Skip to main content

Genetic Improvement of Sugarcane (Saccharum spp.) as an Energy Crop

  • Chapter
Genetic Improvement of Bioenergy Crops

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, A.G. (1985) The Energy Cane Alternative. Sugar Series, Vol. 6. Elsevier, Amsterdam.

    Google Scholar 

  • Alexander, A.G. (1991) High energy cane. In: J.H. Payne (Ed.), Cogeneration in the Cane Sugar Industry. Elsevier, New York, pp. 233–242.

    Google Scholar 

  • Amalraj, V.A. and Balasundaram, N. (2005) On the taxonomy of the members of ‘Saccharum complex’. Genet. Resour. Crop Evol. 53, 35–41.

    Article  Google Scholar 

  • Beeharry, R.P. (1996) Extended sugarcane biomass utilisation for exportable electricity production in Mauritius. Biomass Bioenergy 11, 441–449.

    Article  Google Scholar 

  • Berding, N. and Roach, B.T. (1987) Germplasm collection, maintenance, and use. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 143–210.

    Google Scholar 

  • Berding, N. and Hurney, A.P. (2005) Flowering and lodging, physiological-based traits affecting cane and sugar yield. Field Crops Res. 92, 261–275.

    Article  Google Scholar 

  • Bhat, S.R. and Gill, S.S. (1985) The implications of 2n gametes in nobilization and breeding of sugarcane. Euphytica 34, 377–384.

    Article  Google Scholar 

  • Breaux, R.D. (1984) Breeding to enhance sucrose content of sugarcane in Louisiana. Field Crops Res. 9, 59–67.

    Article  Google Scholar 

  • Bremer, G. (1923) A cytological investigation of some species and species hybrids within the genus Saccharum. Genetica 5, 97–148, 273–326.

    Article  Google Scholar 

  • Brown, J.S., Schnell, R.J., Power, E.J., Douglas, S.L. and Kuhn, D.N. (2007) Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter- and intra species relationships using microsatellite markers. Genet. Res. Crop Evol. 54, 627–648.

    Article  CAS  Google Scholar 

  • Cai, Q., Aitken, K.S., Deng, H.H., Chen, X.W., Fu, C., Jackson, P.A. and McIntyre, C.L. (2005) Verification of the introgression of Erianthus arundinaceus germplasm into sugarcane using molecular markers. Plant Breed. 124, 322–328.

    Article  CAS  Google Scholar 

  • Clements, H.F. (1980) Sugarcane Crop Logging and Crop Control: Principles and Practices. University Press of Hawaii, Honolulu

    Google Scholar 

  • Coombs, J. (1984) Sugar-cane as an energy crop. Biotechnol. Genetic Engin. Rev. 1, 311–345.

    Google Scholar 

  • Cuenya, I. and Mariotti, J.A. (1986) Selection of sugarcane for quality components and ripening ability. Proc. Int. Soc. Sugar Cane Technol. 19, 429–439.

    Google Scholar 

  • Daniels, J. and Roach, B.T. (1987) Taxonomy and evolution. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 7–84.

    Google Scholar 

  • Dawson, L. and Boopathy, R. (2007) Use of post-harvest sugarcane residue for ethanol production. Bioresour. Technol. 98, 1695–1699.

    Article  PubMed  CAS  Google Scholar 

  • D’Hont, A., Grivet, L., Feldmann, P., Rao, P.S., Berding, N. and Glaszmann, J.C. (1996) Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol. Gen. Genet. 250, 405–413.

    PubMed  CAS  Google Scholar 

  • D’Hont, A., Paulet, F. and Glaszmann, J.C. (2002) Oligoclonal interspecific origin of ’North Indian’ and ’Chinese’ sugarcanes. Chromosome Res. 10, 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Dunckelman, P.H. and Breaux, R.D. (1972) Breeding sugarcane varieties for Louisiana with new germplasm. Proc. Int. Soc. Sugar Cane Technol. 14, 233–239.

    Google Scholar 

  • Edmé, S.J., Miller, J.D., Glaz, B., Tai, P.Y.P. and Comstock, J.C. (2005) Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop. Sci. 45, 92–97.

    Google Scholar 

  • Engard, C.J. and Larsen, N. (1948) Floral development in sugarcane. Hawaii Agric. Exp. Stn. Biennial Rep. 1946–1948, pp. 125–132.

    Google Scholar 

  • Giamalva, M.J., Clarke, S.J. and Stein, J.M. (1984) Sugarcane hybrids of biomass. Biomass 6, 61–68.

