduction at meiosis I have been characterized and show a high degree of conservation between kingdoms and species within them. Plants have provided an excellent large-genome model system for the study of the cytology of homologous chromosome behavior and therefore have allowed an in depth dissection of the meiotic process in eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CE:

Central element

DAPI:

4′,6-Diamidino-2-phenylindole

DSB:

Double-stranded break

EM:

Electron microscopy

FISH:

Fluorescence in situ hybridization

LE:

Lateral element

MAR:

Matrix attachment region

NE:

Nuclear envelope

NMD:

Nonsense-mediated mRNA decay

NPC:

Nuclear pore complex

PHD:

Plant homeodomain

PI:

Propidium iodide

RN:

Recombination nodule

SAR:

Scaffold attachment region

SC:

Synaptonemal complex

SI:

Structured illumination

References

  • Agashe B, Prasad CK, Siddiqi I (2002) Identification and analysis of DYAD: a gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis. Development 129:3935–3943.

    CAS  PubMed  Google Scholar 

  • Albini SM, Jones GH (1984) Synaptonemal complex–associated centromeres and recombination nodules in plant meiocytes prepared by an improved surface-spreading technique. Exp Cell Res 155:588–592.

    CAS  PubMed  Google Scholar 

  • Albini SM, Jones GH (1987) Synaptonemal complex spreading in Allium cepa and Allium fistulosum. I. The initiation and sequence of pairing. Chromosoma 95:324–338.

    Google Scholar 

  • Albini SM, Jones GH (1988) Synaptonemal complex spreading in Allium cepa and Allium fistulosum. II. Pachytene observations: the SC karyotype and the correspondence of late recombination nodules and chiasmata. Genome 30:399–410.

    Google Scholar 

  • Anderson E (1972) The Meiotic Process: Pairing, Recombination, and Chromosome Movements; Papers. MSS Information, New York.

    Google Scholar 

  • Anderson LK, Stack SM (2005) Recombination nodules in plants. Cytogenet Genome Res 109:198–204.

    CAS  PubMed  Google Scholar 

  • Anderson LK, Stack SM, Sherman JD (1988) Spreading synaptonemal complexes from Zea mays. I. No synaptic adjustment of inversion loops during pachytene. Chromosoma 96:295–305.

    CAS  PubMed  Google Scholar 

  • Anderson LK, Hooker KD, Stack SM (2001) The distribution of early recombination nodules on zygotene bivalents from plants. Genetics 159:1259–1269.

    CAS  PubMed  Google Scholar 

  • Anderson LK, Doyle GG, Brigham B, Carter J, Hooker KD, Lai A, Rice M, Stack SM (2003) High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165:849–865.

    CAS  PubMed  Google Scholar 

  • Aravind L, Iyer LM (2002) The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol 3(8):0039.1.

    Google Scholar 

  • Aravind L, Koonin EV (1998) The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci 23:284–286.

    CAS  PubMed  Google Scholar 

  • Armstrong SJ, Jones GH (2003) Meiotic cytology and chromosome behaviour in wild-type Arabidopsis thaliana. J Exp Bot 54:1–10.

    CAS  PubMed  Google Scholar 

  • Armstrong SJ, Franklin FC, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114: 4207–4217.

    CAS  PubMed  Google Scholar 

  • Armstrong SJ, Caryl, AP, Jones GH, Franklin FC (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3645–3655.

    CAS  PubMed  Google Scholar 

  • Arndt-Jovin DJ, Jovin TM (1989) Fluorescence labeling and microscopy of DNA. Methods Cell Biol 30:417–448.

    CAS  PubMed  Google Scholar 

  • Azumi Y, Liu D, Zhao D, Li W, Wang G, Hu Y, Ma H (2002) Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. EMBO J 21:3081–3095.

    CAS  PubMed  Google Scholar 

  • Banerjee D, Pal SK (2008) Dynamics in the DNA recognition by DAPI: exploration of the various binding modes. J Phys Chem B 112:1016–1021.

    CAS  PubMed  Google Scholar 

  • Bass HW (2003) Telomere dynamics unique to meiotic prophase: formation and significance of the bouquet. Cell Mol Life Sci 60:2319–2324.

    CAS  PubMed  Google Scholar 

  • Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137:5–18.

    CAS  PubMed  Google Scholar 

  • Bass HW, Riera-Lizarazu O, Ananiev EV, Bordoli SJ, Rines HW, Phillips RL, Sedat JW, Agard DA, Cande WZ (2000) Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase. J Cell Sci 113: 1033–1042.

    CAS  PubMed  Google Scholar 

  • Bass HW, Bordoli SJ, Foss EM (2003) The desynaptic (dy) and desynaptic1 (dsy1) mutations in maize (Zea mays L.) cause distinct telomere-misplacement phenotypes during meiotic prophase. J Exp Bot 54:39–46.

    CAS  PubMed  Google Scholar 

  • Belling J (1921) On counting chromosomes in pollen-mother cells. Am Nat 66:573–574.

    Google Scholar 

  • Bennett MD (1971) The duration of meiosis. Proc R Soc Lond B Biol Sci 178:277–299.

    CAS  Google Scholar 

  • Bennett MD (1977) The time and duration of meiosis. Phil Trans R Soc Lond B Biol Sci 277:201–226.

    CAS  Google Scholar 

  • Bennett MD, Chapman V, Riley R (1971) The duration of meiosis in pollen mother cells of wheat, rye, and Triticale. Proc R Soc Lond B Biol Sci 178:259–275.

    Google Scholar 

  • Bennett MD, Finch RA, Smith JB, Rao MK (1973) The time and duration of female meiosis in wheat, rye, and barley. Proc R Soc Lond B Biol Sci 183:301–319.

    Google Scholar 

  • Bennett MD, Dover GA, Riley R (1974) Meiotic duration in wheat genotypes with or without homoeologous meiotic chromosome pairing. Proc R Soc Lond B Biol Sci 187:191–207.

    CAS  PubMed  Google Scholar 

  • Bhatt AM, Lister C, Page T, Fransz P, Findlay K, Jones GH, Dickson HG, Dean C (1999) The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J 19:463–472.

