Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 597))

Abstract

Members of the tumor necrosis factor (TNF) family govern many diverse physiological and cellular responses including cellular proliferation, differentiation, and apoptosis. Ligands of this family interact through a distinct set of specific receptors that lack enzymatic activity and therefore are dependent on the association of adaptor molecules. One receptor/ligand pair known as receptor activator of nuclear factor-kappa B (RANK) and RANK ligand (RANKL) regulates bone remodeling, mammary gland development, and lymph node organogenesis. RANK interacts with five members of the TNF receptor-associated factor (TRAF) family, of which TRAF6 is indispensable for its signaling capability. An accumulation of evidence from various research laboratories indicates TRAFs, but more importantly TRAF6, is the key to understanding how RANKL links cytoplasmic signaling to the nuclear transcriptional program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Takayanagi H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med 2005; 83(3):170–179.

    Article  PubMed  CAS  Google Scholar 

  2. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet 2003; 4(8):638–649.

    Article  PubMed  CAS  Google Scholar 

  3. Quinn JM, Gillespie MT. Modulation of osteoclast formation. Biochem Biophys Res Commun 2005; 328(3):739–745.

    Article  PubMed  CAS  Google Scholar 

  4. Blair HC, Robinson LJ, Zaidi M. Osteoclast signalling pathways. Biochem Biophys Res Commun 2005; 328(3):728–738.

    Article  PubMed  CAS  Google Scholar 

  5. Bucay N, Sarosi I, Dunstan CR et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12(9):1260–1268.

    PubMed  CAS  Google Scholar 

  6. Kong YY, Yoshida H, Sarosi I et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397(6717):315–323.

    Article  PubMed  CAS  Google Scholar 

  7. Mizuno A, Amizuka N, Irie K et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 1998; 247(3):610–615.

    Article  PubMed  CAS  Google Scholar 

  8. Li J, Sarosi I, Yan XQ et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 2000; 97(4):1566–1571.

    Article  PubMed  CAS  Google Scholar 

  9. Dougall WC, Glaccum M, Charrier K et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13(18):2412–2424.

    Article  PubMed  CAS  Google Scholar 

  10. Kobayashi T, Walsh MC, Choi Y. The role of TRAF6 in signal transduction and the immune response. Microbes Infect 2004; 6(14):1333–1338.

    Article  PubMed  CAS  Google Scholar 

  11. Chung JY, Park YC, Ye H et al. All TRAFs are not created equal: Common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 2002; 115(Pt 4):679–688.

    PubMed  CAS  Google Scholar 

  12. Wu H, Arron JR. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays 2003; 25(11):1096–1105.

    Article  PubMed  CAS  Google Scholar 

  13. Armstrong AP, Tometsko ME, Glaccum M et al. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J Biol Chem 2002; 277(46):44347–44356.

    Article  PubMed  CAS  Google Scholar 

  14. Darnay BG, Haridas V, Ni J et al. Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappaB and c-Jun N-terminal kinase. J Biol Chem 1998; 273(32):20551–20555.

    Article  PubMed  CAS  Google Scholar 

  15. Darnay BG, Ni J, Moore PA et al. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem 1999; 274(12):7724–7731.

    Article  PubMed  CAS  Google Scholar 

  16. Galibert L, Tometsko ME, Anderson DM et al. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J Biol Chem 1998; 273(51):34120–34127.

    Article  PubMed  CAS  Google Scholar 

  17. Hsu H, Lacey DL, Dunstan CR et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 1999; 96(7):3540–3545.

    Article  PubMed  CAS  Google Scholar 

  18. Kim HH, Lee DE, Shin JN et al. Receptor activator of NF-kappaB recruits multiple TRAF family adaptors and activates c-Jun N-terminal kinase. FEBS Lett 1999; 443(3):297–302.

    Article  PubMed  CAS  Google Scholar 

  19. Wong BR, Josien R, Lee SY et al. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem 1998; 273(43):28355–28359.

    Article  PubMed  CAS  Google Scholar 

  20. Pullen SS, Dang TT, Crute JJ et al. CD40 signaling through tumor necrosis factor receptor-associated factors (TRAFs). Binding site specificity and activation of downstream pathways by distinct TRAFs. J Biol Chem 1999; 274(20):14246–14254.

    Article  PubMed  CAS  Google Scholar 

  21. Ye H, Arron JR, Lamothe B et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 2002; 418(6896):443–447.

    Article  PubMed  CAS  Google Scholar 

  22. Park YC, Burkitt V, Villa AR et al. Structural basis for self-association and receptor recognition of human TRAF2. Nature 1999; 398(6727):533–538.

    Article  PubMed  CAS  Google Scholar 

  23. Ye H, Park YC, Kreishman M et al. The structural basis for the recognition of diverse receptor sequences by TRAF2. Molecular Cell 1999; 4(3):321–330.

    Article  PubMed  CAS  Google Scholar 

  24. Liu W, Xu D, Yang H et al. Functional identification of three receptor activator of NF-kappa B cytoplasmic motifs mediating osteoclast differentiation and function. J Biol Chem 2004; 279(52):54759–54769.