    Article  Google Scholar 

  • Gravois, K.A., Bischoff, K.P. and Kimbeng, C.A. (2006) The rise and fall of a monoculture. Sugar J. 69, 18–20.

    Google Scholar 

  • Hatch, M.D. and Slack, C.R. (1966) Photosynthesis in sugarcane leaves: a new carboxylation reaction and the pathway of sugar formation. Biochem. J. 101, 103–111.

    PubMed  CAS  Google Scholar 

  • Heinz, D.J. (1967) Wild Saccharumspecies for breeding in Hawaii. Proc. Int. Soc. Sugar Cane Technol. 12, 1037–1043.

    Google Scholar 

  • Hodkinson, T.R., Chase, M.W. and Renvoize, S.A. (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann. Bot. 89, 627–636.

    Article  PubMed  CAS  Google Scholar 

  • Hogarth, D.M., Wu, K.K. and Heinz, D.J. (1981) Estimating genetic variance in sugarcane using a factorial cross design. Crop Sci. 21, 21–25.

    Google Scholar 

  • Edmé, S.J., Miller, J.D., Glaz, B., Tai, P.Y.P. and Comstock, J.C. (2005) Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop. Sci. 45, 92–97.

    Google Scholar 

  • Hogarth, D.M., Cox, M.C. and Bull, J.K. (1997) Sugarcane improvement: past achievements and future prospects. In: M.S. Kang (Ed.), Crop Improvement for the 21st Century. ResearchSignpost, Trivandrum, India, pp. 29–56.

    Google Scholar 

  • Irvine, J.E. and Benda, G.T.A. (1979) Genetic potential and restraints in Saccharum as an energy source. {\it Symposium on Alternate Uses of Sugarcane for Development in Puerto Rico. San Juan, P.R. (26 Mar 1979). Irvine, J.E. (1999) Saccharumspecies as horticultural classes. Theor. Appl. Genet. 98, 186–194.

    Article  Google Scholar 

  • Jackson, P. (1994) Genetic relationships between attributes in sugarcane clones closely related to Saccharum spontaneum. Euphytica 79, 101–108.

    Article  Google Scholar 

  • James, N.I. (1980) Sugarcane. In: W.R. Fehr and H.H. Hadley (Eds.), Hybridization of Crop Plants. Am. Soc. Agron., Madison, pp. 617–629.

    Google Scholar 

  • James, G.L. (2004) Sugarcane. Blackwell, Oxford.

    Google Scholar 

  • Jenkins, B.M., Baxter, L.L., Miles Jr., T.R. and Miles, T.R. (1998) Combustion properties of biomass. Fuel Proces. Technol. 54, 17–46.

    Article  CAS  Google Scholar 

  • Kang, M.S., Miller, J.D. and Tai, P.Y.P. (1983) Genetic and phenotypic path analysis and heritability in sugarcane. Crop Sci. 23, 643–647.

    Google Scholar 

  • Kennedy, A.J. (2000) Building parental populations with very high sucrose content through recurrent selection. Breeding and Germplasm Workshop. Int. Soc. Sugar Cane. Technol. Barbados (http://www.issct.org/bridabs.htm).

    Google Scholar 

  • Kennedy, A.J. (2005) Breeding improved cultivars for the Caribbean by utilization of total biomass production. Proc. Int. Suc. Sugar Cane Tech. 25, 491–499.

    Google Scholar 

  • Kortschak, H.P., Hartt, C.E. and Burr, G.O. (1965) Carbon dioxide fixation in sugarcane leaves. Plant Physiol. 40, 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Legendre, B.L. and Burner, D.M. (1995) Biomass production of sugarcane cultivars and earlygeneration hybrids. Biomass Bioenergy 8, 55–61.

    Article  Google Scholar 

  • Lima, M.L.A., Garcia, A.A.F., Oliveira, K.M., Matsuoka, S., Arizono, H., de Sousa, C.L. and de Sousa, A.P. (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharumspp.). Theor. Appl. Genet. 104, 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Lingle, S.L., Tew, T.L., Viator, R.P. and Johnson, R.M. (2006) How much has recurrent selection increased sucrose yield in sugarcane? CCSA 51st Annual Meeting. Sect. 57-4 (abstract).

    Google Scholar 

  • Lo, C.C., Chen, Y.H., Huang, Y.J. and Shih, S.C. (1986) Recent progress in Miscanthus nobilization program. Proc. Int. Soc. Sugar Cane Technol. 19, 514–521.

    Google Scholar 

  • Loomis, R.S. and Williams, W.A. (1963) Maximum crop productivity: an estimate. Crop. Sci. 3, 67–72.