    CAS  PubMed  Google Scholar 

  • Bhatt AM, Canales C, Dickinson HG (2001) Plant meiosis: the means to 1N. Trends Plant Sci 6:114–121.

    CAS  PubMed  Google Scholar 

  • Bleuyard J-Y, Gallego ME, White CI (2004) Meiotic defects in the Arabidopsis rad50 mutant point to conservation of the MRX complex function in early stages of meiotic recombination. Chromosoma 113:197–203.

    CAS  PubMed  Google Scholar 

  • Boden SA, Shadiac N, Tucker EJ, Langridge P, Able JA (2007) Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum). BMC Mol Biol 8:65.

    PubMed Central  PubMed  Google Scholar 

  • Bozza CG, Pawlowski WP (2008) The cytogenetics of homologous chromosome pairing in meiosis in plants. Cytogenet Genome Res 120:313–319.

    CAS  PubMed  Google Scholar 

  • Buck JB (1935) Permanent aceto-carmine preparations. Science 81:75.

    CAS  PubMed  Google Scholar 

  • Bupp JM, Martin AE, Stensrud ES, Jaspersen SL (2007) Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. J Cell Biol 179:845–854.

    CAS  PubMed  Google Scholar 

  • Cai X, Dong F, Edelmann RE, Makaroff CA (2003) The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci 116:2999–3007.

    CAS  PubMed  Google Scholar 

  • Carlton PM (2008) Three-dimensional structured illumination microscopy and its application to chromosome structure. Chromosome Res 16:351–365.

    CAS  PubMed  Google Scholar 

  • Carlton PM, Cande WZ (2002) Telomeres act autonomously in maize to organize the meiotic bouquet from a semipolarized chromosome orientation. J Cell Biol 157:231–242.

    CAS  PubMed  Google Scholar 

  • Carpenter AT (1975) Electron microscopy of meiosis in Drosophila melanogaster females: II. The recombination nodule—a recombination-associated structure at pachytene? Proc Natl Acad Sci USA 72:3186–3189.

    CAS  PubMed  Google Scholar 

  • Caryl AP, Armstrong SJ, Jones GH, Franklin FC (2000) A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1. Chromosoma 109:62–71.

    CAS  PubMed  Google Scholar 

  • Caryl AP, Jones GH, Franklin FC (2003) Dissecting plant meiosis using Arabidopsis thaliana mutants. J Exp Bot 54:25–38.

    CAS  PubMed  Google Scholar 

  • Cesarone CF, Bolognesi C, Santi L (1979) Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal Biochem 100:188–197.

    CAS  PubMed  Google Scholar 

  • Chan A, Cande WZ (1998) Maize meiotic spindles assemble around chromatin and do not require paired chromosomes. J Cell Sci 111:3507–3515.

    CAS  PubMed  Google Scholar 

  • Chan A, Cande WZ (2000) Maize meiocytes in culture. Plant Cell 60:187–195.

    Google Scholar 

  • Chang MT, Neuffer MG (1989) Maize microsporogenesis. Genome 32:232–244.

    Google Scholar 

  • Chapman CG, Kimber G (1992a) Developments in the meiotic analysis of hybrids. I. Review of theory and optimization in triploids. Heredity 68:97–103.

    PubMed  Google Scholar 

  • Chapman CG, Kimber G (1992b) Developments in the meiotic analysis of hybrids. II. Amended models for tetraploids. Heredity 68:105–113.

    PubMed  Google Scholar 

  • Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N, Belcram K, Rocques N, Marquez-Lema A, Bhatt AM, Horlow C, Mercier R, Mezard C, Grelon M (2005) AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci 118:4621–4632.

    CAS  PubMed  Google Scholar 

  • Chen C, Marcus A, Li W, Hu Y, Calzada JP, Grossniklaus U, Cyr RJ, Ma H (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129:2401–2409.

    CAS  PubMed  Google Scholar 

  • Cheng Z, Buell CR, Wing RA, Gu M, Jiang J (2001) Toward a cytological characterization of the rice genome. Genome Res 11:2133–2141.

    CAS  PubMed  Google Scholar 

  • Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y (2006) Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69.

    CAS  PubMed  Google Scholar 

  • Chikashige Y, Yamane M, Okamasa K, Tsutsumi C, Kojidani T, Sato M, Haraguchi T, Hiraoka Y (2009) Membrane proteins Bqt3 and −4 anchor telomeres to the nuclear envelope to ensure chromosomal bouquet formation. J Cell Biol 187:413–427.

    CAS  PubMed  Google Scholar 

  • Churchill FB (1970) Hertwig, Weismann, and the meaning of reduction division circa 1890. Isis 61:429–457.

    CAS  PubMed  Google Scholar 

  • Clark FJ (1940) Cytogenetic studies of divergent meiotic spindle formation in Zea mays. Am J Bot 27:547–559.

    Google Scholar 

  • Conrad MN, Lee CY, Wilkerson JL, Dresser ME (2007) MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:8863–8868.

    CAS  PubMed  Google Scholar 

  • Cowan CR, Cande WZ (2002) Meiotic telomere clustering is inhibited by colchicine but does not require cytoplasmic microtubules. J Cell Sci 115:3747–3756.

    CAS  PubMed  Google Scholar 

  • Cowan CR, Carlton PM, Cande WZ (2002) Reorganization and polarization of the meiotic ­bouquet-stage cell can be uncoupled from telomere clustering. J Cell Sci 115:3757–3766.

    CAS  PubMed  Google Scholar 

  • Darlington CD (1931a) The mechanism of crossing-over. Science 73:561–562.

    CAS  PubMed  Google Scholar 

  • Darlington CD (1931b) Meiosis. Biol Rev 6:221–252.

    Google Scholar 

  • Darlington CD (1932) Recent Advances in Cytology. Churchill, London.

    Google Scholar 

  • Darlington CD (1977) Meiosis in perspective. Phil Trans R Soc Lond B Biol Sci 277:185–189.

    CAS  Google Scholar 

  • Dawe RK (1998) Meiotic chromosome organization and segregation in plants. Annu Rev Plant Physiol Plant Mol Biol 49:371–395.

    CAS  PubMed  Google Scholar 

  • Dawe RK, Hiatt EN (2004) Plant neocentromeres: fast, focused, and driven. Chromosome Res 12:655–669.