    Article  PubMed  CAS  Google Scholar 

  25. Gohda J, Akiyama T, Koga T et al. RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis. EMBO J 2005; 24(4):790–799.

    Article  PubMed  CAS  Google Scholar 

  26. Kadono Y, Okada F, Perchonock C et al. Strength of TRAF6 signalling determines osteoclastogenesis. EMBO Rep Feb 2005; 6(2):171–176.

    Article  CAS  Google Scholar 

  27. Lomaga MA, Yeh WC, Sarosi I et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999; 13(8):1015–1024.

    PubMed  CAS  Google Scholar 

  28. Naito A, Azuma S, Tanaka S et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999; 4(6):353–362.

    Article  PubMed  CAS  Google Scholar 

  29. Pickart CM, Cohen RE. Proteasomes and their kin: Proteases in the machine age. Nat Rev Mol Cell Biol 2004; 5(3):177–187.

    Article  PubMed  CAS  Google Scholar 

  30. Pickart CM, Eddins MJ. Ubiquitin: Structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695(1–3):55–72.

    PubMed  CAS  Google Scholar 

  31. Deng L, Wang C, Spencer E et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103(2):351–361.

    Article  PubMed  CAS  Google Scholar 

  32. Wang C, Deng L, Hong M et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001; 412(6844):346–351.

    Article  PubMed  CAS  Google Scholar 

  33. Kanayama A, Seth RB, Sun L et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15(4):535–548.

    Article  PubMed  CAS  Google Scholar 

  34. Mizukami J, Takaesu G, Akatsuka H et al. Receptor activator of NF-kappaB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol Cell Biol 2002; 22(4):992–1000.

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi N, Kadono Y, Naito A et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 2001; 20(6):1271–1280.

    Article  PubMed  CAS  Google Scholar 

  36. Beyaert R, Heyninck K, Van Huffel S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol 2000; 60(8):1143–1151.

    Article  PubMed  CAS  Google Scholar 

  37. Lee EG, Boone DL, Chai S et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289(5488):2350–2354.

    Article  PubMed  CAS  Google Scholar 

  38. Balakirev MY, Tcherniuk SO, Jaquinod M et al. Otubains: A new family of cysteine proteases in the ubiquitin pathway. EMBO Rep 2003; 4(5):517–522.

    Article  PubMed  CAS  Google Scholar 

  39. Evans PC, Ovaa H, Hamon M et al. Zinc-finger protein A20 a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 2004; 378(Pt 3):727–734.

    Article  PubMed  CAS  Google Scholar 

  40. Boone DL, Turer EE, Lee EG et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5(10):1052–1060.

    Article  PubMed  CAS  Google Scholar 

  41. Wertz IE, O’Rourke KM, Zhou H et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430(7000):694–699.

    Article  PubMed  CAS  Google Scholar 

  42. Ishida N, Hayashi K, Hoshijima M et al. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J Biol Chem 2002; 277(43):41147–41156.

    Article  PubMed  CAS  Google Scholar 

  43. Takayanagi H, Kim S, Koga T et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3(6):889–901.

    Article  PubMed  CAS  Google Scholar 

  44. Ikeda F, Nishimura R, Matsubara T et al. Critical roles of c-Jun signaling in regulation of NFAT family and RANKL-regulated osteoclast differentiation. J Clin Invest 2004; 114(4):475–484.

    Article  PubMed  CAS  Google Scholar 

  45. Wong BR, Besser D, Kim N et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 1999; 4(6):1041–1049.

    Article  PubMed  CAS  Google Scholar 

  46. Kim N, Odgren PR, Kim DK et al. Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci USA 2000; 97(20):10905–10910.

    Article  PubMed  CAS  Google Scholar 

  47. Nakano H, Sakon S, Koseki H et al. Targeted disruption of Traf5 gene causes defects in CD40-and CD27-mediated lymphocyte activation. Proc Natl Acad Sci USA 1999; 96(17):9803–9808.

    Article  PubMed  CAS  Google Scholar 

  48. Kanazawa K, Azuma Y, Nakano H et al. TRAF5 functions in both RANKL-and TNFalpha-induced osteoclastogenesis. J Bone Miner Res 2003; 18(3):443–450.

    Article  PubMed  CAS  Google Scholar 

  49. Yeh WC, Shahinian A, Speiser D et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997; 7(5):715–725.

    Article  PubMed  CAS  Google Scholar 

  50. Kanazawa K, Kudo A. TRAF2 is essential for TNF-alpha-induced osteoclastogenesis. J Bone Miner Res 2005; 20(5):840–847.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Darnay, B.G., Besse, A., Poblenz, A.T., Lamothe, B., Jacoby, J.J. (2007). TRAFs in RANK Signaling. In: Wu, H. (eds) TNF Receptor Associated Factors (TRAFs). Advances in Experimental Medicine and Biology, vol 597. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70630-6_12

Download citation

Publish with us

Policies and ethics