    Google Scholar 

  • Macedo, I.C., Leal, M.R.L.V. and da Silva, J.E.A.R. (2004) Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil. Sao Paulo. (http://www.unica.com.br/i_pages/files/pdf_ingles.pdf).

    Google Scholar 

  • Macedo, I.C. (2005) Sugar Cane’s Energy – Twelve Studies on Brazilian Sugar Cane Agribusiness and its Sustainability, UNICA, Brazil.

    Google Scholar 

  • Mangelsdorf, A.J. (1946) Sugar-cane breeding in Hawaii. Part I – 1778–1920. Hawaii. Plant. Rec. 50, 141–160.

    Google Scholar 

  • Matsuo, K., Chuenpreecha, T., Matsumoto, N. and Ponragdee, W. (2006) Eco-physical characteristics of Erianthusspp. and yielding abilities of three forages under conditions of cattle feces application. JIRCAS Working Report No. 30.

    Google Scholar 

  • McKendry, P. (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technol. 83, 37–46.

    Article  CAS  Google Scholar 

  • Miller, J.D. (1977) Combining ability and yield component analyses in a five-parent diallel cross in sugar cane. Crop Sci. 17, 545–547.

    Google Scholar 

  • Milligan, S.B., Gravois, K.A., Bischoff, K.P. and Martin, F.A. (1990) Crop effects on broadsense heritabilities and genetic variances on sugarcane yield components. Crop Sci. 30, 344–349.

    Google Scholar 

  • Ming, R., Moore, P.H., Wu, K.K., D’Hont, A., Tew, T.L., Mirkov, T.E., da Silva, J., Schnell, R.J., Brumbley, S.M., Lakshmanan, P., Jifon, J., Rai, M., Comstock, J.C., Glaszmann, J.C. and Paterson, A.H. (2006) Sugarcane improvement through breeding and biotechnology. Plant Breed. Rev. 27, 17–118.

    Google Scholar 

  • Moore, P.H. (1987) Anatomy and morphology. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 85–142.

    Google Scholar 

  • Moore, P.H. and Nuss, K.J. (1987) Flowering and flower synchronization. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 273–311.

    Google Scholar 

  • Moore, P.H., Botha, F.C., Furbank, R. and Grof, C. (1997) Potential for overcoming physiobiochemical limits to sucrose accumulation. In: B.A. Keating and J.R. Wilson (Eds.), Intensive Sugarcane Production: Meeting the Challenges Beyond 2000. CAB Int., Wallingford, U.K., pp. 141–155.

    Google Scholar 

  • Mrini, M., Senhaji, F. and Pimentel, D. (2001) Energy analysis of sugarcane production in Morocco. Environ. Develop. Sustain. 3, 109–126.

    Article  Google Scholar 

  • Muchow, R.C., Spilman, M.F., Wood, W.W. and Thomas, M.R. (1994) Radiation interception and biomass accumulation in a sugarcane crop under irrigated tropical conditions. Aus. J. Agr. Res. 45, 3–49.

    Google Scholar 

  • Mukherjee, S.K. (1950) Search for wild relatives of sugarcane in India. Int. Sugar J. 52, 261–262.

    Google Scholar 

  • Mukherjee, S.K. (1957) Origin and distribution of Saccharum. Bot. Gaz. 119, 55–61.

    Article  Google Scholar 

  • Osgood, R.V. (2003) Cane planter, sugarcane yield and record yield. Sugar J. 66, 7.

    Google Scholar 

  • Panje, R.R. and Babu, C.N. (1960) Studies in Saccharum spontaneum. Distribution and geographical association of chromosome numbers. Cytologia 25, 152–172.

    Google Scholar 

  • Panje, R.R. (1972) The role of Saccharum spontaneum in sugarcane breeding. Proc. Int. Soc. Sugar Cane Technol. 14, 217–223.

    Google Scholar 

  • Payne, J.H. (1991) Cogeneration in the cane sugar industry. Elsevier, New York.

    Google Scholar 

  • Pellegrini, L.F. and de Oliveira Jr., S. (2007) Exergy analysis of sugarcane bagasse gasification. Energy 32, 314–327.

    Article  CAS  Google Scholar 

  • Pimentel, D. and Patzek, T. (2007) Ethanol production: energy and economic issues related to U.S. and Brazilian sugarcane. Nat. Resour. Res. 16, 235–242.

    Article  CAS  Google Scholar 

  • Rao, P.S. and Kennedy, A. (2004) Genetic improvement of sugarcane for sugar, fibre and biomass. Ministry of Agriculture and Rural Development, Barbados, National Agric. Conf. [http://www.agriculture.gov.bb/default.asp?V_DOC_ID=1639].