    CAS  PubMed  Google Scholar 

  • Dawe RK, Sedat JW, Agard DA, Cande WZ (1994) Meiotic chromosome pairing in maize is associated with a novel chromatin organization. Cell 76:901–912.

    CAS  PubMed  Google Scholar 

  • Dawe RK, Reed LM, Yu HG, Muszynski MG, Hiatt EN (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11:1227–1238.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawe RK, Richardson EA, Zhang X (2005) The simple ultrastructure of the maize kinetochore fits a two-domain model. Cytogenet Genome Res 109:128–133.

    CAS  PubMed  Google Scholar 

  • de Jong H (2003) Visualizing DNA domains and sequences by microscopy: a fifty-year history of molecular cytogenetics. Genome 46:943–946.

    PubMed  Google Scholar 

  • de La Roche Saint-André C (2008) Alternative ends: telomeres and meiosis. Biochimie 90:181–189.

    PubMed  Google Scholar 

  • De Muyt A, Vezon D, Gendrot G, Gallois JL, Stevens R, Grelon M (2007) AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. EMBO J 26:4126–4137.

    PubMed  Google Scholar 

  • Dennis ES, Peacock WJ (2007) Epigenetic regulation of flowering. Curr Opin Plant Biol 10:520–527.

    CAS  PubMed  Google Scholar 

  • Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M (2007) SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell 12:863–872.

    CAS  PubMed  Google Scholar 

  • Drews GN, Lee D, Christensen CA (1998) Genetic analysis of female gametophyte development and function. Plant Cell 10:5–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du Y, Dawe RK (2007) Maize NDC80 is a constitutive feature of the central kinetochore. Chromosome Res 15:767–775.

    CAS  PubMed  Google Scholar 

  • Esponda P, Giménez-Martín G (1972) The attachment of the synaptonemal complex to the nuclear envelope. An ultrastructural and cytochemical analysis. Chromosoma 38:405–417.

    CAS  PubMed  Google Scholar 

  • Esposito MS, Esposito RE (1969) The genetic control of sporulation in Saccharomyces. I. The isolation of temperature-sensitive sporulation-deficient mutants. Genetics 61:79–89.

    CAS  PubMed  Google Scholar 

  • Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Briefings Funct Genomics 9:95–102.

    Google Scholar 

  • Franklin AE, Golubovskaya IN, Bass HW, Cande WZ (2003) Improper chromosome synapsis is associated with elongated RAD51 structures in the maize desynaptic2 mutant. Chromosoma 112:17–25.

    CAS  PubMed  Google Scholar 

  • Fransz PF, Armstrong S, de Jong JH, Parnell LD, van Drunen C, Dean C, Zabel P, Bisseling T, Jones GH (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100:367–376.

    CAS  PubMed  Google Scholar 

  • Fransz P, de Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA 99:14584–14589.

    CAS  PubMed  Google Scholar 

  • Garcia V, Bruchet H, Camescasse D, Granier F, Bouchez D, Tissier A (2003) AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 15:119–132.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillies CB, Rasmussen SW, von Wettstein D (1974) The synaptinemal complex in homologous and nonhomologous pairing of chromosomes. Cold Spring Harbor Symp Quant Biol 38:117–122.

    CAS  PubMed  Google Scholar 

  • Goldstein LS (2001) Molecular motors: from one motor many tails to one motor many tales. Trends Cell Biol 11:477–482.

    CAS  PubMed  Google Scholar 

  • Golubovskaya IN (1979) Genetic control of meiosis. Int Rev Cytol 58:247–290.

    CAS  PubMed  Google Scholar 

  • Golubovskaya IN, Khristolyubova NB (1985) The cytogenetic evidence of the gene control of meiosis: maize meiosis and mei-genes. In: Freeling M (ed), Plant Genetics. Alan R. Liss, New York, pp. 723–738.

    Google Scholar 

  • Golubovskaya I, Grebennikova ZK, Avalkina NA, Sheridan WF (1993) The role of the ameiotic1 gene in the initiation of meiosis and in subsequent meiotic events in maize. Genetics 135:1151–1166.

    CAS  PubMed  Google Scholar 

  • Golubovskaya I, Avalkina N, Sheridan WF (1997) New insights into the role of the maize ameiotic1 locus. Genetics 147:1339–1350.

    CAS  PubMed  Google Scholar 

  • Golubovskaya IN, Hamant O, Timofejeva L, Wang CJ, Brand D, Meeley R, Cande WZ (2006) Alleles of afd1 dissect REC8 functions during meiotic prophase I. J Cell Sci 119:3306–3315.

    CAS  PubMed  Google Scholar 

  • Graumann K, Runions J, Evans DE (2009) Characterization of SUN-domain proteins at the higher plant nuclear envelope. Plant J 61:134–144.

    PubMed  Google Scholar 

  • Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600.

    CAS  PubMed  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752.

    CAS  PubMed  Google Scholar 

  • Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Semin Cell Dev Biol 9:227–238.

    CAS  PubMed  Google Scholar 

  • Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, Schleiffer A, Nasmyth K, Cande WZ (2005) A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol 15:948–954.

    CAS  PubMed  Google Scholar 

  • Hamant O, Ma H, Cande WZ (2006) Genetics of meiotic prophase I in plants. Annu Rev Plant Biol 57:267–302.

    CAS  PubMed  Google Scholar 

  • Harper L, Golubovskaya I, Cande WZ (2004) A bouquet of chromosomes. J Cell Sci 117: 4025–4032.

    CAS  PubMed  Google Scholar 

  • Hartung F, Plchova H, Puchta H (2000) Molecular characterisation of RecQ homologues in Arabidopsis thaliana. Nucleic Acids Res 28:4275–4282.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hasenkampf CA, Qureshi M, Rzepczyk A (1998) Meiotin-1, a meiosis-enriched protein present in normal leptotene chromosomes and lacking in precociously condensed leptotene chromosomes. Chromosome Res 6:277–283.

    CAS  PubMed  Google Scholar 

  • Havekes FW, de Jong JH, Heyting C, Remanna MS (1994) Synapsis and chiasma formation in four meiotic mutants of tomato (Lycopersicon esculentum). Chromosome Res 2:315–325.

    CAS  PubMed  Google Scholar 

  • Hiatt EN, Kentner EK, Dawe RK (2002) Independently regulated neocentromere activity of two classes of tandem repeat arrays. Plant Cell 14:407–420.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FC (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500.

    CAS  PubMed  Google Scholar 

  • Hobolth P (1981) Chromosome pairing in allohexaploid wheat var. Chinese Spring. Transformation of multivalents into bivalents, a mechanism for exclusive bivalent formation. Carlsberg Res Commun 46:129–173.

    Google Scholar 

  • Holm PB (1977a) Three-dimensional reconstruction of chromosome pairing during the zygotene stage of meiosis in Lillium longiflorum (Thunb). Carlsberg Res Commun 42:103–151.

    Google Scholar 

  • Holm PB (1977b) The premeiotic DNA replication of euchromatin and heterochromatin in Lilium longiflorum (Thunb). Carlsberg Res Commun 42:249–281.

    CAS  Google Scholar 

  • Holm PB (1986) Chromosome pairing and chiasma formation in allohexaploid wheat, Triticum aestivum analyzed by spreading of meiotic nuclei. Carlsberg Res Commun 51:239–294.

    Google Scholar 

  • Houben A, Demidov D, Rutten T, Scheidtmann KH (2005) Novel phosphorylation of histone H3 at threonine 11 that temporally correlates with condensation of mitotic and meiotic chromosomes in plant cells. Cytogenet Genome Res 109:148–155.

    CAS  PubMed  Google Scholar 

  • Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L (2007) Phosphorylation of histone H3 in plants—a dynamic affair. Biochim Biophys Acta 1769:308–315.

    CAS  PubMed  Google Scholar 

  • Hyman AA, Karsenti E (1996) Morphogenic properties of microtubules and mitotic spindle assembly. Cell 84:401–410.

    CAS  PubMed  Google Scholar 

  • Jaspersen SL, Martin AE, Glazko G, Giddings TH Jr, Morgan G, Mushegian A, Winey M (2006) The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. J Cell Biol 174:665–675.

    CAS  PubMed  Google Scholar 

  • Jenkins G, Mikhailova EI, Langdon T, Tikholiz OA, Sosnikhina SP, Jones RN (2005) Strategies for the study of meiosis in rye. Cytogenet Genome Res 109:221–227.

    CAS  PubMed  Google Scholar 

  • Jenkins G, Phillips D, Mikhailova EI, Timofejeva L, Jones RN (2008) Meiotic genes and proteins in cereals. Cytogenet Genome Res 120:291–301.

    CAS  PubMed  Google Scholar 

  • Ji Y, Stelly DM, De Donato M, Goodman MM, Williams CG (1999) A candidate recombination modifier gene for Zea mays L. Genetics 151:821–830.

    CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068.

    CAS  PubMed  Google Scholar 

  • John B (1990) Meiosis. Cambridge University Press, Cambridge, UK, New York.

    Google Scholar 

  • John B, Lewis KR (1965) The Meiotic System. Springer-Verlag, Wien, New York.

    Google Scholar 

  • Jones GH, Armstrong SJ, Caryl AP, Franklin FC (2003) Meiotic chromosome synapsis and recombination in Arabidopsis thaliana; an integration of cytological and molecular approaches. Chromosome Res 11:205–215.

    CAS  PubMed  Google Scholar 

  • Jongedijk E (1987) A quick enzyme squash technique for detailed studies on female meiosis in Solanum. Stain Technol 62:135–141.

    CAS  PubMed  Google Scholar 

  • Kapuscinski J (1995) DAPI: a DNA-specific fluorescent probe. Biotech Histochem 70:220–233.

    CAS  PubMed  Google Scholar 

  • Kaszas E, Cande WZ (2000) Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin. J Cell Sci 113:3217–3226.

    CAS  PubMed  Google Scholar 

  • Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384.

    CAS  PubMed  Google Scholar 

  • Kim JS, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, Klein RR, Mullet JE. (2005) Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171:1963–1976.

    CAS  PubMed  Google Scholar 

  • Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271.

    CAS  PubMed  Google Scholar 

  • Kubista M, Ackerman B, Norden B (1987) Characterization of interaction between DNA and 4′,6-diamidino-2-phenylindole by optical spectroscopy. Biochemistry 26:4545–4553.

    CAS  PubMed  Google Scholar 

  • La Cour LF, Wells B (1970) Meiotic prophase in anthers of asynaptic wheat. Chromosoma 29:419–427.

    Google Scholar 

  • Lam E, Kato N, Watanabe K (2004) Visualizing chromosome structure/organization. Annu Rev Plant Biol 55:537–554.

    CAS  PubMed  Google Scholar 

  • Latt SA, Stetten G (1976) Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J Histochem Cytochem 24:24–33.

    CAS  PubMed  Google Scholar 

  • Lavania UC, Lavania S, Vimala Y (2002) Mitosis-meiosis transition, the regulation of the means to sexual reproduction. Curr Sci 82:15–16.

    Google Scholar 

  • Liu Z, Makaroff CA (2006) Arabidopsis separase AESP is essential for embryo development and the release of cohesin during meiosis. Plant Cell 18:1213–1225.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loidl J (1990) The initiation of meiotic chromosome pairing: the cytological view. Genome 33:759–778.

    CAS  PubMed  Google Scholar 

  • Loidl J (1994) Cytological aspects of meiotic recombination. Experientia 50:285–294.

    CAS  PubMed  Google Scholar 

  • Loidl P (2004) A plant dialect of the histone language. Trends Plant Sci 9:84–90.

    CAS  PubMed  Google Scholar 

  • Lopez E, Pradillo M, Romero C, Santos JL, Cnado N (2008) Pairing and synapsis in wild type Arabidopsis thaliana. Chromosome Res 16:701–708.

    CAS  PubMed  Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434.

    CAS  PubMed  Google Scholar 

  • Ma J, Wing RA, Bennetzen JL, Jackson SA (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139.