    Google Scholar 

  • Richard Jr., E.P., (1999) Management of chopper harvester-generated green cane trash blankets: a new concern for Louisiana. Proc. Inter. Soc. Sugar Cane Technol. 23, 52–62.

    Google Scholar 

  • Roach, B.T. (1978) Utilization of Saccharum spontaneumin sugarcane breeding. Proc. Int. Soc. Sugar Cane Technol. 16, 43–58.

    Google Scholar 

  • Salassi, M.E. and Breaux, J.B. (2005) Allocation of sugarcane planting costs in 2005. Staff Report No. 2005-01. LSU AgCenter, Baton Rouge. [http://www.agecon.lsu.edu/Extension_Pubs/Allocation%20of%20Sugarcane%20Planting%20Costs%20in%202005.pdf].

    Google Scholar 

  • Samuels, G. (1986) Growing sugarcane as a renewable energy crop. Soil and Crop Sci. Soc. Fla. Proc. 45, 103–105.

    Google Scholar 

  • Shang, K.C., Juang, P.Y., Chu, T.L. and Huang, S.T. (1969) A study on the transmission of some important characteristics of Taiwan originated wild cane Saccharum spontaneum L. Proc. Int. Soc. Sugar Cane Technol. 13, 968–974.

    Google Scholar 

  • Shapouri, H., Salassi, M. and Fairbanks, J.N. (2006) The economic feasibility of ethanol production from sugar in the United States. OEPNU/OCE/USDA/LSU Report. [http://louisianalawnandgarden.org/NR/rdonlyres/0EF2C03C-1C69-455E-AB51-C16D165C2F41/28608/EthanolSugarFeasibilityReport3Julyreleasedcopy.pdf].

    Google Scholar 

  • Simmonds, N.W. (1976) Sugarcane. In: N.W. Simmonds (Ed.) Evolution of Crop Plants. Longmans, London, pp. 104–108.

    Google Scholar 

  • Sreenivasan, T.V. (1987) Cytogenetics. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 211–253.

    Google Scholar 

  • Stevenson, G.C. (1965) Genetics and Breeding of Sugar Cane. Longman, London.

    Google Scholar 

  • Stricker, J.A., Prine, G.M., Anderson, D.L., Shibles, D.B. and Riddle, T.C. (1993) Energy from crops: production and management of biomass/energy crops on phosphatic clay in central Florida. Circular 1084. Fla. Coop. Ext. Serv., U. Florida. [http://edis.ifas.ufl. edu/EH213].

    Google Scholar 

  • Sugimoto, A., Ponragdee, W., Sansayawichai, T., Kawashima, T., Thippayarugs, S., Suriyaphan, P., Matsuoka, M., Lerdprasertrat, K. and Pramanee, P. (2002). Collecting and evaluating of wild relatives of sugarcane as breeding materials of new type sugarcane cultivars of cattle feed in northeast Thailand. JIRCAS Working Report 55–60.

    Google Scholar 

  • Tew, T.L. (1987) New varieties. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 559–594.

    Google Scholar 

  • Tew, T.L. (2003) World sugarcane variety census – year 2000. Sugar Cane International March/April, pp. 12–18.

    Google Scholar 

  • Viator, R.P., Johnson, R.M., Grimm, C.C. and Richard Jr., E.P. (2006) Allelopathic, autotoxic, and hormetic effects of postharvest sugarcane residue. Agron J. 98, 1526–1531.

    Article  Google Scholar 

  • Walker, D.I.T. (1972) Utilization of noble and Saccharum spontaneumgermplasm in the West Indies. Proc. Int. Soc. Sugar Cane Technol. 14, 224–232.

    Google Scholar 

  • Walter, A., Dolzan, P. and Piacente, E. (2006) Biomass energy and bio-energy trade: historic developments in Brazil and current opportunities. Country Report: Brazil – Task 40 – Sustainable Bio-energy Trade; Securing Supply and Demand. State University of Campinas, Campinas, Brazil.

    Google Scholar 

  • Xavier, R.M. (2007) The Brazilian ethanol experience. Competitive Enterprise Institute, Washington DC. [http://www.cei.org/pdf/5774.pdf].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tew, T.L., Cobill, R.M. (2008). Genetic Improvement of Sugarcane (Saccharum spp.) as an Energy Crop. In: Vermerris, W. (eds) Genetic Improvement of Bioenergy Crops. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70805-8_9

Download citation

Publish with us

Policies and ethics