    CAS  PubMed  Google Scholar 

  • Magnard JL, Yang M, Chen YC, Leary M, McCormick S (2001) The Arabidopsis gene tardy asynchronous meiosis is required for the normal pace and synchrony of cell division during male meiosis. Plant Physiol 127:1157–1166.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maguire M (1967) Evidence for homologous pairing of chromosomes prior to meiotic prophase in maize. Chromosoma 21:221–231.

    Google Scholar 

  • Maguire MP (1995) Is the synaptonemal complex a disjunction machine? J Hered 86:330–340.

    CAS  PubMed  Google Scholar 

  • Maguire MP, Paredes AM, Riess RW (1991) The desynaptic mutant of maize as a combined defect of synaptonemal complex and chiasma maintenance. Genome 34:879–887.

    CAS  PubMed  Google Scholar 

  • Maguire MP, Riess RW, Paredes AM (1993) Evidence from a maize desynaptic mutant points to a probable role of synaptonemal complex central region components in provision for subsequent chiasma maintenance. Genome 36:797–807.

    CAS  PubMed  Google Scholar 

  • Manzini, G, Xodo L, Barcellona ML, Quadrifoglio F (1985) Interaction of DAPI with double-stranded ribonucleic acids. Nucleic Acids Res 13:8955–8967.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin-Castellanos C, Blanco M, Rozalén AE, Pérez-Hidalgo L, García AI, Conde F, Mata J, Elermeier C, Davis L. San-Degundo P, Smith GR, Moreno S (2005) A large-scale screen in S. pombe identifies seven novel genes required for critical meiotic events. Curr Biol 15:2056–2062.

    Google Scholar 

  • Martínez-Pérez E, Shaw P, Reader S, Aragon-Alcaide L, Miller T, Moore G (1999) Homologous chromosome pairing in wheat. J Cell Sci 112:1761–1769.

    PubMed  Google Scholar 

  • Martínez-Pérez E, Shaw PJ, Moore G (2000) Polyploidy induces centromere association. J Cell Biol 148:233–238.

    PubMed  Google Scholar 

  • Martínez-Pérez E, Shaw PJ, Moore G (2001) The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411:204–207.

    PubMed  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424.

    CAS  PubMed  Google Scholar 

  • McClintock B (1929a) A cytological and genetical study of triploid maize. Genetics 14:180–222.

    CAS  PubMed  Google Scholar 

  • McClintock B (1929b) Chromosome morphology in Zea mays. Science 69:629.

    CAS  PubMed  Google Scholar 

  • McClintock B (1933) The association of non-homologous parts of chromosomes at mid-prophase of meiosis in Zea mays. Z Zellforsch Mikrosk Anat 19:191–237.

    Google Scholar 

  • McGoldrick PT, Bohn GW, Whitaker TW (1954) An acetocarmine technic for Cucurbita. Stain Technol 29:127–130.

    CAS  PubMed  Google Scholar 

  • Meier I (2007) Composition of the plant nuclear envelope: theme and variations. J Exp Bot 58:27–34.

    CAS  PubMed  Google Scholar 

  • Mercier R, Grelon M (2008) Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res 120:281–290.

    CAS  PubMed  Google Scholar 

  • Mercier R, Vezon D, Bullier E, Motamayor JC, Sellier A, Lefèvre F, Pelletier G, Horlow C (2001) SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes Dev 15:1859–1871.

    CAS  PubMed  Google Scholar 

  • Mercier R, Armstrong SJ, Horlow C, Jackson NP, Makaroff CA, Vezon D, Pelletier G, Jones GH, Franklin FC (2003) The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development 130:3309–3318.

    CAS  PubMed  Google Scholar 

  • Mezard C (2006) Meiotic recombination hotspots in plants. Biochem Soc Trans 34:531–534.

    CAS  PubMed  Google Scholar 

  • Mezard C, Vignard J, Drouaud J, Mercier R (2007) The road to crossovers: plants have their say. Trends Genet 23:91–99.

    CAS  PubMed  Google Scholar 

  • Mikhailova EI, Phillips D, Sosnikhina SP, Lovtsyus AV, Jones RN, Jenkins G (2006) Molecular assembly of meiotic proteins Asy1 and Zyp1 and pairing promiscuity in rye (Secale cereale L.) and its synaptic mutant sy10. Genetics 174:1247–1258.

    CAS  PubMed  Google Scholar 

  • Moens PB (1968) The structure and function of the synaptinemal complexes in Lilium longiflorum sporocytes. Chromosoma 23:418–451.

    Google Scholar 

  • Moens P (1972) Fine structure of chromosome coiling at meiotic prophase in Rhoeo discolor. Can J Genet Cytol 14:801–808.

    Google Scholar 

  • Moens PB (1987) Meiosis. Academic Press, Orlando.

    Google Scholar 

  • Moens PB (1994) Molecular perspectives of chromosome pairing at meiosis. Bioessays 16:101–106.

    CAS  PubMed  Google Scholar 

  • Moens P, Pearlman R (1988) Chromatin organization at meiosis. BioEssays 9:151–153.

    CAS  PubMed  Google Scholar 

  • Mogensen HL (1977) Ultrastructural analysis of female pachynema and the relationship between synaptonemal complex length and crossing-over in Zea mays. Carlsberg Res Commun 42:475–497.

    Google Scholar 

  • Moore G (2002) Meiosis in allopolyploids—the importance of “Teflon” chromosomes. Trends Genet 18:456–463.

    CAS  PubMed  Google Scholar 

  • Moriguchi K, Suzuki T, Ito Y, Yamazaki Y, Niwa Y, Kurata N (2005) Functional isolation of novel nuclear proteins showing a variety of subnuclear localizations. Plant Cell 17:389–403.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naranjo T, Corredor E (2008) Nuclear architecture and chromosome dynamics in the search of the pairing partner in meiosis in plants. Cytogenet Genome Res 120:320–330.

    CAS  PubMed  Google Scholar 

  • Nasmyth K (2002) Segregating sister genomes: the molecular biology of chromosome separation. Science 297:559–565.

    CAS  PubMed  Google Scholar 

  • Nicolas SD, Leflon M, Liu Z, Eber F, Chelysheva L., Coriton O, Chèvre AM, Jenczewski E (2008) Chromosome “speed dating” during meiosis of polyploid Brassica hybrids and haploids. Cytogenet Genome Res 120:331–338.

    CAS  PubMed  Google Scholar 

  • Nonomura K, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004a) The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16:1008–1020.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nonomura KI, Nakano M, Murata K, Miyoshi K, Eiguchi M., Miyao A., Hirochika H, Kurata N (2004b) An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet Genomics 271:121–129.

    CAS  PubMed  Google Scholar 

  • Nonomura K, Nakano M, Eiguchi M, Suzuki T, Kurata N (2006) PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J Cell Sci 119:217–225.

    CAS  PubMed  Google Scholar 

  • Nonomura K, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, Kurata N (2007) A germ cell specific gene of the ARGONAUTE family is essential for the progression of ­premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19:2583–2594.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osman K, Sanchez-Moran E, Higgins JD, Jones GH, Franklin FC (2006) Chromosome synapsis in Arabidopsis: analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex. Chromosoma 115:212–219.

    CAS  PubMed  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462.

    CAS  PubMed  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437.

    CAS  PubMed  Google Scholar 

  • Page SL, Hawley RS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20:525–558.

    CAS  PubMed  Google Scholar 

  • Palmer RG (1971) Cytological studies of ameiotic and normal maize with reference to premeiotic pairing. Chromosoma 35:233–246.

    Google Scholar 

  • Paul AL, Ferl RJ (1998) Higher order chromatin structures in maize and Arabidopsis. Plant Cell 10:1349–1359.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pawlowski WP, Cande WZ (2005) Coordinating the events of the meiotic prophase. Trends Cell Biol 15:674–681.

    CAS  PubMed  Google Scholar 

  • Pawlowski WP, Golubovskaya IN, Cande WZ (2003) Altered nuclear distribution of recombination protein RAD51 in maize mutants suggests the involvement of RAD51 in meiotic homology recognition. Plant Cell 15:1807–1816.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pawlowski WP, Golubovskaya IN, Timofejeva L, Meeley RB, Sheridan WF, Cande WZ (2004) Coordination of meiotic recombination, pairing, and synapsis by PHS1. Science 303:89–92.

    CAS  PubMed  Google Scholar 

  • Pawlowski WP, Wang CJ, Golubovskaya IN, Szymaniak JM, Shi L, Hamant O, Zhu T, Harper L, Sheridan WF, Cande WZ (2009) Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis. Proc Natl Acad Sci USA 106:3603–3608.

    CAS  PubMed  Google Scholar 

  • Phillips CM, McDonald KL, Dernburg AF (2009) Cytological analysis of meiosis in Caenorhabditis elegans. Methods Mol Biol 558:171–195.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prieto P, Santos AP, Moore G, Shaw P (2004) Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice (Oryza sativa). Chromosoma 112:300–307.

    PubMed  Google Scholar 

  • Puizina J, Siroky J, Mokros P, Schweizer D, Riha K (2004) Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16:1968–1978.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian C, Zhang Q, Li S, Zeng L, Walsh MJ, Zhou MM (2005) Structure and chromosomal DNA binding of the SWIRM domain. Nat Struct Mol Biol 12:1078–1085.

    CAS  PubMed  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501.

    Google Scholar 

  • Reddy TV, Kaur J, Agashe B, Sundaresan V, Siddiqi I (2003) The DUET gene is necessary for chromosome organization and progression during male meiosis in Arabidopsis and encodes a PHD finger protein. Development 130:5975–5987.

    CAS  PubMed  Google Scholar 

  • Revenkova E, Jessberger R (2006) Shaping meiotic prophase chromosomes: cohesins and synaptonemal complex proteins. Chromosoma 115:235–240.

    CAS  PubMed  Google Scholar 

  • Rhoades MM, Vilkomerson H (1942) On the anaphase movement of chromosomes. Proc Natl Acad Sci USA 28:433–436.

    CAS  PubMed  Google Scholar 

  • Riehs N, Akimcheva S, Puizina J, Bulankova P, Idol RA, Siroky J, Schleiffer A, Schweizer D, Shippen DE, Riha K (2008) Arabidopsis SMG7 protein is required for exit from meiosis. J Cell Sci 121:2208–2216.

    CAS  PubMed  Google Scholar 

  • Riggs CD (1994) Molecular cloning of cDNAs encoding variants of meiotin-1. A meiotic protein associated with strings of nucleosomes. Chromosoma 103:251–261.

    CAS  PubMed  Google Scholar 

  • Riggs CD (1997) Meiotin-1: the meiosis readiness factor? Bioessays 19:925–931.

    CAS  PubMed  Google Scholar 

  • Riggs CD, Hasenkampf CA (1991) Antibodies directed against a meiosis-specific, chromatin-associated protein identify conserved meiotic epitopes. Chromosoma 101:92–98.

    CAS  PubMed  Google Scholar 

  • Rose A, Patel S, Meier I (2004) Plant nuclear envelope proteins. Symp Soc Exp Biol 56:69–88.

    CAS  PubMed  Google Scholar 

  • Ross KJ, Fransz P, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4:507–516.

    CAS  PubMed  Google Scholar 

  • Ross KJ, Fransz P, Armstrong SJ, Vizir I, Mulligan B, Franklin FC, Jones GH (1997) Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines. Chromosome Res 5:551–559.

    CAS  PubMed  Google Scholar 

  • Sanchez-Moran E, Jones GH, Franklin FC, Santos JL (2004) A puromycin-sensitive aminopeptidase is essential for meiosis in Arabidopsis thaliana. Plant Cell 16:2895–2909.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Moran E, Santos JL, Jones GH, Franklin FC (2007) ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev 21:2220–2233.

    CAS  PubMed  Google Scholar 

  • Sanchez-Moran E, Osman K, Higgins JD, Pradillo M, Cunado N, Jones GH, Franklin FC (2008) ASY1 coordinates early events in the plant meiotic recombination pathway. Cytogenet Genome Res 120:302–312.

    CAS  PubMed  Google Scholar 

  • Santos JL, Jimenez MM, Diez M (1994) Meiosis in haploid rye: extensive synapsis and low chiasma frequency. Heredity 73:580–588.

    Google Scholar 

  • Scherthan H (2001) A bouquet makes ends meet. Nat Rev Mol Cell Biol 2:621–627.

    CAS  PubMed  Google Scholar 

  • Scherthan H (2007) Telomere attachment and clustering during meiosis. Cell Mol Life Sci 64:117–124.

    CAS  PubMed  Google Scholar 

  • Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:11664–11669.

    CAS  PubMed  Google Scholar 

  • Schmit AC, Stoppin V, Chevrier V, Job D, Lambert AM (1994) Cell cycle dependent distribution of a centrosomal antigen at the perinuclear MTOC or at the kinetochores of higher plant cells. Chromosoma 103:343–351.

    CAS  PubMed  Google Scholar 

  • Schmit AC, Endle MC, Lambert AM (1996) The perinuclear microtubule-organizing center and the synaptonemal complex of higher plants share a common antigen: its putative transfer and role in meiotic chromosomal ordering. Chromosoma 104:405–413.

    CAS  PubMed  Google Scholar 

  • Schmitt J, Benavente R, Hodzic D, Hoog C, Stewart CL, Alsheimer M (2007) Transmembrane protein Sun2 is involved in tethering mammalian meiotic telomeres to the nuclear envelope. Proc Natl Acad Sci USA 104:7426–7631.

    CAS  PubMed  Google Scholar 

  • Schubert V, Kim YM, Berr A, Fuchs J, Meister A, Marschner S, Schubert I (2007) Random homologous pairing and incomplete sister chromatid alignment are common in angiosperm interphase nuclei. Mol Genet Genomics 278:167–176.

    CAS  PubMed  Google Scholar 

  • Schwarzacher T. (2003) Meiosis, recombination and chromosomes: a review of gene isolation and fluorescent in situ hybridization data in plants. J Exp Bot 54:11–23.

    CAS  PubMed  Google Scholar 

  • Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51.

    CAS  PubMed  Google Scholar 

  • Sen SK (1970) Axial elements in plant meiotic chromosomes. Nature 228:79–80.

    CAS  PubMed  Google Scholar 

  • Shamina NV (2005) Formation of division spindles in higher plant meiosis. Cell Biol Int 29:307–318.

    CAS  PubMed  Google Scholar 

  • Shamina N, Dorogova N, Trunova S (2000) Radial spindle and the phenotype of the maize meiotic mutant dv. Cell Biol Int 24:729–736.

    CAS  PubMed  Google Scholar 

  • Shao L, Isaac B, Uzawa S, Agard DA, Sedat JW, Gustafsson MGL (2008) I5S: widefield light microscopy with 100-nm-scale resolution in three dimensions. Biophys J 94:4971–4983.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw SL (2006) Imaging the live plant cell. Plant J 45:573–598.

    CAS  PubMed  Google Scholar 

  • Sheehan MJ, Pawlowski WP (2009) Live imaging of rapid chromosome movements in meiotic prophase I in maize. Proc Natl Acad Sci USA 106:20989–20994.

    CAS  PubMed  Google Scholar 

  • Shepard J, Boothroyd ER, Stern H (1974) The effect of colchicine on synapsis and chiasma formation in microsporocytes of Lilium. Chromosoma 44:423–437.

    CAS  Google Scholar 

  • Sheridan WF, Stern H (1967) Histones of meiosis. Exp Cell Res 45:323–335.

    CAS  PubMed  Google Scholar 

  • Sheridan WF, Avalkina NA, Shamrov II, Batygina TB, Golubovskaya IN (1996) The mac1 gene: controlling the commitment to the meiotic pathway in maize. Genetics 142:1009–1020.

    CAS  PubMed  Google Scholar 

  • Sheridan WF, Golubeva EA, Abrhamova LI, Golubovskaya IN (1999) The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics 153:933–941.

    CAS  PubMed  Google Scholar 

  • Sherman JD, Stack SM (1995) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141:683–708.

    CAS  PubMed  Google Scholar 

  • Shi J, Wolf SE, Burke JM, Presting GG, Ross-Ibarra J, Dawe RK (2010) Widespread gene conversion in centromere cores. PLoS Biol 9:e1000327.

    Google Scholar 

  • Siaud N, Dray E, Gy I, Gérard E, Takvorian N, Doutriaux MP (2004) Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. EMBO J 23:1392–1401.

    CAS  PubMed  Google Scholar 

  • Sidhu GK, Rustgi S, Shafqat MN, von Wettstein D, Gill KS (2008) Fine structure mapping of a gene-rich region of wheat carrying Ph1, a supressor of crossing over between homoeologous chromosomes. Proc Natl Acad Sci USA 15:5815–5820.

    Google Scholar 

  • Simpson GG, Gendall AR, Dean C (1999) When to switch to flowering. Annu Rev Cell Dev Biol 15:519–550.

    CAS  PubMed  Google Scholar 

  • Singh RJ (1993) Plant Cytogenetics. CRC Press, Boca Raton.

    Google Scholar 

  • Sosnikhina SP, Mikhailova EI, Tikholiz OA, Priyatkina SN, Smimov VG, Dadashev SY, Kolomiets OL, Bogdanov YF (2005) Meiotic mutations in rye Secale cereale L. Cytogenet Genome Res 109:215–220.

    CAS  PubMed  Google Scholar 

  • Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C, Wada T, Maxwell A, Roberts K, Sugimoto-Shirasu K (2006) Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. Plant J 48:206–216.

    CAS  PubMed  Google Scholar 

  • Stack S (1982) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. I. The technique. Stain Technol 57:265–272.

    CAS  PubMed  Google Scholar 

  • Stack SM (1984) Heterochromatin, the synaptonemal complex and crossing over. J Cell Sci 71:159–176.

    CAS  PubMed  Google Scholar 

  • Staiger CJ, Cande WZ (1990) Microtubule distribution in dv, a maize meiotic mutant defective in the prophase to metaphase transition. Dev Biol 138:231–242.

    CAS  PubMed  Google Scholar 

  • Staiger CJ, Cande WZ (1992) Ameiotic, a gene that controls meiotic chromosome and cytoskeletal behavior in maize. Dev Biol 154:226–230.

    CAS  PubMed  Google Scholar 

  • Starr DA (2007) Communication between the cytoskeleton and the nuclear envelope to position the nucleus. Mol Biosyst 3:583–589.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stephan W, Langley CH (1998) DNA polymorphism in Lycopersicon and crossing-over per physical length. Genetics 150:1585–1593.

    CAS  PubMed  Google Scholar 

  • Stern H, Hotta Y (1974) Biochemical controls of meiosis. Annu Rev Genet 7:37–66.

    Google Scholar 

  • Stronghill PE, Hasenkampf CA (2007) Analysis of substage associations in prophase I of meiosis in floral buds of wild-type Arabidopsis thaliana (Brassicaceae). Am J Bot 94:2063–2067.

    PubMed  Google Scholar 

  • Terasawa M, Shinohara A, Hotta Y, Ogawa H, Ogawa T (1995) Localization of RecA-like recombination proteins on chromosomes of the lily at various meiotic stages. Genes Dev 9:925–934.

    CAS  PubMed  Google Scholar 

  • Ting YC (1973) Synaptonemal complex of haploid maize. Cytologia 38:497–500.

    Google Scholar 

  • Tomita K, Cooper JP (2006) The meiotic chromosomal bouquet: SUN collects flowers. Cell 125:19–21.

    CAS  PubMed  Google Scholar 

  • Trelles-Sticken E, Adelfalk C, Loidl J, Scherthan H (2005) Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 170:213–223.

    CAS  PubMed  Google Scholar 

  • Tzur YB, Wilson KL, Gruenbaum Y (2006) SUN-domain proteins: “Velcro” that links the nucleoskeleton to the cytoskeleton. Nat Rev Mol Cell Biol 7:782–788.

    CAS  PubMed  Google Scholar 

  • Van Damme D, Bouget FY, Van Poucke K, Inzé D, Geelen D (2004) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–398.

    PubMed  Google Scholar 

  • Vignard J, Siwiec T, Chelysheva L, Vrielynck N, Gonord F, Armstrong SJ, Schlögelhofer P, Mercier R (2007) The interplay of RecA-related proteins and the MND1-HOP2 complex during meiosis in Arabidopsis thaliana. PLoS Genet 3:1894–1906.

    CAS  PubMed  Google Scholar 

  • von Wettstein D, Rasmussen SW, Holm PB (1984) The synaptonemal complex in genetic segregation. Annu Rev Genet 18:331–413.

    Google Scholar 

  • Wang CJ, Chen CC (2005) Cytogenetic mapping in maize. Cytogenet Genome Res 109:63–69.

    PubMed  Google Scholar 

  • Wang G, Zhang X, Jin WW (2009) An overview of plant centromeres. J Genet Genomics 36:529–537.

    CAS  PubMed  Google Scholar 

  • Wang X (1988) Chromosome pairing analysis in haploid wheat by spreading of meiotic nuclei. Carlsberg Res Commun 53:135–166.

    Google Scholar 

  • Wang Y, Magnard JL, McCormick S, Yang M (2004) Progression through meiosis I and meiosis II in Arabidopsis anthers is regulated by an A-type cyclin predominately expressed in prophase I. Plant Physiol 136:4127–4135.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waterworth WM, Altun C, Armstrong SJ, Roberts N, Dean PJ, Young K, Weil CF, Bray CM, West CE (2007) NBS1 is involved in DNA repair and plays a synergistic role with ATM in mediating meiotic homologous recombination in plants. Plant J 52:41–52.

    CAS  PubMed  Google Scholar 

  • Wijeratne AJ, Chen C, Zhang W, Timofejeva L, Ma H (2006) The Arabidopsis thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination. Mol Biol Cell 17:1331–1343.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson EB (1925) The Cell in Development and Heredity. Macmillan, New York.

    Google Scholar 

  • Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16:S133–S141.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang WC, Sundaresan V (2000) Genetics of gametophyte biogenesis in Arabidopsis. Curr Opin Plant Biol 3:53–57.

    CAS  PubMed  Google Scholar 

  • Yoshioka M, Maeda M, Ito M (1981) The time and duration of premeiotic interphase in microsporocytes of Trillium kamtschaticum. Bot Mag Tokyo 94:371–378.

    Google Scholar 

  • Yu HG, Hiatt EN, Chan A, Sweeney M, Dawe RK (1997) Neocentromere-mediated chromosome movement in maize. J Cell Biol 139:831–840.

    CAS  PubMed  Google Scholar 

  • Yu HG, Muszynski MG, Dawe, RK (1999) The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J Cell Biol 145:425–435.

    CAS  PubMed  Google Scholar 

  • Yu HG, Hiatt EN, Dawe RK (2000) The plant kinetochore. Trends Plant Sci 5:543–547.

    CAS  PubMed  Google Scholar 

  • Zhang L, Murray BG, Pickering RA (2002) Variable patterns of chromosome synapsis at pachytene in Hordeum vulgare  ×  H. bulbosum hybrids and their parents. Hereditas 137:90–95.

    PubMed  Google Scholar 

  • Zhang L, Tao J, Wang SX, Chong K, Wang T (2006) The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis. Plant Mol Biol 60:533–554.

    CAS  PubMed  Google Scholar 

  • Zhong XB, de Jong JH, Zabel P (1996) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4:24–28.

    CAS  PubMed  Google Scholar 

  • Zickler D (2006) From early homologue recognition to synaptonemal complex formation. Chromosoma 115:158–174.

    PubMed  Google Scholar 

  • Zickler D, Kleckner N (1998) The leptotene-zygotene transition of meiosis. Annu Rev Genet 32:619–697.

    CAS  PubMed  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A.B. Thistle and members of the Bass laboratory for critical reading of the chapter and insightful comments. This work was supported by an American Heart Association predoctoral fellowship to SPM (# 0715487B, AHA, Greater Southeast Affiliate) and by the National Science Foundation (HWB, DBI-0321639).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Murphy, S.P., Bass, H.W. (2012). Genetics and Cytology of Meiotic Chromosome Behavior in Plants. In: Bass, H., Birchler, J. (eds) Plant Cytogenetics. Plant Genetics and Genomics: Crops and Models, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70869-0_8

Download citation

Publish with us

Policies and ethics